
Analysis and Exploitation of Automatically Generated Scene

Structure from Aerial Imagery

by

David R. Nilosek

B.S. Rochester Institute of Technology, 2008

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

in the Chester F. Carlson Center for Imaging Science

College of Science

Rochester Institute of Technology

March 31st, 2014

Signature of the Author

Accepted by
Coordinator, Ph.D. Degree Program Date

CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE

COLLEGE OF SCIENCE

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

CERTIFICATE OF APPROVAL

Ph.D. DEGREE DISSERTATION

The Ph.D. Degree Dissertation of David R. Nilosek
has been examined and approved by the

dissertation committee as satisfactory for the
dissertation required for the

Ph.D. degree in Imaging Science

Dr. Carl Salvaggio, Dissertation Advisor

Dr. David Messinger

Dr. Nathan Cahill

Dr. Steven LaLonde

Date

ii

Analysis and Exploitation of Automatically Generated Scene

Structure from Aerial Imagery

by

David R. Nilosek

Submitted to the
Chester F. Carlson Center for Imaging Science

in partial fulfillment of the requirements
for the Doctor of Philosophy Degree

at the Rochester Institute of Technology

Abstract

The recent advancements made in the field of computer vision, along with the ever increas-

ing rate of computational power has opened up opportunities in the field of automated

photogrammetry. Many researchers have focused on using these powerful computer vision

algorithms to extract three-dimensional point clouds of scenes from multi-view imagery,

with the ultimate goal of creating a photo-realistic scene model. However, geographically

accurate three-dimensional scene models have the potential to be exploited for much more

than just visualization. This work looks at utilizing automatically generated scene struc-

ture from near-nadir aerial imagery to identify and classify objects within the structure,

through the analysis of spatial-spectral information. The limitation to this type of im-

agery is imposed due to the common availability of this type of aerial imagery. Popular

third-party computer-vision algorithms are used to generate the scene structure. A voxel-

based approach for surface estimation is developed using Manhattan-world assumptions.

A surface estimation confidence metric is also presented. This approach provides the basis

for further analysis of surface materials, incorporating spectral information. Two cases

of spectral analysis are examined: when additional hyperspectral imagery of the recon-

structed scene is available, and when only R,G,B spectral information can be obtained. A

method for registering the surface estimation to hyperspectral imagery, through orthorec-

tification, is developed. Atmospherically corrected hyperspectral imagery is used to assign

reflectance values to estimated surface facets for physical simulation with DIRSIG. A

i

ii

spatial-spectral region growing-based segmentation algorithm is developed for the R,G,B

limited case, in order to identify possible materials for user attribution. Finally, an anal-

ysis of the geographic accuracy of automatically generated three-dimensional structure is

performed. An end-to-end, semi-automated, workflow is developed, described, and made

available for use.

ii

Acknowledgements

I joined the Digital Imaging and Remote Sensing Laboratory as a graduate student

in the Winter of 2008. A numerous amount of people have helped me get to where I am

today, and I would like to acknowledge and thank them all.

First and foremost, my thesis advisor Dr. Carl Salvaggio. Carl has officially been

my advisor for about six years, but really he has been helping me along since before I

completed my undergraduate degree. Beyond being an excellent academic mentor, I also

consider him to be a good friend. He has helped me in both my professional and personal

life, and I will be forever grateful for all he has done.

I would also like to thank my thesis committee: Dr. Dave Messinger, Dr. Nate Cahill,

and Dr. Steve LaLonde. Dr. Messinger and Dr. Cahill were very helpful in shaping the

direction of my dissertation work. They asked thought-provoking questions and made a

number of very useful suggestions. I am grateful for their expertise and willingness to

give advice. I am also very grateful for Dr. LaLonde’s being the external chair of my

committee. We have a very limited academic relationship, however, I am astounded by

the generosity and support he gave towards my dissertation process.

I would like to thank Dr. Derek Walvoord from ITT Exelis for advising me on a number

of subjects throughout my work, and for always being able to answer any question I had.

There have been a number of staff members in the DIRS Lab, whom have helped me

along the way. I would like to thank Jason Faulring, for his unending technical support

and expertise. I would also like to thank Scott Brown for his leadership, while I was

working under the ESRI grant. I also would like to thank Mike Richardson, who helped

me hone my presentation skills time and again. Thanks also goes to Bob Krzaczek for

introducing me to git, asciidoc, and his numerous bits of coding advice.

Many thanks must be given to Cindy Schultz, without whom many DIRS graduate

students, including myself, would be hopelessly lost. I would also like to thank Sue Chan

for making sure I submitted everything on time (even when I was late). I’d also like to

thank the many professors I had during my coursework, I am grateful to have attended

an institution with such a wealth of knowledge and talent.

I’ve been lucky enough to have multiple generations of officemates, all of whom have

helped me along my path. I’d like to thank Sarah for saving me from drowning at my

former desk and convincing Cindy to let me move into the office. She helped me with

my classwork, research, and was a great officemate. Thanks also goes to May for helping

iii

iv

me feel welcome in the office, and along with Sarah, helping turn my last name into a

verb for computer malfunction. I would like to thank Shaohui and Mike for the many

casual and technical conversations we had. They were helpful making office life enjoyable.

I would also like to thank Katie, whom joined me in the quest for understanding C++

and Computer Vision. She helped me with my classwork as well as my research. I greatly

appreciate all the help and friendship she’s given me over the years.

Many thanks also goes to Steve Schultz, from Pictometry Corp., whom not only gave

me my first internship experience, but also hired me even before I had completed my

dissertation. Thanks also to Amy Galbraith for being my mentor during my internship at

Los Alamos National Laboratory.

I want to thank my friends and family. Mom, Dad, Andrea, and Courtney, thanks for

all your support and always making me feel like I can accomplish anything. Uncle Ed and

Lucy, thank you for supporting me through my undergraduate and graduate degrees, I

would not have been able to do it without you. Curtis and Pat, you guys were some of the

best roommates I could have asked for, thanks for helping me keep my life entertaining.

Lastly, I would not have made it here without the unyielding support of my fiancée,

Elena. I cannot thank her enough for helping me get to where I am today. She was there

for me throughout the long nights of writing, working, and frustration. I am beyond lucky

to have such a person to rely on and partner with throughout life.

iv

To everyone who has been there, thank you.

v

Contents

1 Introduction 1

1.1 Accurate Structure Extraction . 2

1.2 Physical Model Estimation . 3

1.3 Summary . 4

1.4 Contributions . 6

2 Background 7

2.1 Epipolar Geometry . 8

2.1.1 Projective Geometry . 9

2.1.2 Camera Model . 12

2.1.3 Stereo Geometry and the Fundamental Matrix 16

2.1.4 Fundamental Matrix Derivation . 18

2.1.5 Relative Camera Pose Estimation . 21

2.2 Feature Detection, Description, and Matching 26

2.2.1 SIFT . 27

2.2.2 Affine-SIFT . 30

2.2.3 DAISY . 32

2.2.4 Epipolar Line Matching . 33

2.2.5 Patch-Based Model . 35

2.3 Reconstruction Techniques . 37

2.3.1 Photogrammetric Approach . 38

2.3.2 Linear Triangulation . 40

2.4 Optimization Techniques . 42

2.4.1 Feature Matching Optimization Using RANSAC 42

2.4.2 Bundle Adjustment . 50

vi

CONTENTS vii

2.5 Deriving Geo-Accurate Structure Measurements 61

2.5.1 Calculating Ts . 61

2.6 Discussion . 63

3 Methodology 65

3.1 Software . 66

3.2 Obtaining an Accurate Coordinate System 69

3.2.1 Using Camera Position Estimates . 70

3.2.2 Using the Camera Model and Image Correspondence 71

3.2.3 Using the Camera Model Directly 72

3.3 Surface Reconstruction Methods . 73

3.3.1 Model Extraction Using RANSAC Plane Fitting and Alpha Shapes

Boundary Extraction . 75

3.3.2 Voxel-Based Surface Estimation . 78

3.3.3 Constructing a Confidence Metric for Voxel-Based Estimated Sur-

face Structure . 92

3.3.4 Using a Depth Map for Structure Segmentation 95

3.4 Surface Attribution and Classification . 99

3.4.1 Reflectance Attribution Through Hyperspectral Imagery 100

3.4.2 Surface Material Segmentation with R,G,B Spectral Information . . 106

3.5 Discussion . 112

4 Results and Analysis 114

4.1 Georegistration Analysis . 114

4.1.1 Georegistration Error Using DIRSIG Noiseless Sensor Model 116

4.1.2 Georegistration Error Using DIRSIG Noisy Sensor Model 119

4.1.3 Reducing the SfM Error . 121

4.1.4 Using a Large Number of Images . 123

4.2 Voxel-Based Surface Reconstruction . 125

4.2.1 Buildings From the RIT Dataset . 126

4.2.2 Buildings From the Downtown Rochester Dataset 129

4.2.3 Confidence analysis . 131

4.3 Reflectance-Attributed Facetized Surface Structure 135

4.4 Classified Facetized Surface Structure . 136

4.4.1 k-Means Clustering Sensitivity Study 139

vii

CONTENTS viii

5 Discussion 141

5.1 Georegistration . 142

5.2 Surface Estimation and Analysis . 143

5.3 Limitations . 145

5.4 Future Work . 147

5.5 Conclusions . 148

A Transforming the projection matrix P using the georegistration trans-

form Ts 150

B Normalized Cuts 152

B.1 Representing Data as Graphs . 152

B.2 Graph Cuts and Normalized Cuts . 154

B.3 Calculating the Minimum Normalized Cut 155

C Datasets 157

C.1 Downtown Rochester, NY . 157

C.2 RIT Dataset . 160

C.3 SHARE-2010 . 163

C.4 Synthetic DIRSIG Dataset . 164

D Structure from Motion Workflow Tutorial 166

D.1 Installation . 167

D.1.1 Installing CUDA . 167

D.1.2 Installing Graclus . 169

D.1.3 Installing the SfM Workflow . 169

D.2 Example Usage . 171

D.2.1 RunProcess.sh Script Parameters . 173

D.2.2 Running additional data . 174

E Three-dimensional Surface Estimation and Classification Software 176

E.1 Installation . 176

E.2 Usage . 177

F Surface Attribution with Hyperspectral Imagery 180

F.1 Installation . 180

viii

CONTENTS ix

F.2 Usage . 181

F.2.1 Use with your own data . 181

Bibliography 183

ix

List of Figures

1.1 Results of described methodology . 5

2.1 Structure from Motion workflow . 8

2.2 Perspective view of a wall . 9

2.3 Projective Coordinates . 11

2.4 Orthogonal image projection geometry . 13

2.5 World and camera frame relationship . 14

2.6 Stereo geometry . 16

2.7 SIFT scale space . 28

2.8 SIFT Feature . 29

2.9 SIFT matching . 30

2.10 SIFT and A-SIFT comparison . 31

2.11 DAISY feature descriptor . 32

2.12 Epipolar line constraint for matching . 34

2.13 Matched user generated ROI . 35

2.14 PMVS Algorithm . 36

2.15 Photogrammetric triangulation geometry 38

2.16 Image flattening . 40

2.17 Outlier impact on simple linear regression 43

2.18 RANSAC line fitting . 45

2.19 Expected RANSAC iterations for Fundamental Matrix Calculation 46

2.20 RANSAC applied to SIFT correspondence 48

2.21 Optimization Algorithm Comparison . 55

2.22 Example Normal Equation Structure . 59

2.23 Centroid . 62

x

LIST OF FIGURES xi

2.24 Common SfM Work Flow . 64

3.1 Downtown Rochester Point Cloud . 65

3.2 Software Work Flow . 67

3.3 Bundler Work Flow . 68

3.4 GPS transform . 70

3.5 Augmented Camera Model transform . 71

3.6 Direct Triangulation Method . 72

3.7 CAD-like surface estimation . 73

3.8 RANSAC Plane Fitting . 74

3.9 Alpha Shapes Boundary Extraction . 76

3.10 Object Plane Boundary Extraction . 77

3.11 Example Building Model . 77

3.12 Voxelization . 79

3.13 Removal of low density voxels . 80

3.14 Radius Search Algorithm . 80

3.15 Z-Level Voxel Cleaning . 81

3.16 Hit or Miss Transform . 83

3.17 Voxel Level Cleaning . 85

3.18 Moore-neighborhood Boundary Search . 86

3.19 Example Voxel Z-Level Cleaning Results . 88

3.20 2-D Sampling of Figure . 89

3.21 2-D Marching Cubes . 90

3.22 3-d Marching Cubes Primitives . 91

3.23 Example facetized surface . 91

3.24 Voxel Confidence Situations . 94

3.25 Occlusion Handling . 95

3.26 Generation of Depth Maps . 96

3.27 Extraction of structure from depth map . 97

3.28 Removal of Vegetation Regions . 98

3.29 Direct Georeferencing Process . 102

3.30 Ortho-map example . 104

3.31 Efficient Map Searching . 105

3.32 Facet Spectra Attribution . 106

3.33 Normalized Cut Example . 108

xi

LIST OF FIGURES xii

3.34 Region Growing . 110

3.35 Region Growing Clustering . 111

3.36 Region Growing Results . 112

3.37 Complete End-to-End Workflow . 113

4.1 SfM process with DIRSIG . 115

4.2 DIRSIG noiseless error . 117

4.3 Error in X,Y, and Z . 118

4.4 DIRSIG noisy error . 120

4.5 SfM Error . 122

4.6 Camera centers . 124

4.7 SfM Error . 125

4.8 Building 76 Voxel Reconstruction . 126

4.9 Building 7 Voxel Reconstruction . 127

4.10 Building 6 Voxel Reconstruction . 127

4.11 Building 5 Voxel Reconstruction . 128

4.12 Chase Tower Voxel Reconstruction . 129

4.13 Bausch Lomb Place Voxel Reconstruction 130

4.14 Clinton Square Building Voxel Reconstruction 130

4.15 Xerox Tower Voxel Reconstruction . 131

4.16 Confidence Histograms for RIT . 132

4.17 Confidence Histograms for Downtown Rochester, NY 133

4.18 Thresholded Voxel Clouds . 134

4.19 DIRSIG simulation on extracted models . 135

4.20 Segmented structures from RIT dataset . 137

4.21 Segmented structures from downtown Rochester dataset 138

4.22 k-means sensitivity analysis . 140

5.1 Error detection through confidence . 146

B.1 Graph Nodes . 152

B.2 Graph Cuts . 155

C.1 WASP Downtown Rochester Collect . 158

C.2 Downtown Rochester Point Cloud . 159

C.3 RIT Collect B . 161

xii

LIST OF FIGURES xiii

C.4 RIT Collect Point Cloud . 162

C.5 Share 2010 collect over RIT . 163

C.6 Synthetic Image Views . 164

C.7 Synthetic Image Point Clouds . 165

D.1 Expected Output of SfM Workflow . 172

E.1 Voxel Processing Output . 179

xiii

List of Tables

4.1 A comparison of the 95% cumulative distribution values for each georegis-

tration approach between noiseless and noisy sensors 119

D.1 A description of all the parameters that can be used in the RunProcess.sh

script . 174

E.1 A description of all the input parameters for the voxel processing software . 178

xiv

Chapter 1

Introduction

In recent years, with the increase of computational power and speed, many advance-

ments have been made in the automation of photogrammetry through the application of

computer vision methods with aerial imagery. Photogrammetry exploits the geometric

properties of imagery in order to make highly accurate measurements of objects within

the scene. Computer vision exploits not only the geometric properties of imagery, but also

the spatial, spectral, and statistical properties with the attempt to intelligently detect and

describe the objects within the imagery. Algorithms and processes in the field of analyti-

cal photogrammetry developed as early as the 1960s, while computer vision evolved much

later. Due to the separation in age and the difference in goals, these two fields have shared

very little with each other, while their combination has significant potential.

This work will focus on taking a computer vision-based approach to extracting geomet-

rically and physically accurate structures from aerial imagery, a goal of photogrammetry.

The addition of computer vision-aided techniques allows additional information to be

extracted through the combination of multiple modalities of imagery. The goal of this re-

search is to extract geometrically and physically accurate models from multi-view visible

(RGB) aerial imagery. Physical accuracy, in this case, is not just the surface structure of

the model but also knowledge of the surface reflectance spectra. This knowledge can lead

to a higher understanding of the material properties of each model. The end goal from

this work will be the production of a geometrically and physically accurate model, along

with a semi-automatic end-to-end workflow to produce the model.

The methods required to reach theses goals can be split into two major parts. The first

part is the extraction of accurate scene structure from multi-view RGB imagery. Scene

structure is defined here as a collection of discrete three-dimensional measurements spread

1

1.1. ACCURATE STRUCTURE EXTRACTION 2

across the entire scene. These measurements form a three-dimensional point cloud, the

basis for further structure modeling. Scene structure alone cannot be used to create a

physically accurate three-dimensional model. The second part of the methods used in this

work focus on the modeling of the extracted scene structure. The modeling process uses

the scene structure along with additional scene information to estimate a physical model

for specific objects within the scene.

1.1 Accurate Structure Extraction

Identifying objects within a scene is a key goal in the field of computer vision. One

method of describing objects within a scene is to identify their structure through analysis

of their motion between multiple images, a process commonly referred to as Structure from

Motion (SfM). This technique of analyzing objects has its roots in traditional photogram-

metry, though the standard goal of SfM techniques lies in object identification rather than

mensuration. To that end, the SfM algorithm chain assumes little or no information about

the imaging platform. The computer vision community has developed a number of com-

plex processes to estimate camera pose, i.e., the sensor position and orientation, but these

methods are limited to estimating parameters in a relative sense [25, 32]. Consequently,

any estimated object structure is in the same relativistic coordinate system. Precise geo-

graphic measurements of objects, cannot be directly extracted in this coordinate system

without additional information.

With the goal of accurate physical modeling in mind, precise geographic measure-

ments of scene structure are desired. An estimate of the scene structure measurements

in an accurate Earth-based coordinate system can be made through the use of additional

information. In many practical SfM systems, it is assumed that the camera’s calibration

information is known; this includes the focal length, pixel pitch, and sensor size [25, 49].

Knowledge of this information allows for a metric reconstruction of both the camera pose

and object structure [25]. Consequently, the relationship between the SfM-based world

coordinate system and the desired Earth-based coordinate system can be described by a

simple, seven degrees of freedom similarity transform, as they are both metric coordinate

systems.

Computer vision techniques for extracting scene structure combined with additional

information for geographic registration provides the required methods for extracting ac-

2

1.2. PHYSICAL MODEL ESTIMATION 3

curate scene structure from multi-view imagery. Objects contained in this scene structure

can be further processed to extract physically accurate three-dimensional models.

1.2 Physical Model Estimation

Geographically accurate image-based three-dimensional structure measurements pro-

vide the basis for further analysis and modeling of target objects within the scene of

interest. These targets tend to be man-made structures (e.g. buildings, houses, large

structures). This work focuses on the physical model estimation of these types of struc-

tures.

An assumption can be made when focusing on these types of structures, more gener-

ally called the “Manhattan-world” assumption [9]. This assumption is that structures in

a three-dimensional Cartesian coordinate system are primarily made up of large planar

faces and the structure tends to orient itself in three orthogonal directions. The original

assumption stated that the camera is assumed to be approximately in the horizontal plane,

having Z map with the vertical lines in the imagery. In the case of aerial imagery, the

camera is assumed to be approximately orthogonal to the horizontal plane (or near the

nadir viewing direction).

A voxel-based modeling process is used in this work, in order to estimate the physical

model’s surface structure of a specific man-made target. Using the “Manhattan-world”

assumption it can be assumed that man-made structures tend to have horizontal planes

connected to vertical walls. This assumption aligns itself very well with voxel-based struc-

ture modeling.

The surface structure is only half of the physical model. The second half requires

spectral attribution of the surface. There are two scenarios this work examines; when only

R,G,B spectral information is available and when hyperspectral information is available.

The latter scenario is the simpler case, as all it requires is a direct mapping from the

model’s surface to an atmospherically corrected hyperspectral image. When only R,G,B

information is known for the scene, estimating a high resolution reflectance spectra be-

comes very difficult. Instead of attempting to fully estimate the reflectance spectra for

each facet on a surface model, this work looks at methods of facet classification. Given

knowledge of surface classes, attempts could be made to identify the reflectance spectra

through database matching. Given the large nature of that problem, this work is limited

3

1.3. SUMMARY 4

to creating methods to identify facet classes.

1.3 Summary

Physical simulation is a direct application of the automatic generation of physically

accurate three-dimensional models. Three-dimensional physical simulation of imagery is

the process of synthetically replicating interactions of light with three-dimensional matter

and processing those interactions such that a radiometrically accurate image can be pro-

duced, given a set of imaging parameters. Simulation of this nature can be very powerful

for testing and analysis of novel image processing algorithms, these simulations could even

be used for surveillance-based modeling. The basis for physics-based simulation, is an

accurate three-dimensional model attributed with material properties. These models are

painstakingly created by hand, and take many hours to complete. For this reason, this

type of physical simulation is limited in the scenes it can simulate and consequently its ap-

plications. Automatically creating these physical models from multi-view aerial imagery

would provide a convenient method of model generation, and significantly broaden the

applications of physics-based image modeling.

This work takes a step in that direction by developing a process to extract the surface

structure of target objects, as well as attempt to label materials on the extracted surface.

As explained in Section 1.2, two situations are examined. Given additional atmospheri-

cally compensated hyperspectral imagery of the scene, reflectance can be directly mapped

to structure facets for physical modeling within the spectral range of the hyperspectral

reflectance imagery. An example of this type of modeling is shown in Figure 1.1.

4

1.3. SUMMARY 5

(a)

(b)

Figure 1.1: Physical modeling is performed in this work with two scenarios in mind.

The first is with the addition of hyperspectral reflectance imagery, allowing for a direct

mapping of spectra onto facets. This allows for physical modeling to be done easily within

the spectral range of the hyperspectral imagery, a physical simulation of five structures is

shown in (a). Given only R,G,B imagery, estimating the surface reflectance becomes a

very difficult problem. To this end, this work attempts to classify different materials on

the surface of a structure using spatial-spectral information. The classes allow for user-

assisted attribution, an example of a class-mapped three-dimensional surface produced by

this work is shown in (b).

Given only R,G,B imagery, estimating the surface reflectance of a model becomes an

ill-posed problem. It is very difficult to discriminate between materials with such low

spectral resolution sampling. Instead of identifying specific materials, potential mate-

rial classes can be identified on the surface structure through analysis of the surface’s

spatial-spectral properties. Figure 1.1 shows a classified three-dimensional surface created

through this process. This gives the user an estimate of the structure’s surface as well as

the location of different materials classes, which can be attributed by the user.

The remainder of this document is split into four chapters; Chapter 2 details the back-

ground work and topics needed to understand the methods used in this work, Chapter 3

discusses the methodology used in performing this work, Chapter 4 shows the datasets

used and results obtained through the developed methodology, and Chapter 5 discusses

the results, applications, and future work.

5

1.4. CONTRIBUTIONS 6

1.4 Contributions

The work performed here for geographically accurate structure extraction and physical

model estimation makes a number of contributions. A well-known process for generat-

ing geographically accurate scene structure from multi-view imagery is presented and a

Linux-based, end-to-end, scripted, workflow was developed. A method for analysis of the

extracted structure’s geoaccuracy was developed, and, used to evaluate the performance

of several common methods for structure georegistration.

This work specifically addresses the usage of nadir-looking imagery for scene struc-

ture reconstruction. Extracted structure from nadir imagery often contains a significant

amount of noise and holes. A voxel-based noise reduction, surface estimation, and interpo-

lation process is developed for estimating the surface of target objects from the extracted

structure.

In order to generate physically attributed models, estimated surface facets must be

attributed with physical characteristics. The characteristics which are attributed are

dependent on the amount of additional data that can be utilized. Two processes are

developed for characteristic attribution. The first process describes a methodology for

registering additional geolocated information, such as orthorectified imagery, to the sur-

face facets through the orthorectification process. Secondly, if no additional geolocated

data is available, surface characteristics can still be attributed through spatial-spectral

analysis of the original R,G,B nadir-looking imagery with the reconstructed model. To

this end, a spatial-spectral segmentation process was developed for identifying regions of

spectrally similar surface facets.

6

Chapter 2

Background

The process of extracting structure from multi-view imagery is one that has been well

developed in the computer vision community [62]. The entire process falls into only a

few steps, as shown in Figure 2.1. These steps include; feature detection, description,

and matching within imagery, camera pose estimation, structure triangulation, and opti-

mization. Processes to perform each of these steps are reviewed in Sections 2.1 through 2.4.

Figure 2.1: Structure from Motion can be broken down into a few steps: Image feature

detection and matching, camera pose estimation, structure triangulation, and optimization.

Structure from Motion (SfM) provides a methodology for extracting discrete measure-

7

2.1. EPIPOLAR GEOMETRY 8

ments of three-dimensional structure in a relative world coordinate system. A transform

can be derived to bring the relative structure measurements to a fixed Earth-based coordi-

nate system. The derivation of this transform is discussed in Section 2.5. This chapter will

cover the material which is necessary to understand the three-dimensional reconstruction

process used in this work, as well as review previous work done in each area. The discus-

sions presented here will shed light on how an automatic three-dimensional reconstruction

can be obtained.

2.1 Epipolar Geometry

Understanding the geometry behind multi-view imagery is critical to understanding

the methods that exploit this geometry. There is a nomenclature convention presented by

Hartley and Zisserman [25] that the following discussion, as well as the rest of this work,

will adhere to. This section will present the basic epipolar (stereo) geometry needed in

order to further understand the algorithms used for three-dimensional reconstruction.

2.1.1 Projective Geometry

Figure 2.2: Parallel lines viewed from a angled perspective often appear as though if ex-

tended they will eventually intersect (this intersection point is called the point at infinity).

8

2.1. EPIPOLAR GEOMETRY 9

The notion of projective geometry has been around for centuries [23], that is, an at-

tempt to quantify and model Euclidean geometry that contains a perspective view. It is a

natural progression from basic Euclidean geometric modeling, since it is how humans view

the world. Figure 2.2 shows a perspective view of an object on a wall. Here, there are lines

within the frame that humans know to be parallel which appear to converge at some point,

called the point at infinity. In order to represent this point in a coordinate system with-

out causing mathematical errors, a homogeneous coordinate system is used. Projective

geometry is essentially the attempt to quantify the projection of a higher-dimensional co-

ordinate system onto a lower-dimensional coordinate system. An example and widely used

application of this is the projection of a three-dimensional scene onto a two-dimensional

camera frame.

Homogeneous Coordinates

The homogeneous coordinate system was first used in projective geometry by August

Möbius [61]. Essentially, this coordinate system is the Euclidean coordinate system with

one extra dimension, which allows for the quantification of the projected coordinates. As

an illustration, consider the algebraic definition of a line in 2-D space, shown in Equa-

tion 2.1.

Ax+By + C = 0 (2.1)

The definition of a line can be vectorized by representing the line as a set of parameters

A, B, and C. The vectorization of this equation is shown in Equation 2.2.

[
x y 1

] A

B

C

 = 0 (2.2)

The left-hand vector of Equation 2.2 is considered to be a point in 2-D space, x =

[x, y, 1], which falls on a line in 2-D space represented by a set of parameters, l = [A,B,C]T ,

such that xT l = 0. The third dimension of x allows for the representation of all points

that might possibly fall on line l. Parameterizing x, kx = [kx, ky, k], allows for the repre-

sentation of all possible set of homogeneous points which represent the same point falling

9

2.1. EPIPOLAR GEOMETRY 10

on line l, this can be seen by substituting this parametrization back into Equation 2.2,

[
kx ky k

] A

B

C

 = k0 = 0 (2.3)

This also shows that the degrees of freedom for the homogeneous point on a line is

equal to 2, the same as it would be in Euclidean space. This representation allows for a

projective representation for the point x, illustrated in Figure 2.3.

The previous example gave two important properties of homogeneous coordinates in

projective geometry. The first is that in homogeneous coordinates, if a point x falls on line

l, their dot product must be equal to zero. The second important property is the mapping

from projective space to Euclidean space. For a 2-D point (x, y) the conversion is
(
x
k ,

y
k

)
where k is the third dimension of the projective point. This is extended to higher dimen-

sional spaces by simply dividing the extra dimension into the previous dimensions. In

order to eliminate confusion with Euclidean coordinates, homogeneous point coordinates

will henceforth be represented as x = [x1, x2, x3] for two-dimensional Euclidean space, and

X = [x1, x2, x3, x4] for three-dimensional Euclidean space. Euclidean coordinates will be

represented using x = [x, y] and X = [x, y, z].

1 ... k

Z

X

Y

l

x
kx

Figure 2.3: Homogeneous coordinates can be used to represent projections from higher di-

mensional spaces to lower dimensional spaces. In this situation, the point X can originate

anywhere between the projected line and three-dimensional shape. Describing the line l in

terms of homogeneous coordinates allows for the representation of all possible points which

would be projected onto that line.

10

2.1. EPIPOLAR GEOMETRY 11

Homographies

A projective transformation, or homography, is defined as an invertible transformation

such that x′ = H (x) [25]. The homography transforms the point x to the projective

plane of x′. For example, in Figure 2.3, a homography could be derived to transform the

point x on the on the projective plane k = 1 to any projective plane k > 1. The use of

homogeneous coordinates allows for a matrix representation of the function H, shown in

Equation 2.4. x′1
x′2
x′3

 =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 x1

x2

x3

 (2.4)

As shown in Equation 2.3, the parameterization of the projective space does not add a

degree of freedom to the homogeneous coordinate system. Since the matrix H is defined

in homogeneous coordinates, it is only defined up to this scaling factor, and therefore has

eight degrees of freedom. Constraining elements of this matrix allows for affine, similarity,

and Euclidean transformations to be constructed. These transformations can be useful

in the manipulation of coordinate systems using homographies. The homography can be

extended into higher dimensions by adding the appropriate number of rows and columns

to the matrix H.

2.1.2 Camera Model

A camera can be mathematically represented as a mapping from a three-dimensional

to a two-dimensional coordinate space. This can be done easily by using projective geom-

etry with homogeneous coordinates.

Pinhole Camera Model

The simplest camera to model using projective geometry is the pinhole camera. Fig-

ure 2.4 shows an example of a pinhole style projection of a vertical image. While the true

exposure is taken at the image negative, it is more useful to define the geometry in terms

11

2.1. EPIPOLAR GEOMETRY 12

of the image positive. Using similar triangles lengths x and y can be defined as follows:

x = f XZ

y = f YZ

(2.5)

Equation 2.5 assumes the coordinate center to be in the center of the camera, which

requires knowledge of the principle point offset. For orthogonal projections, such as the

one shown in Figure 2.4, the principle point offset is the offset that brings the coordinate

system to the center of the image. Equation 2.6 shows Equation 2.5 updated to include

the principle point offset.

x = f XZ + px

y = f YZ + py

(2.6)

f

Z

X

Y

x
y

C

p

Figure 2.4: An orthogonal image projection is one where the camera frame has no rotations

between the world coordinate system and the frame coordinate system. The principle point

offset is included in the orthogonal image projection.

Equation 2.6 can be represented in matrix form using homogeneous coordinates. This

12

2.1. EPIPOLAR GEOMETRY 13

is shown in Equation 2.7.

 fX + Zpx

fY + Zpy

Z

 =

 f 0 px 0

0 f py 0

0 0 1 0

X

Y

Z

1

 (2.7)

The left-hand side of the equation is the homogeneous representation of Equation 2.6.

This can be verified by using the method for homogeneous to Euclidean coordinate con-

version presented in Section 2.1.1. The projection matrix shown in Equation 2.7 is known

as the camera calibration matrix, K.

World

Camera

R
(X

-C
)

Figure 2.5: The camera frame is often rotated relative to the world frame. In order to

bring a world point into the camera frame, the point must be rotated and translated into

the frame.

World to Camera Frame Transformation

The camera shown in Figure 2.4 assumes that the camera center and world point could

be represented in the same frame. In most cases the camera center and world point have

to be rotated and translated to be in the same frame, as seen in figure 2.5. In Euclidean

13

2.1. EPIPOLAR GEOMETRY 14

coordinates, the world point X can be represented in the camera frame by subtracting the

camera center from the world point, and then rotating the frame to that of the camera

frame. This operation is shown in Equation 2.8,

Xcam = R(X−C) (2.8)

where R is a 3x3 rotation matrix that rotates the world frame to the camera frame. This

can be represented in homogeneous coordinates as shown in Equation 2.9.

Xcam =

[
R −RC

0 1

]
X

Y

Z

1

 (2.9)

Camera Projection Matrix

By combining the camera calibration matrix with the world-to-camera frame trans-

formation, the camera projection matrix can be formed. Shown in Equation 2.10, the

matrix is split into two sections, a 3x3 block representing the rotation, and a 3x1 block

representing the translation. The translation t represents −RC.

P = K [R|t] (2.10)

In order to use this model with digital cameras, the camera calibration matrix K must

be modified so that the units are all the same. This requires multiplying each unit by

a scale factor,m, which represents the number of pixels per unit length. The modified

calibration matrix is shown in Equation 2.11.

K =

 mf 0 mpx

0 mf mpy

0 0 1

 (2.11)

Given Equation 2.10 combined with Equation 2.11, the relationship between a world

point X and image point x can be defined using Equation 2.12,

x = PX (2.12)

14

2.1. EPIPOLAR GEOMETRY 15

where P is known as the camera projection matrix.

2.1.3 Stereo Geometry and the Fundamental Matrix

Stereo geometry is also known as epipolar geometry. This section will cover the basic

properties of epipolar geometry. Figure 2.6 shows a basic representation of two images

observing the same point in space. With C, and C′ as the camera centers, X as the point

in three-dimensional space, and the points x, and x′ as the projections of X onto their

respective cameras.

C C’

X

x x’
l

e e’

F

P
e

Figure 2.6: Stereo (epipolar) geometry is the building block for all multi-view reconstruc-

tion processes. This figure shows the positions of the epipoles (e,e′), epipolar lines (l,l′),

epipolar plane (P), world point (X), and camera centers (C,C ′). The relationship between

the imagery can be described using the fundamental matrix (F).

The three-dimensional plane made from points C, C′, and X represents the epipolar

plane, Pe. Rays projected from the camera center to X are coplanar with the epipolar

plane. The intersection points of the ray between C and C′ constitute the epipoles for

each image. The epipolar plane intersects each image at two points, the back projection

of X onto the image, and each image’s epipole. The epipole for each set of images remains

constant for all corresponding points x and x′.

Based on the geometry in Figure 2.6, another geometric construct called the epipo-

lar line can be described. The epipolar line is the line between the image epipole and a

corresponding point. It can be thought of as an image of the projection of the correspond-

ing point in the opposing image. For example, in Figure 2.6, l′ is the image of the ray

15

2.1. EPIPOLAR GEOMETRY 16

projected from C through x. This relationship is called the epipolar line correspondence

condition.

Given that there is some relationship between x and x′ using the epipolar line corre-

spondence, it can be inferred that there is a homography that relates the two points.

x = Hx′ (2.13)

The cross product of x′ and e′ represents the epipolar line l′, substituting this into

Equation 2.13 gives,

l =
[
e′
]
×Hx′ (2.14)

The fundamental matrix F here is defined as [25],

F =
[
e′
]
×H (2.15)

Fundamental Matrix Properties

The fundamental matrix F, is a matrix of rank two with seven degrees of freedom. It

has nine elements defined up to a single scale, which removes one degree of freedom. The

fundamental matrix also satisfies the constraint,

det (F) = 0 (2.16)

which removes the last degree of freedom. The fundamental matrix has a number of

properties that can be exploited for three-dimensional reconstruction. The first property

comes by substituting F into Equation 2.14, which results in the algebraic definition of

the epipolar line correspondence condition,

l = Fx′ (2.17)

This equation is useful for image correspondence calculation, which will be discussed

in Section 2.2.4. Another useful property is the fundamental matrix correspondence con-

dition. Using the line property discussed in Section 2.1.1, a relationship between a point

and the epipolar line it falls on can be described using,

xT l = 0 (2.18)

16

2.1. EPIPOLAR GEOMETRY 17

Substituting Equation 2.17 into Equation 2.18 gives the equation for the correspon-

dence condition,

xTFx′ = 0 (2.19)

All corresponding points between two images described by F must follow this condi-

tion. This condition can be used as a model for solving for the fundamental matrix as well

as using it as a model for optimization.

2.1.4 Fundamental Matrix Derivation

The fundamental matrix can be derived from two images in two ways. Each way re-

quires having prior knowledge of the image properties. The first method derives the F

matrix from known image correspondences. The second method derives the F matrix from

the known camera projection matrices.

Using Correspondence

The fundamental matrix can be calculated using the correspondence condition shown

in Equation 2.19. A single equation can be formed by vectorizing the fundamental matrix

into a 1 by 9 vector. Doing this transforms Equation 2.19 into Equation 2.20.

x1x
′
1f11 + x1x

′
2f12 + x1f13 + x2x

′
1f21 + x2x

′
2f22 + x2f23 + x′1f31 + x′2f32 + f33 = 0 (2.20)

Here x and x′ and represented using the x = [x1, x2, x3]
T form, and making the

assumption that x3 = 1. The fundamental matrix is represented using fnm notation.

Equation 2.20 can be formed into a linear system of the form Ax = 0, which can be solved

using values for x and x′. The form of the linear system is,

Af =

x11x

′
11

x11x
′
21

x11 x21x
′
11

x21x
′
21

x21 x′11 x′21 1
...

...
...

...
...

...
...

...
...

x1nx
′
1n x1nx

′
2n x1n x2nx

′
1n x2nx

′
2n x2n x′1n x′2n 1

 f = 0. (2.21)

Matrix A is formed for all points 1 to n. The matrix A is of rank 8 or less, therefore,

to solve for the fundamental matrix at least 8 corresponding points have to be used. A

least squares solution can be found for the fundamental matrix by using singular value

17

2.1. EPIPOLAR GEOMETRY 18

decomposition (SVD) [25].

SVD is an efficient way of calculating a least squares solution while constraining the

solution to have a magnitude of 1. The solution is found as the right-hand singular vector

in the SVD output which corresponds to the smallest singular value. In other words, if

SV D(A) = UΣVT , the solution for f is the last column of V.

Since the Fundamental matrix has only seven degrees of freedom, it is possible to

estimate the matrix using seven point correspondences. The solution to Af = 0 will have

a two-dimensional null space of the form,

F = αF1 + (1− α)F2 (2.22)

where the matrices F1 and F2 correspond to the last two columns of V. Using the

determinant constraint of the fundamental matrix (Equation 2.16), with Equation 2.22

the following can be created,

det (αF1 + (1− α)F2) = 0 (2.23)

The variable α can be solved for and will have three roots. The non-complex roots can

be substituted back into Equation 2.22 to solve for the matrix F. This will result in one

to three possible fundamental matrices.

These equations are based on perfect image correspondence, and in real-world applica-

tions the image correspondence often has a number of outliers. The fundamental matrix

can be robustly estimated in this scenario using an model fitting algorithm which esti-

mates a model in the presence of outliers, such as RANSAC [17]. The usage of RANSAC

for estimation of the matrix F is discussed in Section 2.4.1.

Using Cameras

If the camera projection matrices for each image, as defined in Equation 2.12, are

known, then the fundamental matrix can be derived using this information. Referring

back to Figure 2.6, the world point, X, and the image point, x, are related through the

camera matrix, P, as defined in Equation 2.12, which can be reformed as,

X = P†x (2.24)

18

2.1. EPIPOLAR GEOMETRY 19

Where P† represents the pseudo-inverse of the camera matrix P. The relationship of

image point x′ and X can also be defined using Equation 2.12, shown as,

x′ = P′X (2.25)

where P′ represents the camera projection matrix for the camera corresponding to the

camera center C′. The world point defined in Equation 2.24 can be substituted into

Equation 2.25, yielding,

x′ = P′P†x (2.26)

Due to scale ambiguity, Equation 2.24 actually represents a family of possible solutions

for X. This can be thought of as the ray of possible points X(λ) projected from x, where

λ is the unknown scale,

X(λ) = P†x + λC (2.27)

where C is the camera center of the camera associated with P. Two known points can

come from this parameterization: P†x at λ = 0, and C at λ = ∞. There two points can

be imaged by the camera associated with P′, as,

P′P†x (2.28)

P′C (2.29)

Using concepts discussed in Section 2.1.3, it is known that the epipolar line l′ can be

defined as the cross product between the epipole e′ and the a point x′, shown in Equa-

tion 2.30, using the skew-symmetric representation of the cross product,

l′ =
[
e′
]
× x′ (2.30)

The epipolar e′ is the image of C, calculated with Equation 2.29. The point x′ is

calculated using Equation 2.28, yielding,

l′ =
[
P′C

]
×P′P†x (2.31)

Using the epipolar line relationship defined in Equation 2.17, a definition for the fun-

damental matrix can be derived from Equation 2.31,

F =
[
P′C

]
×P′P† (2.32)

19

2.1. EPIPOLAR GEOMETRY 20

This representation of the fundamental matrix can be useful when the camera projec-

tion matrices are already known and the fundamental matrix is needed.

2.1.5 Relative Camera Pose Estimation

When absolute camera information is not known or available, it is possible to estimate

the camera position and orientation information relative to each other using image point

correspondences. This is done by using point correspondences to solve for the essential

matrix and derive the camera information through matrix decomposition.

The Essential Matrix

The essential matrix, E, is a special case of the fundamental matrix, where the cali-

bration information is known. Given knowledge of the calibration matrix, it is possible

to apply the inverse of that matrix to the image point, yielding image points which have

the camera intrinsic distortions removed. This can be applied to the fundamental matrix

correspondence condition (Equation 2.19), to give the correspondence condition for the

essential matrix,

x′
T
K′
−T

EK−1x = 0 (2.33)

It would follow that the relationship between the fundamental matrix and the essential

matrix can be defined as

E = K′
T
FK (2.34)

In order to derive the relationship between the essential matrix and the camera pro-

jection matrices, consider two cameras P and P′, as defined in equations 2.35 and 2.36.

The origin of P is the center of the world coordinate system.

P = K [I|0] (2.35)

P′ = K′ [R|t] (2.36)

The matrices K and K′ are the calibration matrices as defined in Equation 2.11. The

matrix I is a 3x3 identity matrix. The 3x3 matrix R and the 3x1 vector t represent the

rotation and translation of P′ away from P. The fundamental matrix can be derived

20

2.1. EPIPOLAR GEOMETRY 21

from these two cameras as shown in Equation 2.32. The camera center for P is defined

as the center of the world coordinate system, C =
[

0 0 0 1
]T

, in homogeneous

coordinates. The equation for the fundamental matrix for P and P′ is shown below (the

vector 0 represents a 3x1 vector of zeros).

P† =

[
K−1

0T

]

F =
[
P′C

]
×P′P†

F = K′
−T

[t]×RK−1

(2.37)

Using the relationship described in Equation 2.34, the essential matrix for P and P′

is given by,

E = [t]×R (2.38)

Equation 2.38 can be used to estimate the camera rotation and translation through

matrix decomposition [25].

One important property of the essential matrix is that it is of rank two, just like the

fundamental matrix. Also, the two non-zero singular values are equal to each other. This

leads to the relationship [32],

EETE =
1

2
tr
(
EET

)
E (2.39)

This can be shown since the singular value decomposition of E is E = UΛVT , where

Λ is defined as,

Λ =

 λ1 0 0

0 λ2 0

0 0 λ3

 (2.40)

where λ1,λ2, and λ3 are the eigenvalues. All the singular values are greater than 0, the

trace of EET can be defined as,

tr
(
EET

)
= λ21 + λ22 + λ23 (2.41)

21

2.1. EPIPOLAR GEOMETRY 22

The left side of Equation 2.39 can be defined in terms of the SVD by,

EETE = UΛ3VT (2.42)

The n elements of Λ3 can be derived as shown below. This equation can be derived

because it is known that λ1 = λ2, and λ3 = 0, for the essential matrix.

λ3n =
1

2

(
λ21 + λ22 + λ23

)
λn (2.43)

Given this, Equation 2.41 can be factored out of Equation 2.42 to give,

EETE =
1

2
tr
(
EET

)
UΛVT (2.44)

Equation 2.44 is then shown to be equivalent to Equation 2.39 as E = UΛVT .

Five-Point Solution to the Essential Matrix

Using properties of the essential matrix it is possible to estimate relative camera pose

using five image point correspondences. The calibrated point correspondences q are related

to the uncalibrated correspondences as shown in Equation 2.45.

q = K−1x (2.45)

The essential matrix correspondence condition in Equation 2.33 can be vectorized and

reformed giving,

q̃T Ẽ = 0 (2.46)

The vectors in Equation 2.46 are vectorized in the form.

q̃ =
[
q1q
′
1 q2q

′
1 q3q

′
1 q1q

′
2 q2q

′
2 q3q

′
2 q1q

′
3 q2q

′
3 q3q

′
3

]
Ẽ =

[
E11 E12 E13 E21 E22 E23 E31 E32 E33

]
The vector q̃T can be put into Ax = 0 form by stacking the q̃ vectors for each correspon-

dence, which forms a 5x9 matrix. Singular value decomposition can be used to find the

null space basis vectors which solve the Ax = 0 for x. Using this, four vectors that form

the basis of the right null space can be computed. These vectors, which represent Ẽ, can

be formed back into 3x3 matrices and used to describe E in a linear combination.

22

2.1. EPIPOLAR GEOMETRY 23

E = xX + yY + zZ + wW (2.47)

In Equation 2.47, x, y, z, and w represent the weights for the linear combination of the

3x3 matrices X,Y,Z and W. Just like the fundamental matrix, the essential matrix can

only be defined up to a scale factor because of its derivation in homogeneous coordinates.

Therefore it can be assumed that one weight can be set to any value, for simplification

purposes w is set to equal 1 [11].

The constraint equation shown in Equation 2.44 can be reformulated into a system of

equations which can provide a method of solving for the essential matrix. The reformula-

tion is

EETE− 1

2
tr
(
EET

)
E = 0 (2.48)

Given that the basis vector representation of E is of three variables, when inserted

into Equation 2.48, nine cubic polynomial functions can be extracted. Each of the nine

functions correspond to an element of E. A tenth constraint can be added by using the

fact that the essential matrix is rank deficient, the determinant of the E must be equal to

0. These ten constraints form a system of ten equations which can be used to exactly solve

for the scalar values of x, y and z [42]. These values, along with w = 1, are substituted

back into Equation 2.47 to yield a solution for the essential matrix. The cameras rotations

and translations are described in relation to the essential matrix in Equation 2.38. The

following sections discuss the decomposition of the essential matrix to retrieve the rota-

tions and translations.

Camera Pose Retrieval From the Essential Matrix

The essential matrix can be derived completely from a single camera’s rotation and

translation as described in Equation 2.38. This can only be the case if one camera is

assumed to be at the world coordinate origin, so that the second camera is described

relative to the first. These cameras are shown in Equations 2.35 and 2.36. The rotation

and translation of the second camera can be decomposed from the essential matrix using

SVD. Given that E = UΛVT , four possible camera matrices for P′ can be derived, as

shown in the following [25, 11],

23

2.2. FEATURE DETECTION, DESCRIPTION, AND MATCHING 24

P′0 =
[
UWVT |u3

]
P′1 =

[
UWVT | − u3

]
P′2 =

[
UWTVT |u3

]
P′3 =

[
UWTVT | − u3

] (2.49)

Where u3 represents the third column of the matrix U, and also represents the trans-

lation from P to P′. The matrix W is an orthogonal matrix as defined by

W =

 0 −1 0

1 0 0

0 0 1

 (2.50)

The equations shown in 2.49 represent four possible orientations that the camera P′

could take. P′0 and P′1 are related by a reverse translation along the baseline between P

and P′, as are P′2 and P′3. The cameras P′0 and P′2 are related by a 180 degree rotation

about the baseline [25]. Only one transformation of P′ is the correct one.

The only correct orientation of P′ is the one in which the points being viewed corre-

spond to a three-dimensional point which is in front of both cameras. The other three

orientations will represent a three-dimensional point which is behind one or both of the

cameras. This concept is called cheirality, and can be enforced using the cheirality inequal-

ities [25, 11]. Given a pair of corresponding points, a three-dimensional point, X, can be

found using methods described in Section 2.3.2 with P and P′0. The cheirality inequalities

state that if X3X4 < 0, then the point is behind the first camera, if (P′0X3)X4 < 0 then

the point is behind the second camera. If both the previously mentioned inequalities are

greater than zero, then the point is in front of both cameras and P′0 is the correct orienta-

tion. If both the inequalities are less than zero, that corresponds to P′1 and that camera

is used. If X3X4 (P′0X3)X4 < 0, then the rotated case P′2 is used, and the calculation

is done again. If the inequalities are both less than zero again, then P′3 is the correct

configuration.

2.2 Feature Detection, Description, and Matching

The first critical step in all Structure from Motion (SfM) processes is identifying points

of interest in each image that will be tracked between each image. There are a number

24

2.2. FEATURE DETECTION, DESCRIPTION, AND MATCHING 25

of ways to do this, this section will discuss a sample of feature detection algorithms that

appear in SfM workflows. The scale invariant feature transform (SIFT) is a widely used

feature detection and description algorithm within the computer vision community. Affine-

SIFT is a feature detection, description, and matching algorithm which tries to add affine

invariance to the SIFT algorithm, an issue that arises in wide-baseline image matching.

DAISY is a method of feature description which also tries to attack the issue of wide-

baseline matching. Finally, the patch-based feature detection and matching method used

in the Patch-based Multi-view Stereo (PMVS) algorithm is presented.

2.2.1 SIFT

SIFT Feature Detection and Description

The scale invariant feature transform is one of the most used feature detector and

descriptor algorithms used in the field of computer vision [36], it is also one of the earliest

developed. SIFT attempts to detect and describe features in a space that is invariant to

rotation, translation, and scale [13]. In order to provide invariance to scale, the image

is converted into a scale-space using Gaussian convolutions. The actual feature detection

is done by taking the difference between each scale-space image, essentially performing a

difference of Gaussians (DoG) filter. The DoG filter is a known feature detector which

provides extrema along image edges. The scale space conversion and DoG filter is illus-

trated in Figure 2.7. Features are identified by searching the image and scale space for

local extrema so that features within the image at different scales are detected.

25

2.2. FEATURE DETECTION, DESCRIPTION, AND MATCHING 26

-

-

-

-

S
ca

le
 S

p
a

ce

D
o

G
 S

p
a

ce

Figure 2.7: SIFT calculates the position of the features in x,y, and scale space (convolved

with Gaussians) for each image. This is done by taking the difference between each scale-

space image. The resulting space provides extrema along image edges at different scales.

Features are detected within each image and between each scale.

The initial detection provides a large number of features, many of which are poor.

This results since the DoG filter will provide high response along poorly defined lines, and

in areas of low contrast due to noise. Poorly defined lines are detected by comparing the

horizontal and vertical principle curvatures, a strong line will show low differences between

principle curvatures [13]. Features along poorly defined lines as well as in low contrast

areas are discarded.

In order to achieve rotational invariance, the rotation of the feature must be quanti-

fied. This is done by calculating a gradient value and magnitude for each feature. The

orientation and magnitude are calculated using Equation 2.51 and 2.52.

m (x, y) =

√
(I (x+ 1, y)− I (x− 1, y))2 + (I (x, y + 1)− I (x, y − 1)) (2.51)

Θ (x, y) = tan−1
(
I (x, y + 1)− I (x, y − 1)

I (x+ 1, y)− I (x− 1, y)

)
(2.52)

Where I (x, y) represents the image intensity at pixel position (x, y). The orientation

and magnitude are calculated for all neighboring pixels for a detected feature. These

26

2.2. FEATURE DETECTION, DESCRIPTION, AND MATCHING 27

orientations are then formed into a thirty-six bin histogram which is used to find the

dominant orientation for each feature, defined by the largest response in the histogram.

For histograms with multiple maxima a separate feature is generated for each one. With

knowledge of the dominant orientation and scale of each feature, the feature descriptor

can be derived for each feature.

The feature descriptor is essentially a description of the orientation of the area around

the detected feature. A 16-by-16 region around the feature is looked at in the scale-space

of the detected feature, as shown in Figure 2.8. The grid is broken up into smaller 4-by-4

pixel regions, and an 8-bin orientation histogram is calculated for each region in the same

fashion as the 36-bin orientation histogram, using Equations 2.51 and 2.52. The orien-

tation is calculated relative to the dominant orientation of the feature. The histograms

for each region are concatenated resulting in a scale, translation, and rotation invariant

feature descriptor.

Figure 2.8: The SIFT feature is calculated over a 16-by-16 region around each detected

point. The gradient direction and magnitude is calculated for each bin, the bin size is

determined by the scale of the feature. The gradient angles are binned into 8-bin histograms

for each 4-by-4 area, and concatenated to form a 128-element feature vector.

SIFT Feature Matching

Once SIFT features are calculated for a set of images, the features can be matched to

find corresponding image points. This matching process is simply a brute-force nearest-

neighbor matching algorithm [13]. Each SIFT feature is 128-elements in length. A dot

product between each feature in one image and all the features in another image is cal-

culated to determine how similar they are in a 128-dimensional space. This process can

27

2.2. FEATURE DETECTION, DESCRIPTION, AND MATCHING 28

be optimized by only taking matches that are found when matching from one image to

the other, and then in reverse. Figure 2.9 shows an example of two images with matching

SIFT features. While this provides an estimate of feature correspondence, there is still a

significant amount of error that can be removed using optimization techniques which will

be discussed in Section 2.4.1.

Figure 2.9: The SIFT matching process can find a very large number of matches, however,

not all of the matches will be good.

2.2.2 Affine-SIFT

While SIFT can handle images that differ by rotation, scale, and translation, it poorly

handles images which relate by a projective transformation. Affine-SIFT attempts to mod-

ify the SIFT algorithm to perform well on images with an affine distortion. This is done

through a computationally rigorous process of simulating image tilting around the image

x and y axis. Each simulation is processed with the original SIFT algorithm, providing

a rotation, scale, and translation invariant description of the image. The original SIFT

matching process is used to match features at different tilts. Features that are matched

consistently between the simulated images are kept as good matches [48]. Figure 2.10

shows an example of A-SIFT matching versus SIFT matching.

Affine-SIFT proves to have significantly better matching results than SIFT with images

that have a projective relationship. However, this comes at the expense of computational

28

2.2. FEATURE DETECTION, DESCRIPTION, AND MATCHING 29

processing time [48]. Images are sub-sampled in order to speed this process up, and the

algorithm can also be parallelized. The computational complexity of A-SIFT is higher

than that of SIFT.

Figure 2.10: A comparison between A-SIFT and SIFT with image matching between a

set of images that have an extreme affine transform relationship. The A-SIFT results are

shown on the left and the SIFT results are shown on the right [48].

2.2.3 DAISY

When matching images that exhibit a large baseline, SIFT tends to have a difficult

time finding correspondences [64]. As the baseline widens between the images, the trans-

form that relates the two images tends to become more projective. The goal of the DAISY

feature descriptor is to efficiently describe a region around every feature that is invariant

to this type of transform [65]. The DAISY feature is just a descriptor, so it can be com-

bined with any type of feature detector.

29

2.2. FEATURE DETECTION, DESCRIPTION, AND MATCHING 30

Figure 2.11: A representation of the DAISY feature descriptor which is applied to each

orientation map. Each circle represents a Gaussian kernel with the size proportional to the

Gaussian scale. The kernels radiate outwards in a set number of iterations. This feature

is calculated on each orientation map. [64].

The DAISY descriptor is similar to that of the SIFT descriptor described in Sec-

tion 2.2.1, in that it attempts to quantify the orientation of the region around a given

feature. This is done by generating orientation maps instead of orientation histograms.

These maps are generated by calculating the gradient intensity in a specific direction for

all chosen directions. Then each orientation map is convolved with a series of Gaussian

functions of varying scale. The different Gaussian convolutions represent the scale inten-

sity in each direction, thus providing a scale invariance to the descriptor. The descriptor

is normalized so it can be matched between images. Figure 2.11 shows the layout of the

DAISY feature descriptor. There are a number of parameters that can be altered in the

descriptor. These include the radius of the whole descriptor, the number of orientation

samples that are collected in each direction, the number of samples that are collected in

a single orientation layer, and the number of orientation maps [64].

Invariance in the DAISY descriptor is provided by the scaling of the Gaussian functions

as well as the characterization of the orientation intensities. While SIFT does attempt to

quantify the orientation intensity, DAISY has proven to be a better and faster descriptor

30

2.2. FEATURE DETECTION, DESCRIPTION, AND MATCHING 31

for features which differ significantly in orientation and scale [65].

2.2.4 Epipolar Line Matching

Given an initial correspondence with a feature detection and matching algorithm, such

as SIFT, A-SIFT, or DAISY, the fundamental matrix can be calculated using RANSAC

with the seven-point fundamental matrix algorithm, as described in Section 2.1.4. This

allows for further exploitation of geometry in order to generate a denser correspondence.

This dense correspondence can be used to generate a denser reconstruction. This method

is based on the epipolar line constraint described in Equation 2.17. Every point in a given

image will correspond to an epipolar line in the corresponding image, related by the fun-

damental matrix F.

The epipolar line constraint serves as a way to minimize the correspondence search be-

tween images from the entire image to just a single line in the image. In order to further

minimize the search area, this method requires a user-given region of interest (ROI) in

each image over the target of interest [51]. Figure 2.12 shows an example of this process

(the user given ROIs are shown as the red boxes in the image).

Figure 2.12: An example of using the epipolar line constraint along with user provided

ROIs to minimize a correspondence search for two images. This search is performed

between every point in the user provided ROI.

31

2.2. FEATURE DETECTION, DESCRIPTION, AND MATCHING 32

A region around the point in the original image is then matched along the epipolar

line in the corresponding image. This is done by taking a 3x3 region centered around

the point and vectorizing the pixels. A vector is generated for every point along the

corresponding epipolar line as well as two pixels above and below the line. The vectors

are matched between the two images using a brute-force matching by finding the smallest

angle between the generated vectors using the dot product,

θ = cos−1
(

a · b
‖a‖‖b‖

)
(2.53)

where a and b represent the vectorized regions between the two images. This process

is repeated for every point in the original image’s ROI, so that every single point has a

match [51].

There are a few errors which arise in this process and which can be overcome by pre-

processing the imagery and post-processing the correspondences. One error is that this

method does not take into account any rotation within the imagery. In order to remove the

rotation invariance, the images have to be rectified so that their epipolar lines are parallel

with each other. This requires transforming the corresponding image so that the epipole

goes to infinity [25]. Another error which arises is that this process will have some error

in matching due to the fundamental matrix estimation. One way to reduce this error is to

perform this calculation, then perform the calculation again using the corresponding im-

age as the original image. The correspondences which match in both directions should be

kept. Figure 2.13 shows an example of one image ROI matching to a corresponding image.

32

2.2. FEATURE DETECTION, DESCRIPTION, AND MATCHING 33

Figure 2.13: A user-selected ROI being matched between an original and corresponding

image. The correspondence is very dense as it was performed for every pixel in each ROI.

2.2.5 Patch-Based Model

In many SfM applications, a very dense point reconstruction is desired for modeling

purposes. This process exploits epipolar geometry in a similar fashion to the one described

in Section 2.2.4. This section describes the dense image correspondence method used in

the PMVS algorithm described in Section 3.1. This process attempts to match every pixel

within an image to another image using a patch-based region growing method, by taking

advantage of epipolar geometry constraints provided by knowledge of each image camera

projection matrix [18].

There are two major steps in this process, the first step is the initial detection of fea-

tures. This is done through a combination of two feature detectors that are designed to

detect blob and corner features. The first feature detector is the difference of Gaussian

(DoG) filter. This is the same filter that is used in SIFT. Here, it is used to detect edges

in all directions. The filtered image is then passed to the Harris corner detector which will

find only the directional changes along the detected edges. A square grid is put over the

whole image, and each grid element which contains a detected local maxima is labeled as

a feature. This process is shown in Figure 2.14

33

2.2. FEATURE DETECTION, DESCRIPTION, AND MATCHING 34

Figure 2.14: The PMVS feature detection and matching process; The images at the top

show the image grid with initial features detected and matched using the epipolar line

matching method. The images at the bottom show the expansion process in which patches

are expanded and optimized based on information from the nearest reconstructed patch.

An initial feature matching is done after the inital detection of features. This is

where the knowledge of each camera’s projection matrix becomes valuable. As shown

in Section 2.1.4, the fundamental matrix between two images can be derived from their

projection matrices. The epipolar line (Section 2.1.3) concept becomes useful here. Each

detected feature in one image will correspond to an epipolar line in the other image. The

line can be found by deriving the fundamental matrix from the known camera projection

matrices as described in Section 2.1.4. The epipolar line is calculated, then all features

that fall within two pixels of that line are collected. These features are considered potential

matches for the original feature.

The potential matches are tested to see which features reconstruct in the best manner.

34

2.3. RECONSTRUCTION TECHNIQUES 35

The patch model is used here to determine the best reconstruction. Each feature is

triangulated using the feature position and known camera information, this denotes the

center of the patch. The normal to the patch is calculated as the vector between the

calculated center of the patch and the known center of the corresponding camera. This

normal is then compared to the vector between the calculated center of the patch, and

the known center of the original camera. The vectors that differ the least, denoted by a

certain qualifying threshold, are chosen to be the matching pair [18].

In order to generate a dense reconstruction, every grid element which does not contain

a feature is then reconstructed by using information from the nearest reconstructed patch.

The patch center and normal are initialized from the nearest reconstructed patch, and are

then refined. The refining process minimizes the re-projection error between the patch

center and the center of the empty image cell, by adjusting the geometric position of the

initialized patch. This process produces a very dense reconstruction.

This method has proven to be extremely effective in dense reconstruction, provided

that an accurate representation of a camera system can be obtained for the calculation of

the camera projection matrices [18].

2.3 Reconstruction Techniques

The previous feature detection, description, and matching algorithms provide a image-

to-image correspondence for each matched image. The next step in the SfM process is to

use those correspondences to reconstruct a three-dimensional point in the world-coordinate

system. There are a number of different methods to do this reconstruction. This section

will focus on methods which have been tested and used within this work.

2.3.1 Photogrammetric Approach

For many decades the photogrammetry community have developed geometric meth-

ods for triangulating three-dimensional points. These methods are designed specifically

to work with aerial imagery. An advantage that aerial images have in this process is that

the camera position data is often available for each image. Therefore no prior estimation

of camera positioning needs to take place. Figure 2.15 shows the basic geometry for a set

of stereo images taken from an airborne platform.

35

2.3. RECONSTRUCTION TECHNIQUES 36

Figure 2.15: The photogrammetric approach for point reconstruction uses the parallax

equations. The geometry for these equations assumes that each camera’s focal plane are

coplanar. It also assumes the flight line follows the x-dimension of the imagery.

The three-dimensional coordinates X,Y and Z can be calculated using parameters

shown in Figure 2.15. The baseline, B, is the distance between the camera centers for

each image. The flying height is represented as H, and the focal length as f . The image

coordinates are represented by x and y. The subscripts l and r refer to the left and right

images, respectively. The following Equations 2.54, 2.55, and 2.56 describe the calcula-

tions for finding the X,Y and Z coordinates. These equations can be derived using the

similar triangles found in Figure 2.15 [73].

X =
Bxl

xl − xr
(2.54)

Y =
Byl

yl − yr
(2.55)

Z = H − Bf

xl − xr
(2.56)

These equations make two major assumptions about the data. The first is that the

flight line is along the horizontal (x) dimension. The second assumption is that the camera

focal plane is flat and level to the aforementioned flight line. Imagery taken on an aerial

36

2.3. RECONSTRUCTION TECHNIQUES 37

platform will never conform to both of these assumptions, so some coordinate modifications

have to be made in order to force the data to conform to these assumptions. The flight line

direction assumption can be simply corrected for by transforming the coordinate system

so that the horizontal dimension falls along the recorded flight line.

In order to correct for the flat and level assumption, the images must be transformed

such that they appear to be level in relation to each other. This can be accomplished

using the recorded camera position information to project the image onto a flattened

image plane, as shown in Figure 2.16 [38].

Figure 2.16: In order to compensate for the uneven focal planes, each image is projected

to a new focal plane by reversing the measured pitch and roll of the aircraft, and then

reorienting the x-axis for each image to be along the flight path.

The roll and pitch of the aircraft is recorded for each image frame, along with the cam-

era center Using the focal length, the distance from the camera center to image plane can

be calculated. The new image plane is calculated using the pitch and roll of the aircraft,

and the original image is projected into this new frame.

2.3.2 Linear Triangulation

This triangulation method comes from the linear manipulation of Equation 2.12. The

goal of this process is to form an AX = 0 linear equation that can be solved using SVD, in

the same manner that is described in Section 2.1.4. In homogeneous coordinates, the cross

product of a point with itself must equal zero, given the known relationship described in

equation 2.12, the following equation can be formed.

37

2.3. RECONSTRUCTION TECHNIQUES 38

[x]×PX = 0 (2.57)

Equation 2.57 can be expanded to form three separate equations, using the definitions

x =
[
x1 x2 x3

]T
and X =

[
X1 X2 X3 1

]T
, shown here,

x1 (p31X1 + p32X2 + p33X3 + p34)− (p11X1 + p12X2 + p13X3 + p14) (2.58)

x2 (p31X1 + p32X2 + p33X3 + p34)− (p21X1 + p22X2 + p23X3 + p24) (2.59)

x1 (p21X1 + p22X2 + p23X3 + p24)− x2 (p11X1 + p12X2 + p13X3 + p14) (2.60)

Where pnm represents nth row and the mth column of the 3x4 camera projection matrix

P. Equation 2.60 is linearly dependent on Equation 2.58 and 2.59, and for the purpose

of forming a linear equation can be removed [25] The A matrix can be formed using

Equations 2.58 and 2.59 as shown in Equation 2.61.

A =

x1

[
p31 p32 p33 p34

]T
−
[
p11 p12 p13 p14

]T
x2

[
p31 p32 p33 p34

]T
−
[
p21 p22 p23 p24

]T
x′1

[
p′31 p′32 p′33 p′34

]T
−
[
p′11 p′12 p′13 p′14

]T
x′2

[
p′31 p′32 p′33 p′34

]T
−
[
p′21 p′22 p′23 p′24

]T

(2.61)

Where x′n and p′nm represent a corresponding image frame. This can be formed into

the linear equation shown in Equation 2.62, and solved using the SVD methods previously

mentioned.

x1

[
p31 p32 p33 p34

]T
−
[
p11 p12 p13 p14

]T
x2

[
p31 p32 p33 p34

]T
−
[
p21 p22 p23 p24

]T
x′1

[
p′31 p′32 p′33 p′34

]T
−
[
p′11 p′12 p′13 p′14

]T
x′2

[
p′31 p′32 p′33 p′34

]T
−
[
p′21 p′22 p′23 p′24

]T

X = 0 (2.62)

One advantage of this method is that it can be easily extended to N corresponding

cameras, shown in Equation 2.63.

38

2.4. OPTIMIZATION TECHNIQUES 39

x01

[
p031 p032 p033 p034

]T
−
[
p011 p012 p013 p014

]T
x02

[
p031 p032 p033 p034

]T
−
[
p021 p022 p023 p024

]T
x11

[
p131 p132 p133 p134

]T
−
[
p111 p112 p113 p114

]T
x12

[
p131 p132 p133 p134

]T
−
[
p121 p122 p123 p124

]T
...

xN1

[
pN31 pN32 pN33 pN34

]T
−
[
pN11 pN12 pN13 pN14

]T
xN2

[
pN31 pN32 pN33 pN34

]T
−
[
pN21 pN22 pN23 pN24

]T

X = 0 (2.63)

This method is very simple to implement, however it is prone to error when X4 6= 1,

or requires a projective reconstruction [25].

2.4 Optimization Techniques

As with many algorithms, actual implementation of concepts requires dealing with

noisy and difficult data. In the case of SfM, the feature correspondence data contains the

error which needs to be minimized. Many of the previously described algorithms depend

on this data as input, and are best solved using some form of optimization routine. This

section will discuss some of the optimization routines which are often used to generate

quality output from noisy input.

2.4.1 Feature Matching Optimization Using RANSAC

The feature matching problem discussed in Section 2.2 often contains large numbers of

false matches after the initial feature matching process. In order to find false matches, a

model which describes the correspondence relationship can be fit. This model is shown in

Equation 2.19, and is known as the fundamental matrix correspondence condition. This

process will not only find false matches in a feature matching set, it will also effectively

derive the fundamental matrix from correspondences, as described in Section 2.1.4.

The model-fitting algorithm called RANdom SAmple Consensus (RANSAC) will be

used as the optimization routine to achieve the model fitting. RANSAC is an algorithm

that is designed to find the best fitting model parameters in the presence of outliers. In

39

2.4. OPTIMIZATION TECHNIQUES 40

the feature matching case, the outliers will be the false matches. As indicated in its name,

RANSAC uses a random process to iteratively find the best fitting model [17].

Consider a simple line fitting model, y = Ax + B, which contains two parameters;

the slope A and the intercept B. This algorithm can be exactly solved with at least two

data points using a least squares line fitting method. As the noise in the data increases

the ability to accurately model the line using standard model fitting fails. Figure 2.17-a

shows a simple least squares line fit to data which contains very little noise, Figure 2.17-b

shows what happens to this least squares fit when noise is added to the system. RANSAC

attempts to overcome this problem, by fitting a model to the data while simultaneously

removing the outliers from the dataset.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

X

Y

(a) No Outliers

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

X

Y

(b) Some Outliers

Figure 2.17: Simple linear regression can be significantly impacted in the presence of out-

liers. Both lines here are fit with standard linear regression.

The RANSAC algorithm consists of essentially three steps. The first step is to ran-

domly select the minimum number of points required to solve for the model parameters.

In the case of line fitting, this would be two points. The next step is to use those points

to solve for the parameters and generate a potential model. The third step is to take that

potential model and determine from the set of all data points, how many points fit in the

model within a predefined tolerance measure. This process is repeated a predefined num-

ber of times until a model with enough inliers has been found or the process has repeated

a set number of times.

It is important to properly set the predefined thresholds based on the input data. The

distance tolerance measure can be set based on any type of assumed distribution. For

example, for the line fitting algorithm, a Gaussian distributions is assumed and a distance

40

2.4. OPTIMIZATION TECHNIQUES 41

threshold is computed. The distance measure is the square of the Euclidean distance be-

tween the points, and the final distribution is a sum of squared Gaussian variables. This

is modeled using a χ2
DOF−1 distribution, where the DOF is equal to the number of input

parameters to the model, in this case, two. The probability that a random variable is

less than a given variable is modeled using the cumulative distribution function [47]. The

inverse cumulative distribution function can be used to find a factor of the variance of the

data, σ2, which will be used as the threshold. This is defined as,

τ = F−1DOF−1 (α)σ2 (2.64)

where F−1DOF−1 is the inverse cumulative distribution function. The probability α is usually

chosen to be 95%, so that an incorrect rejection of an inlier only happens 5% of the time

[25].

Another threshold required is the total number of expected inliers. This requires mak-

ing an assumption about the proportion of the data which contains outliers. It is best

to choose a conservative estimate, such as 20% or 30%. The stopping threshold can then

be defined as shown in Equation 2.65 [25], where ε is the assumed proportion of the data

which contains outliers and n is the size of the data.

T = (1− ε)n (2.65)

The maximum number of samples can also be defined using probability. The proba-

bility of selecting all data points within τ is wn, where w is the probability of selecting

one data point within τ . To ensure with a probability of p that at least one selection, k,

contains all inliers, the following equation can be stated [25].

(1− wn)k = (1− p) (2.66)

Equation 2.66 can be solved for k,

k =
log (1− p)

log (1− wn)
(2.67)

where k is the number of samples required. This number can be updated iteratively within

the RANSAC algorithm by defining w as the ratio of inliers to the total number of points.

Algorithm 1 shows the full RANSAC algorithm in pseudocode. Figure 2.18 shows an ex-

ample of a line fit to the data in Figure 2.17-b using RANSAC.

41

2.4. OPTIMIZATION TECHNIQUES 42

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

X

Y

Figure 2.18: The data in Figure 2.17-b fit with a line using RANSAC. The points in

magenta were chosen by RANSAC as the outliers. RANSAC proves to be a robust model

fitting approach given the presence of outliers.

RANSAC can be used to solve the correspondence problem, as mentioned in Sec-

tion 2.4.1. In this case, the model is the fundamental matrix, F. The parameters of the

model, the elements of the fundamental matrix, can be calculated from image correspon-

dences as shown in Section 2.1.4 [25]. The distance function would be the correspondence

condition shown in Equation 2.19.

The matrix F is calculated using seven corresponding points, using the method de-

scribed in Section 2.4.1. If there is more than one solution for F, each solution is tested,

and the matrix with the largest number of inliers is kept. There is a computational ad-

vantage to using a seven-point solution for the fundamental matrix over an eight-point

solution, which can be illustrated using Equation 2.67, shown in Figure 2.19.

42

2.4. OPTIMIZATION TECHNIQUES 43

Figure 2.19: The expected number of RANSAC iterations for the calculation of a funda-

mental matrix can be estimated using Equation 2.67. This plot shows the expected number

of iterations for an eight and a seven-point fundamental matrix model as a function of the

probability of a randomly selected point being an inlier to the model. The computational

advantage of using the seven-point model can be seen as the probability of a point being an

inlier decreases.

Using a seven-point solution to the fundamental matrix means that a smaller set of

RANSAC iterations must be performed in order to solve for the fundamental matrix than

would be needed using an eight-point solution. This reduction in the number of iterations

requires having to test one to three possible matrices in each RANSAC iteration, instead

of just one. As shown in Figure 2.19, the gap between iterations grows much larger as the

probability of inliers decreases. This is an important note specifically for aerial imagery.

Aerial imagery tends to have many small features, especially over urban scenes. The

large number of features causes the error in feature matching to be high. When using

RANSAC to determine the fundamental matrix between two aerial images, it should be

assumed that the probability of a randomly selected image correspondence being an inlier

should be low. A conservative estimate of probability would be around w = 0.6, which

would require approximately 272 RANSAC iterations for the eight-point solution, and 163

iterations for the seven-point solution. This work used a very conservative threshold of

43

2.4. OPTIMIZATION TECHNIQUES 44

2048 iterations for fundamental matrix estimation with RANSAC.

Using RANSAC for this problem yields an estimate for the fundamental matrix from

a set of image correspondences as well as the image correspondences that have been iden-

tified as false (outliers). Figure 2.20 presents an example of a set of SIFT correspondences

that have been optimized using RANSAC.

The camera pose estimation problem presented in Section 2.1.5 can also use RANSAC

to generate a reliable estimate of the camera pose using a noisy set of image correspon-

dences. In this case, the essential matrix (Equation 2.46) can be used as the RANSAC

model.

Figure 2.20: SIFT correspondences optimized with RANSAC. The top image pair shows

the correspondences prior to the optimization, and the bottom image pair shows what

RANSAC found as the best correspondences. (Imagery courtesy of Pictometry Inc.)

44

2.4. OPTIMIZATION TECHNIQUES 45

Algorithm 1 RANSAC Algorithm

τ =Number chosen as defined in Equation 2.64

ε =Assumed proportion of data that contains outliers

T = (1− ε) size(data)

p = Probability of choosing a dataset with all inliers (Usually 0.99)

n = Number of parameters in model

k =∞
iterations = 0

bestModel = null

bestConsensusData = null

while k > iterations do

randIndicies = randomGenerator()

consensusData = data[randIndicies]

proposedModel = modelF ittingFuction(consensusData)

for all data not in consensusData do

if distanceFunction(data,proposedModel) < τ then data is added to

consensusData

end if

end for

if size(consensusData) > size(bestConsensusData) then

bestConsensusData = consensusData

bestModel = propsedModel

if size(bestConsensusData) > T then Break Loop

end if

end if

w = size(consensusData)/size(data)

k = log (1− p) / log (1− wn)

iterations = iterations+ 1

end while

model = modelF ittingFuction(consensusData)

45

2.4. OPTIMIZATION TECHNIQUES 46

2.4.2 Bundle Adjustment

The process of three-dimensional reconstruction using real-world data can produce

error in many different ways. In order to minimize this error, after the initial reconstruc-

tion, a global optimization process is carried out. The optimization process used for this is

called a bundle adjustment, it is widely used in the computer vision community to achieve

this goal [25, 44, 50]. The notion of a bundle adjustment was developed in the 1960s with

the growth of analytical photogrammetry [73]. The process reduces simply to minimizing

the re-projection error, as defined in Equation 2.68.

ε =

m∑
j=1

n∑
i=1

d (x̂i,PjXi)
2 (2.68)

The function d is a distance function, which represents the distance between the known

feature point x̂ and the projected point calculated from the camera projection matrix and

the reconstructed three-dimensional point, x = PX. The total error is calculated for

all n points and across all m cameras. In photogrammetric terms the projection of a

three-dimensional point is considered a ray passing through the camera. The optimiza-

tion process adjusts the bundle of rays which pass through each camera to minimize the

re-projection error, hence the term bundle adjustment.

Gauss-Newton Iteration Solution

The issue of minimizing the re-projection error can be represented as a nonlinear optimiza-

tion problem, to which there are a number of known solution methods. The re-projection

error can be defined as,

ε (β) = ‖f (β)− x‖ (2.69)

where f (β) represents the nonlinear function f which produces an image projection given

a vector of parameters β, and x represents the known feature point. The parameters in this

case are the elements of the camera projection matrix along with the three-dimensional

point. In order to solve the nonlinear minimization process an iterative approach is taken

assuming that an initial approximation which is close to the minimum value can be found.

It is also assumed that the function f can be represented as a linear function with small

changes in β. Therefore, an iterative relationship, βn + 1 = βn + ∆β, can be formed. The

46

2.4. OPTIMIZATION TECHNIQUES 47

cost function, g, associated with minimizing the sum of squares is

g (β) =
‖ε (β) ‖2

2
(2.70)

The iterative relationship can be substituted into the cost function shown in 2.70,

which can then be expanded using a Talyor-series expansion truncated at the third term

[25].

g (βn + ∆β) = g (βn) + g′ (βn) ∆β +
∆βT g′′ (βn) ∆β

2
+ . . . (2.71)

In order to minimize the cost function using the iterative relationship, an expression

is needed for ∆β, such that when ∆β is added to βn the function heads towards to

minima. This can be found by finding an expression for the minimum of the cost function

g (βn + ∆β), with respect to ∆β. In other words, finding the condition in which the

iterative change to βn equals zero. This is done by taking it’s derivative and setting the

equation equal to zero,

g′ (βn) + g′′ (βn) ∆β = 0 (2.72)

Solving for ∆β in Equation 2.72, gives an expression for ∆β,

∆β = − g
′ (βn)

g′′ (βn)
(2.73)

In terms of calculation, it is convenient to express g′ and g′′ in terms of the error

function shown in Equation 2.69. The first derivative of the cost function is [25].

g′ (βn) = ε′ (βn)T ε (βn) = J (βn)T ε (βn) (2.74)

Where J (βn) is the Jacobian vector of f (β) evaluated at βn. The second derivative

can be calculated from g′ (βn), and is given by,

g′′ (βn) = ε′ (βn)T ε′ (βn) + ε′′ (βn)T ε (βn) (2.75)

Making the assumption that f (β) can be approximated to be linear in small incre-

ments, the second derivative of ε (βn) would go to zero. As shown in Equation 2.74, the

first derivative of ε (βn) is the Jacobian of f (βn), Equation 2.75 reduces to

g′′ (βn) = J (βn)T J (βn) (2.76)

47

2.4. OPTIMIZATION TECHNIQUES 48

The second derivative approximation of the cost function as shown in Equation 2.76

is the defining quality of the Gauss-Newton method [25][1]. The equation for ∆β can be

updated in terms that are computationally simpler to calculate, shown in Equation 2.77.

∆β = −
(
J (βn)T J (βn)

)−1
J (βn)T ε (βn) = −J (βn)† ε (βn) (2.77)

Where the products of the Jacobians in Equation 2.77 is recognized as the pseudo-

inverse of the Jacobian matrix. The iterative relationship is then expressed in these terms

that yield the Gauss-Newton update equation [25], namely,

βn+1 = βn − J (βn)† ε (βn) (2.78)

Using Equation 2.78 to solve for βn+1, will converge on a minimum of f (β), given

that the assumptions made hold true for function and initial estimate of β. In review the

assumptions are 1) the second derivative of the cost function can be approximated by JTJ ,

and 2) the initial estimate is close to the minimum. In terms of minimizing re-projection

error, the initial estimate of the parameters can sometimes be far away from the minimum

re-projection error. In this case, other methods can be used.

Steepest Descent Iteration

A simpler approach to the optimization problem is called the Steepest Descent (or

Gradient Descent) optimization algorithm. The idea behind this algorithm is that by

always taking a step in the downward gradient direction, the algorithm will eventually

converge to a minimum. This method can be used to minimize the cost function defined

in Equation 2.70, by using the negative gradient, g′ (β). An expression for g′ (β) is shown

in Equation 2.74. The expression for ∆β is shown below,

∆β = −λg′ (β) ∆β = −λJ (β)T ε (β) (2.79)

The step size for ∆β is controlled by λ. The method of steepest descent is computation-

ally simple to execute, and methods of adaptively controlling λ can improve convergence

from positions far from the minimum [45]. However, for functions which are poorly scaled,

the number of iterations required to find the minimum becomes very large. This method

can be combined with the Gauss-Newton method presented in the previous section, which

48

2.4. OPTIMIZATION TECHNIQUES 49

is the basis for the Levenberg-Marquardt optimization routine.

Levenberg-Marquardt Optimization

The Levenberg-Marquardt optimization routine is very popular in nonlinear numer-

ical optimization, and used widely to solve the bundle adjustment problem [25]. It can

be thought of as a combination of the Gauss-Newton and steepest descent optimization

algorithms. The equation shown in 2.77 is reformed as(
J (β)T J (β) + λI

)
∆β = −J (β)T ε (β) (2.80)

where I is the identity matrix, and λ is some chosen scalar value. The combination of

Gauss-Newton and steepest descent methods can be illustrated by observing the effect λ

has on the step size ∆β. As λ grows very large in comparison to J (β)T J (β), the solu-

tion for ∆β is essentially the solution shown in Equation 2.79 for steepest descent. As λ

becomes very small, the solution for ∆β becomes the one shown in Equation 2.77 for the

Gauss-Newton method. The step size λ is initially chosen to be the average if the diagonal

elements of
(
J (β)T J (β)

)
multiplied by 10−3. For each iteration that minimizes the error,

λ is divided by a factor of ten. In this manner, the Levenberg-Marquardt algorithm acts

as the steepest descent method when far from the minimum, and as Gauss-Newton when

close to the minimum. This optimization routine provides very fast convergence by using

this combination of methods [14]. A comparison of Gauss-Newton, steepest descent, and

Levenberg-Marquardt optimization on the Rosenbrock function is shown in Figure 2.21.

The steepest descent method takes the largest number of iterations, as expected, and

the Levenberg-Marquardt algorithm is quicker and converges faster than both the Gauss-

Newton and steepest descent methods.

49

2.4. OPTIMIZATION TECHNIQUES 50

−5
−4

−3
−2

−1
0

1
2

3
4

5

−5

0

5

10

15

0

1

2

3

4

5

6

7

8

9

10

x 10
4

X

Y

F
(x

,y
)

1

2

3

4

5

6

7

8

9
x 10

4

(a) Rosenbrock Function

x

y

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

1

2

3

4

5

6

7

8

x 10
4

x

y

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

1

2

3

4

5

6

7

8

x 10
4

x

y

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

1

2

3

4

5

6

7

8

x 10
4

(b) Comparision of optimization routines with starting point [-2,2].

Figure 2.21: A comparison of Gauss-Newton, steepest descent, and Levenberg-Marquardt

optimization algorithms using the Rosenbrock Function (Minimum at [1,1]). In (b),

Top Left: Gauss-Newton, Top Right: Steepest Descent, Bottom: Levenberg-Marquardt.

The steepest descent method takes the largest number of iterations, while the Levenberg-

Marquardt algorithm is quicker and converges faster than the others. The following data

was collected for each of the optimization methods during the calculations shown in (b):

Gauss-Newton; 56 iterations in 2.09 ms, Steepest Descent; 300 iterations in 9.58 ms,

Levenberg-Marquardt; 30 iterations in 2.04 ms.

50

2.4. OPTIMIZATION TECHNIQUES 51

If the current iteration of λ causes a decrease in error, then it is accepted as a good

iteration and λ is divided by ten. However, if the current iteration of λ causes the error

to increase, then λ is multiplied by ten and ∆P is recalculated. This is repeated until a λ

is found that causes a reduction in error. The Levenberg-Marquardt algorithm is shown

in Algorithm 2

Algorithm 2 Levenberg-Marquardt Algorithm

β = initialEstimate /* Initial Estimate of Parameters */

X = values /* Values for solution of F(P)=X */

F = @function /* Handle to nonlinear function F() to be minimized */

J = @functionJacobian /* Handle to Jacobian of F() */

I = identity(length(P0)) /* Identity matrix the size of JTJ */

λ =
diag(J(β)T J(β))

length(X) ∗ 10−3 /* Initial estimate of lambda */

ε = F (β)−X
α = 10−15 /* Some error threshold in which LM should stop iterating */

while
(
εT ε
2

)
> α do

∆β =
(
J (β)T J (β) + λI

)−1
J (β)T ε

βt = β −∆β

εt = F (βt)−X

while
(
εT ε
2

)
<
(
εTt εt
2

)
do

λ = λ ∗ 10

∆β =
(
J (β)T J (β) + λI

)−1
J (β)T ε

βt = β −∆β

εt = F (βt)−X
end while

β = βt

ε = εt

λ = λ
10

end while

Bundle Adjustment with Sparse Levenberg-Marquardt Optimization

The Levenberg-Marquardt optimization method is the preferred method for solving

the bundle adjustment problem. This is due to its fast convergence to a minimum even

when the starting point is far off. The standard Levenberg-Marquardt algorithm can still

51

2.4. OPTIMIZATION TECHNIQUES 52

be too slow for a real-world bundle adjustment. The number of parameters for a bundle

adjustment using the camera-projection matrices with every point seen in each image,

would be n ∗ k + m ∗ j, where n is the number of cameras, k is the number of camera

parameters, m is the number of three-dimensional points, and j is the number three-

dimensional point parameters. For a projective bundle adjustment, k would be equal to

twelve and j would be equal to four. A normal bundle-adjustment could have around 20

cameras and 1, 000 points. This would result in a 4240×4240 Hessian matrix which would

have to be inverted multiple times for each iteration of Levenberg-Marquardt [25]. This

can become computational infeasible, however, due to the lack of correlation between each

image projection, the Hessian matrix has a definable sparse structure.

The Jacobian structure for an image projection can be separated into two distinct parts;

the camera and three-dimensional coordinate parameters. If the projection is thought of

as a nonlinear function f (β), β would be a vector containing a set of parameters for each

projection. In the case of a projective system, there would be twelve camera parameters

and four point parameters. The Jacobian matrix would then have the structure J = [A|B],

where Akn =
∂f (Pnk)

∂Pnk
a mn×12n matrix and Bjm =

∂f
(
Xm
j

)
∂Xm

j

a mn×4m matrix. This

yields a Jacobian structure shown below, as shown for two cameras and three points

J =

∂f(P 1
1)

∂P 1
1

· · · ∂f(P 1
12)

∂P 1
12

0 · · · 0
∂f(X1

1)
∂X1

1
· · · ∂f(X1

4)
∂X1

4
0 · · · 0 0 · · · 0

∂f(P 1
1)

∂P 1
1

· · · ∂f(P 1
12)

∂P 1
12

0 · · · 0 0 · · · 0
∂f(X2

1)
∂X2

1
· · · ∂f(X2

4)
∂X2

4
0 · · · 0

∂f(P 1
1)

∂P 1
1

· · · ∂f(P 1
12)

∂P 1
12

0 · · · 0 0 · · · 0 0 · · · 0
∂f(X3

1)
∂X3

1
· · · ∂f(X3

4)
∂X3

4

0 · · · 0
∂f(P 2

1)
∂P 2

1
· · · ∂f(P 2

12)
∂P 2

12

∂f(X1
1)

∂X1
1

· · · ∂f(X1
4)

∂X1
4

0 · · · 0 0 · · · 0

0 · · · 0
∂f(P 2

1)
∂P 2

1
· · · ∂f(P 2

12)
∂P 2

12
0 · · · 0

∂f(X2
1)

∂X2
1

· · · ∂f(X2
4)

∂X2
4

0 · · · 0

0 · · · 0
∂f(P 2

1)
∂P 2

1
· · · ∂f(P 2

12)
∂P 2

12
0 · · · 0 0 · · · 0

∂f(X3
1)

∂X3
1

· · · ∂f(X3
4)

∂X3
4

(2.81)

where each
∂f(Pnk)
∂Pnk

is a 1×k vector and each
∂f(Xm

j)
∂Xm

j
is a 1×j vector. This sparse

structure creates another definable sparse structure for the normal equations JTJ, which

can be defined using four sections, as shown in Equation 2.82.

JTJ =

[
U W

WT V

]
(2.82)

The normal equations shown in Equation 2.82 contain a block structure with matrices

U, V, and W. The matrices U and V contain a nk×nk and a mj×mj sparse symmetric

52

2.4. OPTIMIZATION TECHNIQUES 53

block structure as shown in Equations 2.83 and 2.84.

U =

U1 0 0

0
. . . 0

0 0 Un

Un = m

∂f(Pn1)
∂Pn1

2

· · · ∂f(Pn1)
∂Pn1

∂f(Pnk)
∂Pnk

...
. . .

...

∂f(Pn1)
∂Pn1

∂f(Pnk)
∂Pnk

· · · ∂f(Pnk)
∂Pnk

2

(2.83)

V =

V1 0 0

0
. . . 0

0 0 Vm

Vm = n

∂f(Xm

1)
∂Xm

1

2

· · · ∂f(Xm
1)

∂Xm
1

∂f(Xm
j)

∂Xm
j

...
. . .

...

∂f(Xm
1)

∂Xm
1

∂f(Xm
j)

∂Xm
j

· · · ∂f(Xm
j)

∂Xm
n

2

(2.84)

The matrix W has a non-symmetric nk×jm dense structure as shown in Equation 2.85.

W =

∂f(P 1
1)

∂P 1
1

∂f(X1
1)

∂X1
1

· · · ∂f(P 1
1)

∂P 1
1

∂f(X1
j)

∂X1
j

· · · · · · ∂f(P 1
1)

∂P 1
1

∂f(Xm
j)

∂Xm
j

...
. . .

...
...

∂f(P 1
k)

∂P 1
k

∂f(X1
1)

∂X1
1

· · · ∂f(P 1
k)

∂P 1
k

∂f(X1
j)

∂X1
j

· · · · · · ∂f(P 1
k)

∂P 1
k

∂f(Xm
j)

∂Xm
j

...
...

. . .
...

...
...

. . .
...

∂f(Pnk)
∂Pnk

∂f(X1
1)

∂X1
1

· · · ∂f(Pnk)
∂Pnk

∂f(X1
j)

∂X1
j

· · · · · · ∂f(Pnk)
∂Pnk

∂f(Xm
j)

∂Xm
j

(2.85)

When combined U, V, and W create a sparse block structure for the normal equations

JTJ. Figure 2.22 shows this structure for the two camera and three point example, and for

the original real-world twenty camera and one-thousand point example. It can be noted

that in real-world examples the matrix V tends to be much larger than U.

53

2.4. OPTIMIZATION TECHNIQUES 54

Columns

R
o
w
s

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Columns

R
o
w
s

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

800

900

Columns

R
o
w
s

500 1000 1500 2000 2500 3000 3500 4000

500

1000

1500

2000

2500

3000

3500

4000

Figure 2.22: Illustration of the normal equations JTJ for three examples for camera and

point sets. The black areas contain equations while the white areas contain zeros. Normal

equation parameters left to right: 2 cameras and 3 points, 10 cameras and 200 points, 20

cameras and 1000 points.

The Levenberg-Marquardt optimization method uses an augmented set of normal equa-

tions, as shown in Equation 2.80. The augmented operation adds a constant along the

diagonal of JTJ, which corresponds to adding the constant to the matrices U and V.

The augmented diagonal matrices will be represented as U∗ and V∗, so the form of the

Levenberg-Marquardt equation (2.80) in sparse structure form, is given by[
U∗ W

WT V∗

]
∆β = −[A|B]T ε (β) (2.86)

The top right corner of the normal equations can be eliminated by multiplying both

sides of the equation by

[
I −WV∗−1

0 I

]
. This results in a new set of equations [25, 44]

[
U∗ −WV∗−1WT 0

WT V∗

][
∆βP

∆βX

]
=

[
ε (βP)−WV∗−1ε (βX)

ε (βX)

]
(2.87)

where the vector ∆β has been broken into its camera and coordinate parameter ∆βP and

∆βX . The matrix expression in Equation 2.87 can be parsed into it’s top and bottom

halves, which allows the solving of ∆βP and ∆βX separately. The solution for ∆β now

54

2.5. DERIVING GEO-ACCURATE STRUCTURE MEASUREMENTS 55

becomes the system of equations shown below.

∆βP =
(
U∗ −WV∗−1WT

)−1 (
ε (βP)−WV∗−1ε (βX)

)
∆βX = V∗−1

(
ε (βX)−WT∆βP

)
∆β =

[
∆βP

∆βX

] (2.88)

Computationally, the sparse variant of the Levenberg-Marquardt algorithm is much

simpler than the general algorithm. The general algorithm requires the repeated inversion

of a (nk+mj)×(nk+mj) matrix. The sparse algorithm requires the repeated inversion of

a nk×nk matrix and a mj×mj symmetric matrix. In real-world situations, it is true that

n << m, so the inversions in the sparse algorithm are much more computationally efficient

than those in the general algorithm for practical usage. In modern SfM applications the

sparse variant of the Levenberg-Marquardt optimization algorithm is most often used to

solve the bundle adjustment problem [44, 50]

2.5 Deriving Geo-Accurate Structure Measurements

In order to generate geographically accurate scene structure, the structure estimation

from the SfM processes must be registered to a fix Earth-based coordinate system. Geo-

registration of point clouds to obtain absolute orientation has existed for many years and is

well documented [4, 46]. The simplest georegistration method uses just GPS information

to extract a georegistering similarity transform, Ts, by matching the estimated camera

pose to its corresponding GPS location [50]. Given the noisy nature of most low-cost GPS

devices, as those found in common hand-held imagery, noise-reducing and optimizing al-

gorithms such as RANSAC (Section 2.4.1). The error in this estimation alone is often too

large, and additional information is used to further refine the transform. Wang et al. [71]

incorporate Google Street View imagery and Google Earth models to further refine the

position of SfM derived structure. Use of accurate digital surface models can also reduce

positional error in ground-based SfM point clouds, as shown by Wendel et al. [72] It is

even possible to incorporate the geolocations into the SfM process itself. Crandall et al.

[10] utilize Internet-based imagery with geolocations to aid the estimation of camera pose

55

2.5. DERIVING GEO-ACCURATE STRUCTURE MEASUREMENTS 56

and orientation [10]. They propose a novel SfM technique that solves the problem using

Markov random fields (MRF) by incorporating the geotags into pose and orientation esti-

mation using an energy function that minimizes the noise present in these types of geotags.

This work focuses on only using the simplest method of georegistration, calculating the

similarity transform Ts.

2.5.1 Calculating Ts

Points contained within two different Euclidean coordinate systems can be related

using a similarity transform, Ts. A set of inhomogeneous points XA in a metric coordinate

system A, can be transformed to the desired metric coordinate system D using a seven

DoF transform as shown,

XD = sRXA + t (2.89)

where s is a uniform scale, R is a 3-by-3 rotation matrix derived from three rotation

parameters, and t is a 3-by-1 translation vector. This transform can be calculated by

using a set of known corresponding points, xa and xd, such that xa ∈ XD and xd ∈ XD.

The first step in solving for this transform is calculating the scale. This is done by

moving the centroid of each set of points, xa and xd, to the origin of their respective

coordinate systems,

Ca,i = xa,i − x̄a (2.90)

Cd,i = xd,i − x̄d (2.91)

The scale value can then be determined by the ratio between the mean lengths of each

zero-centered points set. Figure 2.23 shows an example of Ca,i and Cd,i.

56

2.5. DERIVING GEO-ACCURATE STRUCTURE MEASUREMENTS 57

Point cloud A

Point cloud D

Mean Length A

Mean Length D

Figure 2.23: This figure shows an example of two sets of zero centered point clouds. The

figure on the right shows the mean vector length of each set of points. The ratio of the

mean lengths can be used to calculate the scale between the two data sets.

The scale relating the two point sets, Ca,i and Cd,i, can be calculated through the ratio

of the mean vectors lengths for each point set, as shown below and pictured in Figure 2.23

[34].

s2 =

∑n
i=1 ‖ Cd,i ‖2∑n
i=1 ‖ Ca,i ‖2

(2.92)

The next step is to compute the rotation matrix R which relates Ca,i to Cd,i. This can

be done using the Kabsch algorithm, which is a method for calculating an optimal rotation

matrix between two sets of points in a least squares sense [69, 68]. After the rotation matrix

and uniform scale value are calculated the translation vector can be calculated using the

centroids, as shown in Equation 2.93.

t = x̄a − sRx̄d (2.93)

Equation 2.89 can be formated into a 4x4 transform Ts in homogeneous coordinates

as,

Ts =

[
sR t

0 1

]
(2.94)

This method alone is sensitive to error in the corresponding points xa and xd. The

similarity transform can calculated using a model fitting method robust to outliers such

as the RANSAC algorithm described in Section 2.4.1. Methods for extracting the corre-

57

2.6. DISCUSSION 58

sponding points are discussed in Section 3.2.

2.6 Discussion

The goal in Structure from Motion is to estimate the pose of a series of images through

the estimation of the three-dimensional scene structure viewed by the images. This section

covered the basis for what is needed in order to perform SfM in a variety of different ways,

as well as the optimization routines to remove the error generated in the SfM steps. This

process can be broken into five essential steps; feature detection, feature matching, pose

estimation, structure reconstruction, and error reduction. Methods for each step were

presented in this section, in the order in which they are often used. Each one of these

steps uses concepts derived from epipolar geometry. Figure 2.24 shows a common example

a SfM workflow using methods previously described.

Images

Features
SIFT

SIFT
Feature

Matching

Linear
Triangulation

5-pt
Pose

 Estimation

Bundle
Adjustment

C
orre

sp
ondence

s

Correspondences

C
am

era Pose

Stru
ct

ure
 E

st
im

ate

Correspondences
Error Reduced

– Camera Pose
– Structure Estimate

C
a
m

e
ra

 P
o
s
e

RANSAC
Sparse

 L-M

RANSAC

Figure 2.24: A common SfM workflow. The circles represent the optimization method used

for the connecting methods within.

The workflow presented in Figure 2.24 is just one possible configuration. Given the ap-

plication, it might be more suitable to use DAISY or A-SIFT in place of SIFT as the feature

detector and matcher. Often aerial imagery is taken with IMU/GPS estimates which can

be used as the initial estimate for the camera pose instead of using pose estimation. For

near-nadir aerial imagery, a photogrammetric estimation of the three-dimensional point

provides a better estimate of the three-dimensional structure than a linear estimation. The

58

2.6. DISCUSSION 59

one step in every SfM process that tends to be constant is the bundle adjustment [44].

Although, if desired, certain parameters of the bundle adjustment could be held constant,

if the user had more confidence in specific parameters.

Structure from Motion methods provide a viable way to automatically generate three-

dimensional structure from multi-view imagery. These methods can potentially have a

strong impact in applications such as photogrammetric modeling, which is often heavily

user-assisted. The goal of this work is to make steps towards fully automated and at-

tributed physical modeling from aerial imagery, and SfM provides the basis for generating

the physical geometry for every model.

59

Chapter 3

Methodology

Figure 3.1: A geoaccurate dense point cloud reconstruction of downtown Rochester, NY,

generated using processes described in Chapter 2.

The objective of this work is to extract physically accurate three-dimensional models

from multi-view imagery. The background provided in Chapter 2 is necessary for under-

standing how the structure of the physically accurate models can be obtained. Methods

described in the previous chapter can be used to formulate a workflow to generate geo-

graphically and physically accurate structure, such as the one shown in Figure 3.1. The

physically accurate model is estimated from the output of this workflow. This chapter will

review the methods used to estimate this model:

60

3.1. SOFTWARE 61

• Section 3.1 reviews the SfM open-source software which is used to estimate the scene

structure from multi-view imagery

• Section 3.2 describes methods of estimating the georegistration transform described

in Section 2.5

• Section 3.3 details methods tested and used for extracting the object’s surface from

the structure measurements, as well as methods for assigning a confidence metric

to the estimated surface, and extracting individual structures from the entire scene

structure.

• Section 3.4 presents methods for surface material spectral attribution and classifica-

tion.

3.1 Software

Structure extraction is a very active and ongoing area of research in the computer vi-

sion community, consequently the methods presented in the previous chapter only touches

the surface of a very large research area. Due to the large amount of interest, a collection

of open-source software has surfaced through the community. This open-source software

can be put together to formulate a workflow to extract structure from multi-view imagery,

as discussed in Section 2.6.

In practice, the SfM steps are often repeated and exploited in order to generate

reliable dense three-dimensional point clouds. There exists a number of open-source ap-

plications that have implemented different parts of the SfM workflow. Three applications

are commonly used in conjunction to generate dense three-dimensional point clouds from

imagery using SfM techniques; siftGPU, Bundler, and PMVS with CMVS. Figure 3.2

shows the order in which they are used. The following sections will provide some details

on each software package.

61

3.1. SOFTWARE 62

siftGPU Bundler CMVS/PMVS

Features and
Correspondences

Camera Pose

Sparse 3-D
Point Cloud

Dense 3-D
Point Cloud

Imagery

Figure 3.2: Flow of the SfM open-source applications, with the data input and output for

each application. This is the software used in this work.

siftGPU

This software package is an implementation of SIFT as described in Section 2.2.1 which

runs on the GPU, written by Changchang Wu [67]. There are many advantages to run-

ning SIFT on the GPU, as many stages of the SIFT process can be restructured to fit

the parallel processing power of the GPU [27]. Aerial imagery tends to have very large

pixel counts, and as the number of image pixels increases the number of detected SIFT

features increases almost exponentially [67]. This becomes a major issue in the feature

matching stage when doing a one-to-all matching for every feature in every image, which

has a O
(
n2
)

time complexity. The matching process can also be parallelized and run on

the GPU to significantly decrease the run time.

For the goal of urban modeling, very massive datasets often need to be processed. The

SIFT feature extraction and matching process can take many hours or even days when run

on a CPU. This time can be reduced to just a few hours by processing on the GPU. For

this work, densely collected high resolution imagery was used for processing, and therefore

it was only computationally feasible to use siftGPU.

62

3.1. SOFTWARE 63

Figure 3.3: Bundler is a packaged SfM workflow which uses an iterative bundle-adjustment

approach for error reduction. The feature optimization, camera pose estimation, triangu-

lation, and bundle adjustment are all performed in this software.

Bundler

Bundler is a powerful SfM algorithm written by Noah Snavley [49]. This algorithm

uses the initial correspondence estimate provided by siftGPU as input. The fundamental

workflow within Bundler is shown in Figure 3.3.

This algorithm takes an iterative approach to its optimization process. Here, a sparse

bundle adjustment (SBA) is used to perform the optimization. The input to the SBA

is generated using the initial correspondences. The camera pose is estimated using the

five-point pose estimation algorithm described in Section 2.1.5. Using that pose, each

correspondence is triangulated for each image using a linear triangulation estimation de-

scribed in Section 2.3.2. The correspondence, camera pose, and triangulated points are

used as inputs to the SBA, which provides a solution based on optimizing the minimizing

reprojection error as described in Section 2.4.2. This is done initially for the two cam-

eras with the most correspondences, and repeats adding the camera with the next highest

number of correspondences. The goal of using the iterative approach is to reduce the

propagation of error in the SBA. The result of the Bundler process is a sparse point cloud

which is generated from the initial SIFT correspondences, as well an error minimized set

of camera pose information for each image.

63

3.2. OBTAINING AN ACCURATE COORDINATE SYSTEM 64

PMVS with CMVS

Bundler provides a sparse reconstruction of the scene. However, a dense reconstruction

is often desired. This is where the Patch-based Multi-View Stereo software (PMVS) can be

used [19, 74]. This algorithm uses the camera pose provided by Bundler to narrow down

a correspondence search, which allows for a large number of pixels to be reconstructed.

The feature detection and matching method PMVS uses is described in Section 2.2.5.

The PMVS algorithm is a multi-core implementation which allows for the simultaneous

processing of many images to occur quickly. However, when the image set grows large,

this processing time can still become very long. A clustering algorithm called Clustering

Views for Multi-view Stereo (CMVS) is implemented to break down the image set in to

managed clusters [74]. CMVS is a graph-cut based clustering algorithm which clusters

the cameras according to their pose [20]. The goal is to find clusters of cameras which are

observing the same region of the scene, and run PMVS on just the corresponding images.

This not only reduces runtime for PMVS, but also the error in the resulting point cloud.

The final output of PMVS when run with CMVS is a dense three-dimension point cloud.

This point cloud is what can be exploited as the base physical structure for modeling.

3.2 Obtaining an Accurate Coordinate System

Physically accurate modeling requires that the coordinate space of the point cloud re-

construction is quantifiable in some manner. The relative estimation of camera positions

shown in Section 2.1.5 generates a camera coordinate system which is in an arbitrary rel-

ative coordinate space. The estimated structure based on these cameras are also in the

same coordinate system. Applying a bundle adjustment to the whole system will move

the cameras and three-dimensional points to an error reduced space, however this space

has no physical meaning. Ideally, these three-dimensional points should be registered to

a fixed Earth-based coordinate system. A method for deriving a similarity transform be-

tween two Euclidean coordinate systems was discussed in Section 2.5. In this case, the two

Euclidean coordinate systems are the SfM based world coordinate system, and the fixed

Earth-based coordinate system. In order to calculate this transform, a set of correspond-

ing three-dimensional points must be obtained between the two coordinate systems. This

section will discuss two methods of obtaining these corresponding points. A third method

using linear triangulation as described in Section 2.3.2 is used for georegistration and also

64

3.2. OBTAINING AN ACCURATE COORDINATE SYSTEM 65

analyzed in this work. An analysis of each methods accuracy is presented in Section 4.1.

3.2.1 Using Camera Position Estimates

The method most commonly used in the computer vision community uses geo-tags

from imagery [62]. Estimated camera centers derived from the SfM process are used as

the points from set XA, and the GPS-located camera centers are used as the points from

set XD (from Equation 2.89). The transformation process, which is henceforth referred

to as the camera centers approach, is shown in Figure 3.4.

Figure 3.4: The most common method for obtaining corresponding points utilizes the

camera centers. Estimated three-dimensional coordinates from the SfM process and GPS-

located coordinates are used to calculate the transform. This transform is then used to

convert the SfM estimated structure into the GPS coordinate system.

While this process requires only knowledge of the GPS information from each camera,

it is highly susceptible to error. Given error in the GPS location or error in the camera

pose estimation, the resulting transform is susceptible to significant inaccuracies. These

errors can be mitigated using an outlier removal algorithm such as RANSAC [10].

3.2.2 Using the Camera Model and Image Correspondence

Another method for deriving the correspondence between these two coordinate sys-

tems relies on using the camera systems forward projection model [70], referred to as the

augmented camera model transform. This method assumes that the imagery has been

65

3.2. OBTAINING AN ACCURATE COORDINATE SYSTEM 66

acquired alongside highly accurate inertial navigation and global position systems (IN-

S/GPS), which is very common with aerial imagery. Furthermore, it is assumed that the

camera system has been well calibrated and tested so that the full ground-to-image func-

tion is known, again very common with aerial imaging platforms.

Using highly refined image correspondence, points are triangulated in both coordinate

systems; In the SfM world coordinate system (WCS) using the estimated camera pose,

and in the fixed Earth-based WCS using the GPS/INS measurements. These triangu-

lated points yield the correspondence needed to estimate the georegistration transform, as

shown in Figure 3.5.

Figure 3.5: The augmented camera model transform uses refined image correspondence,

along with a known and calibrated camera model and accurate GPS/INS information, to

calculate correspondence between the SfM WCS and the fixed Earth-based WCS.

An additional step of error reduction is built into this method. By triangulating highly

refined image correspondence with potentially noisy GPS/INS information, the error which

would be introduced by the GPS/INS is minimized in the estimation of the 3-dimensional

point. Section 2.3.2 describes the triangulation method used in this process, a process

which essentially estimates the best structure point given the constraints shown in Equa-

tion 2.12. This additional error reduction provides some robustness to GPS/INS noise

that the camera centers method cannot provide.

The highly accurate image correspondence can be determined by using a feature match-

ing method with a very high threshold. Another method for quantifying accuracy would

66

3.2. OBTAINING AN ACCURATE COORDINATE SYSTEM 67

be to use the residual error information from the SfM bundle adjustment. The points

with the lowest residual error across the images will likely be the highest quality image

correspondences.

3.2.3 Using the Camera Model Directly

Figure 3.6: With measured GPS/INS information and a known camera model, every

image correspondence can be directly triangulated in the Earth-based coordinate system.

Given the method presented Section 3.2.2, it is logical to try and triangulate every

known image correspondence using measured GPS/INS information. This can be done

using the algorithm presented in Section 2.3.2, and is referred to as the direct triangula-

tion method. This is the simplest approach for georegistering the SfM extracted structure,

however, it is also the most sensitive to error. The triangulation method is affected by

both error in the image correspondence as well as error in the camera model, which can

be caused by error in the GPS/INS measurements.

It might also seem logical to perform an optimization step once three-dimensional

structure has been triangulated using the GPS/INS information, such as a bundle adjust-

ment. This could be a viable option if there was known and measured ground control,

which would require intensive manual intervention. However, using just GPS/INS infor-

mation as well as the triangulated three-dimensional points in a bundle adjustment will

likely cause the solution to converge to a local minimum. Adjusting the GPS/INS infor-

mation based on measured image correspondence alone cannot guarantee convergence into

the “true” Earth-based coordinate system without highly accurate, fixed, known ground

control.

67

3.3. SURFACE RECONSTRUCTION METHODS 68

3.3 Surface Reconstruction Methods

After georegistration, each structure is processed on an individual basis, that is, a user

has selected and isolated a specific target structure in the three-dimensional point cloud

for modeling. The ideal output from a surface model looks like the hypothetical model

shown in Figure 3.7. This model contains a polygon or facet-based representation of the

objects surface, with each polygon or facet material identified.

Figure 3.7: The ideal output for physical modeling would be a CAD-like model in which

each surface type is segmented or attributed.

This section will discuss methods of estimating the surface structure, Section 3.4 will

discuss surface attribution or segmentation. Two methods of surface estimation are ex-

plored. The first method attempts to decompose the extracted structure into geometric

primitives in order to identify polygons and structures within the object point cloud. The

second method takes a voxel-based approach for cleaning and estimating the surface struc-

ture. A confidence metric for the voxel-based reconstruction approach is developed and

described as well. Finally, a method for automatically extracting individual structures,

from user selected imagery, is presented.

68

3.3. SURFACE RECONSTRUCTION METHODS 69

Figure 3.8: Fitting of planes to a point cloud using the iterative RANSAC plane-fitting

approach.

3.3.1 Model Extraction Using RANSAC Plane Fitting and Alpha Shapes

Boundary Extraction

The RANSAC model fitting algorithm described in Section 2.4.1 provides a suitable

method for finding geometric primitives within a point cloud. This section will look at

one type of geometric primitive, a plane. The plane geometry was chosen due to the high

occurrence of planar structures in most urban structures. The inhomogeneous plane model

shown in Equation 3.1 is used for the RANSAC model. This model requires three points

to solve in Ax = 0 form.

ax1 + bx2 + cx3 = 0 (3.1)

It is assumed that the point cloud for each region will be made up of a number of

planes, therefore the RANSAC plane fitting process is iterative. The dominant plane is

found initally, and all points falling on and near that plane will be removed from the point

cloud. The process repreats itself until no planes can be fit to the remaining points using

69

3.3. SURFACE RECONSTRUCTION METHODS 70

the RANSAC process. Figure 3.8 shows an example of an object point cloud fitted with

planes using this iterative model fitting approach.

A set of planes can be defined for each region, described by a collection of plane equa-

tions. To finalize the plane geometry, a boundary for the plane has to be defined using

the object point cloud. This is done using a boundary extraction algorithm called Al-

pha Shapes, which has shown good results for point cloud boundary extraction [41]. The

two-dimensional process for boundary extraction using Alpha Shapes can be thought of

simply as a circle with a defined radius being ’rolled’ around a set of two-dimensional

points. When two points are touching the circle and there are no points within the circle,

those two points are considered part of a boundary. Otherwise, when points are contained

within the circle, the two points are not considered a boundary section [16]. Figure 3.9

shows an example of the boundary extraction process used in Alpha Shapes.

Figure 3.9: Simplified boundary extraction process performed by Alpha Shapes. The points

on the left will be defined as the boundary. The points on the right show how surface on

the inside of the boundary will not be connected, because there are points contained within

the circle.

The Alpha Shapes boundary extraction process is used to extract a boundary for the

points in each extracted plane. The points are projected into the plane to form a two-

dimensional representation of the planar layer in the point cloud. The boundary is then

calculated for that two-dimensional representation. The height values for the boundary is

calculated by solving for the undefined coordinate in Equation 3.1,

x3 =
− (ax1 + bx2)

c
(3.2)

Figure 3.10 shows an example of this process performed on the object planes shown

70

3.3. SURFACE RECONSTRUCTION METHODS 71

in Figure 3.8. Given a three-dimensional boundary for each plane, each boundary can be

treated as a set of points which define a polygon. These polygons exist at varying heights,

and represent layers of an urban structure. It is assumed that these layers are roof struc-

tures at different levels, and the building sides can be represented as vertical planes. For

each polygon, starting from the topmost, a vertical plane is dropped to the next highest

polygon. This is repeated until a plane is dropped to the bottommost polygon. This

generates a primitive geometric model for the object point cloud, made up of planes with

defined boundaries. Figure 3.11 shows an example of this primitive geometric model for

the object shown in Figure 3.8, along side a hand-constructed CAD model of the same

building. The process of iterative RANSAC plane fitting with Alpha Shape boundary

extraction results in a primitive geometric model defined for a set of segmented regions

within a point cloud.

(a) Three RANSAC plane boundaries extracted

(b) The boundaries project onto the three-dimensional plane

Figure 3.10: The detected boundaries of the extracted planes from Figure 3.8 (a) and those

boundaries projected back into the three-dimensional plane to form a three-dimensional

boundary (b).

71

3.3. SURFACE RECONSTRUCTION METHODS 72

(a) Derived primitive model (b) Handmade model

Figure 3.11: The derived primitive geometric model (a) for the object shown in Figure 3.8

alongside a hand-made CAD (b) model of the same building for comparison.

While this approach works in certain situations, it is limited to only plane-based surface

estimations. Furthermore, even with the noise-reducing RANSAC approach, it is still

significantly effected by noise. This method may work in some situations, but it is not a

very robust approach to surface estimation from scene structure.

3.3.2 Voxel-Based Surface Estimation

The best surface estimation method would be able to extract a facet-based represen-

tation of an object’s surface, without imposing many constraints on the representation.

Many methods exist which attempt to estimate the surface of unordered three-dimensional

point clouds, such as Delaunay Triangulation, three-dimensional Alpha Shapes, or Poisson

Surface Reconstruction [30, 15, 39]. However, these methods often have issues with noisy

point clouds, which may contain large holes. This type of point cloud is fairly character-

istic of three-dimensional structure which is automatically extracted from aerial imagery.

By making a few assumptions about the characteristics of the point cloud, a simplified

voxel-based method can be developed.

72

3.3. SURFACE RECONSTRUCTION METHODS 73

(a) Voxelization of a continous space

(b) Unorded estimated structure (c) Voxelized structure

Figure 3.12: Voxels are a discrete method of representing a continuous three-dimensional

coordinate system. The process of voxelizing an unordered point cloud is inherently noise

reducing.

Voxelization is the representation of a continuous three-dimensional coordinate system

as discrete volumes, akin to the two-dimensional representation of the pixel. The process of

voxelizing an unordered point cloud is essentially a sampling operation, which is inherently

noise reducing. This is an advantage when working with noisy three-dimensional struc-

ture, similar to what is often generated with aerial imagery. Conversion of an unordered

point cloud to an ordered voxel cloud also allows for further noise reduction processes to

occur.

73

3.3. SURFACE RECONSTRUCTION METHODS 74

Figure 3.13: Density filtering is an additional noise reduction process that voxelization

can provide. In a situation as the one pictured here, voxels with only one point contained

inside would be removed.

Two noise reduction processes are performed beyond the inherent reduction in the

voxel sampling. The first eliminates voxels that contain a low point density. The second

process looks at a radius of voxels around each voxel center, and filters out voxels which do

not contain a specified number of neighbors. While both these processes are very similar,

they perform different tasks. The elimination of low point density voxels removes spurious

three-dimensional structure which might have been caused by noise (Figure 3.13). The

second process removes small clusters of points which would otherwise not be removed by

the first process, a process known as radius filtering [6]. An example of this process is

shown in Figure 3.14.

A B C

Figure 3.14: Example of the radius search algorithm. Given a set radius and a threshold of

at least two neighbors, voxel A would be accepted and voxels B and C would be labeled as

outliers. If the threshold was one neighbor then A and B would be accepted and C would

not.

74

3.3. SURFACE RECONSTRUCTION METHODS 75

This work is focused on extracting and analyzing structure from aerial imagery. The

structure of interest in this type of imagery tends to be man-made objects and larger

structures, such as buildings. Structure of this nature tends to have similar features that

can be exploited to make some assumptions and interpolate empty areas of the voxel

cloud. The assumptions made here are derived from the Manhattan-world assumption [9],

an assumption used by many researchers dealing with aerial reconstructions.

Figure 3.15: Assuming that connected components in each X-Y orthogonal direction in the

voxel cloud are likely part of the same surface, a top-down approach to voxel cleaning is

taken. Each X-Y planar slice is treated as a binary image, and morphological cleaning and

filling operations are performed. The boundary of the structure in each slice is identified

and assumed to be the connection point to the Z orthogonal direction (i.e. the wall). The

boundary is extended down to the next Z-level until the bottom level is reached.

Using the Manhattan-World Assumption for Surface Estimation

The Manhattan-world assumption states that most objects contained in a scene are

comprised of edges and planes which can be defined using three orthogonal directions [9].

A voxelized space is very conducive to representing objects using this assumption. This

work assumes that for a single object, connected components in every voxel X-Y layer are

likely part of the same surface. Structure is cleaned and interpolated in the X-Y orthog-

75

3.3. SURFACE RECONSTRUCTION METHODS 76

onal directions along the Z orthogonal direction from the top of the voxel cloud to the

bottom. Processing each voxel level in this manner allows for surface interpolation and

hole filling as well as boundary detection.

The voxel Z-level processing shown in Figure 3.15 is primarily executed through mor-

phological operations, treating each Z-level as a binary image. An initial noise-reduction

process, using the hit-or-miss algorithm, is used to identify and remove isolated voxels in

the X-Y plane. After this, a morphological closing is performed using a 3-by-3 rectangular

structuring element. Each isolated interior hole is filled. This is done by filling the exterior

space, taking its inverse, and adding the inverted space to the cleaned voxels. Finally, a

morphological closing then opening is performed, using a 3-by-3 rectangular structuring

element, to clean the edges of the estimated surface.

The hit-or-miss transform is a simple pattern recognition algorithm using morpholog-

ical operations. Specifically, it can be used to identify all pixels which match the shape of

kernel K1 and find all pixels which don’t match the shape of K2. Formally, the hit-or-miss

transform is defined for an image Iz,

Iz �K = (Iz 	K1) ∩ (Icz 	K2) (3.3)

The hit-or-miss transform is the intersection of the erosions of Iz by K1 and the

compliment of Iz by K2. The compliment of an image is where all nonzero elements

become zero, and vise versa. This transform will identify specific pixels which satisfy an

arraignment as defined by K1 and K2. This transform can be used to identify isolated

pixels given the following kernels,

K1 =

 0 0 0

0 1 0

0 0 0

 (3.4)

K2 =

 1 1 1

1 0 1

1 1 1

 (3.5)

This process is shown step by step in Figure 3.16.

76

3.3. SURFACE RECONSTRUCTION METHODS 77

(a) Hypothetical Iz (b) Icz

(c) (Iz 	K1) (d) (Icz 	K2) (e) (Iz 	K1) ∩ (Icz 	K2)

Figure 3.16: The hit-or-miss transform can be used to identify isolated pixels in an

image. Here, the transform is split into steps for visualization. The kernels uses here are

the kernels presented in Equations 3.4 and 3.5

The identified pixels, such as the ones shown in Figure 3.16-(e), are then removed from

the image Iz. This transform could be used to remove other patterns, however, for this

work removing isolated pixels is sufficient for noise cleaning. The next step in the X-Y

voxel plane cleaning process is a closing, using a rectangular structuring element R. This

process fills small holes in the plane. Large holes are identified by filling the exterior space

of Iz, using a small structuring element S and initializing from the exterior space of Iz.

The compliment of the result is taken to identify the holes. These identified holes in Iz

are then filled. The final step is a closing then opening operation using R to clean the

edges of the estimated surface. This entire process is described as,

I ′z = (Iz − (Iz �K)) •R (3.6a)

Xk = (Xk−1 ⊕ S) ∩ I ′z (3.6b)

I ′′z =
((
I ′z ∪Xc

k

)
•R
)
◦R (3.6c)

where X0 is pixel from the exterior space of I ′z, and is iterated from 0 to k and Xc
k is

the compliment of Xk. Xk is iterated until Xk = Xk−1. The resulting I ′′z is the cleaned

X-Y voxel plane. Figure 3.17 shows this process for one of the levels in Figure 3.15.

77

3.3. SURFACE RECONSTRUCTION METHODS 78

(a) Inital X-Y voxel plane

(b) Hit-miss to remove isolated voxels (c) Closing to remove small holes

(d) Filling exterior space (e) Inversion of filled space to identify holes

(f) Holes filled (g) Closing and Opening to clean edges

Figure 3.17: The X-Y voxel plane is cleaned and interpolated using binary morphological

operations. Initially a hit-or-miss algorithm is used to identify isolated voxels, then a

closing is performed to fill small holes. The large holes are identified by filling the exterior

space, and then inverting the filled space. The identified holes are added back to the closed

image. Finally a closing and opening is done to clean the edges of the estimated surface.

The boundary of I ′′z is identified using the Moore-Neighbor tracing algorithm. This

algorithm does a raster search to identify a starting pixel P on the border of the estimated

78

3.3. SURFACE RECONSTRUCTION METHODS 79

surface in I ′′z , this pixel is added to the boundary set B. Then starting from the pixel

preceding the current filled pixel found in the search. the Moore-neighborhood is searched

in a clock-wise fashion to see if another filled pixel is found. If a filled pixel is found, this

pixel is added to B and the search starts again from the preceding pixel in the most recent

clockwise search of the Moore-neighborhood. This process is shown in Figure 3.18.

(a) A Moore-neighborhood

(b) Find starting point (c) Moore-neighborhood search (d) Search iterated until S

Figure 3.18: A Moore-neighborhood is shown in (a) with the starting pixel in the upper

right hand corner of the neighborhood. The starting pixel is found through a raster search,

shown in (b). A Moore-neighbor search is performed, starting on the pixel prior to the

starting pixel, the next pixel found in the search is added to the boundary set, B, as shown

in (c). This search is repeated until the starting pixel is reached again, shown in (d).

Once the set of boundary pixels B is found in Iz, each boundary pixel is then added

to the following z-level,

Iz−1 ∪
(
B ⊆ I ′′z

)
(3.7)

This process assumes that the boundary is the connection with the next z-level, or in

terms of the object’s surface structure, it is assumed to be the edge of the wall. This process

is repeated for Iz to Iz=0. A pseudo-code for the entire process is shown in Algorithm 3.

79

3.3. SURFACE RECONSTRUCTION METHODS 80

Algorithm 3 Z-level surface estimation algorithm

R is a rectangular structuring element

for z = maxZ to 0 do

I ′z = (Iz − (Iz �K)) •R

X0 = p Where, p is a pixel on the outside of the surface estimation in I ′z

while Xk != Xk−1 do

Xk = (Xk−1 ⊕ S) ∩ I ′z
end while

I ′′z = ((I ′z ∪Xc
k) •R) ◦R

Find B ⊆ I ′′z using Moore-neighborhood boundary search

if z != 0 then

Iz−1 ∪ (B ⊆ I ′′z)

end if

end for

This algorithm estimates the surface of a noisy three-dimensional point cloud using a

top-down voxel-based approach. An example of the estimated surface for the structure

shown in Figure 3.15 is illustrated in Figure 3.19.

80

3.3. SURFACE RECONSTRUCTION METHODS 81

(a) A view of the object

(b) The reconstructed points (c) The estiamted surface voxel centers

Figure 3.19: An example of the result of voxel Z-level cleaning as described in Algorithm 3.

This structure is the same structure used in Figures 3.15 and 3.17. An aerial view of the

reconstructed building is shown in (a). The three-dimensional reconstructed structure is

shown in (b), and the estiamted surface is shown in (c). The points shown in (c) are the

centers of the estimated voxels. The voxel centers without color are the voxels which were

interpolated in the estimation process.

Extracting Facets from Surface Estimation

Given a voxel-based estimation of an object’s surface, a facetized model is desired.

There are many methods for estimating the facets of an ordered point cloud, also known

as estimating the polygons of the voxel’s isosurface. Methods such as marching cubes, dual

contouring, and 2.5D dual contouring can be applied [43, 35, 76]. Each method attempts

to estimate and facetize the isosurface of the voxel set. This work uses a moving-least

squares (MLS) variant of the marching cubes algorithm to estimate the facets for the set

of estimated voxels.

Marching cubes (MC) is a simple algorithm that traverses the isosurface of a set of

voxels, testing each of the eight corners of each surface voxel to estimate the type of poly-

81

3.3. SURFACE RECONSTRUCTION METHODS 82

gon that should replace the isosurface. The concept behind MC is that the isosurface itself

must be partitioned in some manner that will create a smooth surface. If the isosurface

alone was used to generate a set of facets, the resulting model would have a very jagged

surface. In order to better describe the three-dimensional surface fitting process, the two-

dimensional case is examined. Given a set of two-dimensional pixels sampling a shape,

as shown in Figure 3.20-(a), the pixels that are not surrounded by other points could be

considered the isosurface (isoline) of the figure. If each of these points were connected, as

shown in Figure 3.20-(b), a jagged representation of the figure would be made.

(a) 2-D samples of a figure (b) Connected surface points

Figure 3.20: A sampling of a two dimensional figure, shown in (a) can be used to estimate

the true surface of the figure. The simplest method would be to connect the edges of each

sample for which the area is not fully surrounded by other samples, as shown in (b).

The marching cubes approach to this problem defines a set of surface primitives which

are combined in such a manner so as to create a smoother approximation of the surface.

These primitives are defined by the corners of the sampling structure, for example, in the

two-dimensional case these are the corners of pixel. A set of unique shapes can be made

by determining if the corner of the sample is contained in the isosurface, on, or above the

isosurface. The sampling element is partitioned in such a manner that the shapes can

be positioned at halfway points along the edge of the sampling element. Figure 3.21-(a)

shows the set of surface primitives where corners on, beyond, or below the isosurface are

identified. Rotated variants of these surface primitives are combined together to form a

surface estimation, shown in Figure 3.21-(b).

82

3.3. SURFACE RECONSTRUCTION METHODS 83

(a) Surface primitives used for surface estimation

(b) Two steps of the estimation (c) Surface estimation using surface primitives

Figure 3.21: Using a set of surface primitives (a), and rotated variants of these primi-

tives, a more accurate representation of the shape’s surface can be created (b). The fully

estimated surface is shown in (c). The corners of the primitives in (a) are either below or

above the isosurface. The filled circles represent pixel corners beyond or on the isosurface

and the unfilled circles represent corners below the isosurface.

The same process can be extended to three dimensions by using the eight corners of

each voxel. Figure 3.22 shows the set of fifteen polygon primitives which are used to

estimate the voxel cloud surface.

83

3.3. SURFACE RECONSTRUCTION METHODS 84

Figure 3.22: The three-dimensional extension to the two-dimensional set of primitives

shown in Figure 3.21-(a). These fifteen primitives are combined to estimate the surface of

the set of voxels contained on the estimated surface.

Marching cubes provides the necessary primitives to create a fully facetized three-

dimensional model from the voxel-based surface estimation process. Figure 3.23 shows

the facetization of the structure from Figure 3.19.

(a) A facetized model (b) The facetized model colored

Figure 3.23: The marching cubes algorithm is used to facetize the voxel surface estimates

from the voxel cleaning and estimation process shown in Algorithm 3. This shows an

example of the facetization process of the structure shown in Figure 3.19. The facetized

model is shown in (a) and a colorized model is shown in (b)

84

3.3. SURFACE RECONSTRUCTION METHODS 85

3.3.3 Constructing a Confidence Metric for Voxel-Based Estimated Sur-

face Structure

The previous section described methods for extracting and estimating the surface of an

object from discrete three-dimensional measurements. There were a number of assump-

tions made in the reconstruction process, as well as interpolation of surface estimates.

Given the assumptions and interpolations, it would be advantageous to assign each voxel

a confidence value. This metric would allow users to quickly determine regions of the

estimated surface structure which may of been poorly estimated.

The confidence metric is calculated for each voxel in the estimated surface, and then

transferred to it’s corresponding facet. There are two properties of the estimated sur-

face structure which are taken into account for a confidence measure, 1) the variance of

color within each voxel, and 2) the proximity to a non-interpolated point. The variance

of color within each voxel comes from measuring the color in the projected area of the

voxel, for each image used to create the three-dimensional structure. Since many voxels

in the voxel-based reconstruction process are interpolated, the proximity metric is used

to reduce confidence in areas which have been largely interpolated with few regions of

known structure. The known structure is defined as the initially filled voxels prior to any

interpolation process (Figure 3.17-(a)). An energy function is defined and used as the

confidence metric for this process, shown in Equation 3.8.

E(V) =

e−

σV
ωσ e

− dV
σd σV > 0, dV > 0

−1.0 σV = 0

1.0 dV = 0

(3.8)

where σV is the variance within voxel V , and dV is the distance from V to a non-

interpolated voxel. The variables ωσ and ωd are used to adjust the weighting of each

value, such that the weighting is approximately equal. The value of E(V) will range from

0 to 1, where 0 energy represents the lowest confidence possible. If σV is equal to zero,

this means that there were zero unoccluded projections of V into the imagery for color

measurement. In nadir-looking imagery this could occur on vertical structures. This case

is indicated by assigning the voxel confidence to −1.0. If the distance dV of V is equal to

zero, this means that V was not interpolated, and therefore has the highest confidence.

This means that the confidence in the voxel-based structure is only high when the

interpolated voxel is near a non-interpolated voxel, and the variance of color in the inter-

polated voxel is very low. If the interpolated voxel is far away from the known voxels, or if

85

3.3. SURFACE RECONSTRUCTION METHODS 86

the interpolated voxel color variance is too high, a low confidence is produced. Situations

representing each are shown in Figure 3.24. Part (a) of this figure shows a high confidence

measure for the voxel in question. Figure 3.24-(b) shows a high color variance situation,

where the projected voxel is going to likely have the color of both the surface structure

and the ground structure in the same voxel. Figure 3.24-(c) shows a situation where the

color variance will be high, but the distance to an uninterpolated voxel is low.

(a) A high confidence voxel

(b) Low confidence caused by large σV (c) Low confidence caused by large dV

Figure 3.24: This shows three situations of the voxel confidence metric shown in Equa-

tion 3.8. In each situation, the voxel in question has it’s image projected rays shown. The

uninterpolated voxels for each situation are shown in black, while the interpolated voxels

are shown in grey. The situation shown in (a) represents a high confidence situation, both

the color variance and dV are low. Situation (b) shows one in which the color variance is

likely going to be high, because one of the projected rays does not intersect the structure.

Situation(c) shows one where the color variance may be low the dV value is high, resulting

in a lower confidence.

Occlusion Handling

The value calculated through Equation 3.8 is calculated for every surface voxel. However,

there may be situations where a surface voxel is occluded in one image, but unoccluded in

86

3.3. SURFACE RECONSTRUCTION METHODS 87

another. Occlusion is mapped through a forward and backward projection of the voxel, as

shown in Figure 3.25. The measurement points of each projected voxel are cast back into

the voxel space through ray-casting techniques. The number of intersected voxels prior to

the projected voxel are counted, and the voxel is considered occluded in this image if this

number is greater than one. This eliminates error in the σv measurement which would

otherwise be caused by occluding surface structure.

(a) Voxel projected image measurments (b) Occlusion test by ray casting

Figure 3.25: Situations arise where surface structure may be visible in one image, but not

in another. A large amount of error would be introduced to σV , If the color measurements

were taken for voxels in occluded images. Occlusion tested by projecting each voxel into

every image, and then casting that projection back into the voxel space. The number of

voxels which are intersected prior to the projected voxel are counted. If this number is

greater than a defined threshold, then the voxel is considered occluded in that image and

the measurement is removed. In this situation the far right and far left projections would

be removed.

The occlusion handling process, as well as the color measurement process requires that

the voxel can be projected back into the imagery. This is possible using the derived camera

projection matrix, however, the structure of interest is one that has been transformed via

a georegistration transform (Section 2.5). In this case, the projection matrices must also

be transformed such that they are in the new coordinate system. Appendix A describes

how to perform this transformation.

87

3.3. SURFACE RECONSTRUCTION METHODS 88

3.3.4 Using a Depth Map for Structure Segmentation

It has been shown in many sections in Chapter 2 that it is possible to use a camera

projection matrix to project a three-dimensional point into an image. Attributes of this

projection can also be applied to the image through this known correspondence. Every

projected point corresponds to a three-dimensional point some distance away from the

camera center, C. A value can by added to the projected point which is equal to the dis-

tance between the camera center and the three-dimensional point, ‖C−X‖, or the depth

of the point from the camera. Calculating this value for every projected point in a sin-

gle image will yield a sparse depth map. An example of such a map is shown in Figure 3.26.

Figure 3.26: A point projection onto a single image, the calculated sparse depth map, and

the interpolated depth map.

The sparse depth map can be interpolated by using the morphological dilation operator

to generate a full depth map for the image, an example of this is also shown in Figure 3.26.

Using a structuring function that is at least as large as the smallest distance between two

points in the sparse depth map, a good representation of the full depth map can be

obtained. This information can be used to detect object of interest in the point cloud

using a local thresholding technique. This is done by searching the image for areas which

have a large difference in depth relative to their neighbors. Each area can be individually

segmented from the depth map as a possible structure using the method of connected

88

3.3. SURFACE RECONSTRUCTION METHODS 89

components [28], as shown in Figure 3.27.

Figure 3.27: Segmentation of objects from the depth map using local thresholding and

connected components, each object is labeled by color.

Three-dimensional points from the point cloud can be segmented using the areas in the

segmented depth map shown in Figure 3.27 by simply determining which point projects

into which region. This generates a set of segmented three-dimensional point clouds that

are objects of interest. Further processing is then required to determine if the object is a

man-made or vegetation structure.

Vegetation Removal

The objective in the modeling process is to extract and model man-made structures,

therefore it is important to detect and remove structure which is generated from vegetation.

This is possible by using both information from the RGB imagery and the depth to

determine if the object is vegetation or man-made. Color and size of the point cloud can

be used to identify vegetation. Each connected component is examined, and labeled as

either vegetation or man-made. The average red, green, and blue digital count values from

the color image are computed for each component region. The green-to-red and green-to-

blue ratios are calculated, as shown in Equation 3.9. If either ratio is greater than unity,

the object is determined to be vegetation, otherwise, it is labeled as man-made. This ratio

89

3.3. SURFACE RECONSTRUCTION METHODS 90

exceeding unity indicates that the amount of green color in the point cloud is larger than

either the red or blue colors for this component, indicating it is likely vegetation.

DCg
DCr

≥ 1 ∨ DCg
DCb

≥ 1⇒ vegetation

DCg
DCr

≤ 1 ∧ DCg
DCb

≤ 1⇒ manmade

(3.9)

This process works for most green vegetation. A secondary process looks at the size

of the point cloud for the remaining regions. If the size is small compared to the other

regions then the small region is removed, discarded as an object of interest. This is done

by calculating the average size of the regions and removing regions which fall below two

standard deviations of the average. The reasoning is that small areas are either small

patches of vegetation which was not detected by the first process, or that it represents

some error within the segmentation process. Figure 3.28 shows the vegetation and small

region removal process for the segmented objects shown in Figure 3.27.

Figure 3.28: Removal of vegetation regions and then the removal of small regions, from

the segmented regions shown in Figure 3.27.

The remaining connected components represent different regions in the source point

cloud which can be go through the surface estimation process, described in the previous

sections. Recently, other methods have been developed for identifying vegetation in a

point cloud [59], based on distribution of point normals. While using normal distributions

works well, often image-derived structure will contain a significant amount of noise. This

90

3.4. SURFACE ATTRIBUTION AND CLASSIFICATION 91

noise will cause errors in vegetation detection. The methods presented in [59] use a graph-

cut based approach to vegetation segmentation. The graph weights are calculated using

surface curvature and normal variation.

3.4 Surface Attribution and Classification

To this point the structure modeling process has been similar to the goals of photo-

realistic modeling. While the approaches presented here are primarily for aerial nadir-

looking imagery, they are similar in their goals. Three-dimensional surface structure can

be used as an additional source of data when trying to discriminate material types on the

surface of a target of interest. This structure can be combined with additional imagery

to assign spectra to facets for modeling purposes. If additional information is not avail-

able, the original R,G,B spectra used to generate the structure can be further analyzed

to classify possible materials on the surface of the structure. Each of these methods lead

to a better understanding of the structure under analysis, and could be used as input to

a physical modeling process.

The goal of this work is to examine methods of exploiting the three-dimensional struc-

ture generated from near-nadir aerial imagery. Ultimately, the output of these processes

could feed a larger physical modeling process, which could have many different applica-

tions. The physical modeling software which inspired this work, and many other works [57],

is known as the Digital Imaging and Remote Sensing Generation (DIRSIG) model. This

model was created by researchers from the Digital Imaging and Remote Sensing (DIRS)

laboratory at the Rochester Institute of Technology [58]. DIRSIG is a first principles

synthetic image generation model which can produce imagery ranging from the visible to

thermal infrared spectrum. The synthetic image generation process requires a spectrally

attributed three-dimensional model of scene to be imaged. These attributed models are

created by hand and require a large amount of man-power to model large scenes [29].

Consequently, rapid modeling of any scene is impossible. If this were possible, it would

open up a large number of applications in process modeling, that is, the near real-time

modeling of scenes.

Three-dimensional surface structure can be incorporated into segmentation and clas-

sification algorithms to perform a three-dimensional spatial-spectral classification. This

type of classification could be used to discriminate materials on the surface of the esti-

91

3.4. SURFACE ATTRIBUTION AND CLASSIFICATION 92

mated structure. It can also be used to identify distinct materials which could be manually

attributed with properties. These manually attributed models could be used in physical

simulation software such as DIRSIG. While this process is partially manual, it is far faster

than creating each model by hand.

This section will cover processes of further analyzing surface structure, under two sce-

narios. Given the addition of hyperspectral imagery of the same scene, taken at the same

time, surface estimation facets can be directly mapped to spectra from this imagery. If

the hyperspectral imagery is calibrated and atmospherically compensated such that the

data is in reflectance space, then the facets can have reflectance measurements mapped

directly on to them. This allows for direct spectral modeling of these structures. The sec-

ond scenario considered, is if no additional information was available. This would mean

only the R,G,B spectra of the high-resolution color imagery used to generate the structure

would be available for spectral analysis. Considering the difficulties in estimating a full

reflectance spectra from R,G,B values, a semi-automated approach for identifying surface

materials is taken. The spectra combined with the surface model can be used to develop

a classification algorithm. The identified clusters of spectra on the surface estimation can

be used to define classes for manual material attribution.

3.4.1 Reflectance Attribution Through Hyperspectral Imagery

Incorporating additional spectral information along side the R,G,B information, which

is contained within the original imagery, could prove to be beneficial in both material

identification and object reconstruction. Spectral information is necessary for physical

modeling of scenes. In order to use spectral imagery with image-derived surface structure,

the high resolution imagery used to create the point clouds must be registered with the

spectral imagery. Since image derived point clouds can be reprojected into the imagery,

they can also be projected into any other registered data. Registration of high resolu-

tion imagery taken from a framing camera and lower resolution imagery taken from a

line-scanning camera is done by taking each image to a common coordinate system. This

is done through orthorectification. The process of orthorectification removes the distort-

ing effects of terrain within an image, projecting the image as though it was on a flat

plane orthogonal to the imaging direction. The terrain must be predefined using a digital

elevation map (DEM), which provides a specific height above the geoid for a particular

geographic position at a given resolution. By using a geographically accurate data source,

92

3.4. SURFACE ATTRIBUTION AND CLASSIFICATION 93

orthorectified imagery can provide a geographic position for every pixel within an image.

Z

X

Y

Camera

DEM

Orthophoto

P
ro

je
ct

io
n

C
o

lo
r S

a
m

p
lin

g

Figure 3.29: The process of orthorectification through direct georeferencing. Using the

known camera position and orientation, along with a DEM, terrain points can be projected

into the camera and sampled to generate an orthophoto.

Orthorectification Using Direct Georeferencing

The process of orthorectification removes the distortion caused by the movement of

the sensor as well as the elevation of the terrain. This is performed using a digital eleva-

tion map (DEM), which contains terrain elevation and location information. The DEM is

sampled to to have a corresponding terrain elevation and location point for each pixel in

the unorthorectified image. The camera position and orientation information is used to

project each terrain point into the image. This projection provides an image point which

93

3.4. SURFACE ATTRIBUTION AND CLASSIFICATION 94

can be used for color sampling. The sampled data is then placed into a raster array corre-

sponding to the sampled DEM. Performing this operation for every point in the sampled

DEM generates the orthophoto. This process is shown in Figure 3.29.

Prior to accurate GPS and IMU systems, the camera position and orientation was

calculated through camera resectioning [73] using ground control points. The information

from the GPS and IMU systems provides enough information to create a camera projec-

tion matrix (such as the one shown in Section 2.1.2), which allows for the projection of

three-dimensional points, in this case the DEM values, into the image. This allows for

significantly faster and cheaper creation of orthophotos without the use of ground control.

Mapping Image-Derived Point Clouds to Orthorectified Imagery

In this work, the high resolution imagery used for point cloud derivation is orthorec-

tified. A mapping process is performed to allow for the projection of the derived image

points into the orthorectified image through the original image. This also allows for the

registration of the image derived point cloud with all other georeferenced data sources.

The map is generated using a color image of the same dimensions as the original im-

agery. One channel contains the physical horizontal pixel locations, the other channel

contains the vertical pixel locations, and the third channel is unused. This image is or-

thorectified using the same parameters as the corresponding original image, the resulting

image can be used as a mapping between the orthorectified image and the original image.

In order to remove any error from sampling, nearest neighbor sampling is used, an example

of this process is shown in Figure 3.30. The map image is essentially a look up table for

pixel locations from the original image.

94

3.4. SURFACE ATTRIBUTION AND CLASSIFICATION 95

Original Image X Channel Y Channel

Figure 3.30: An example of the orthorectification mapping process. The top row is pre-

orthorectification and the bottom row is post-orthorectification. These maps are used to

track the position of the original image pixels into the orthorectified image.

Efficient Searching Through the Orthorectification Map

Searching a two-dimensional map for a specific pair of (x, y) values for every mapping

would become computationally expensive. A couple of properties of these orthorectifca-

tion maps can be exploited to increase the speed of the map search. The search is done in

two steps, the first step searches through the x-Channel, and the second searches through

the y-channel. Given the format of the orthorectification maps, it can be assumed that

any one x or y value will be adjacent to one or more pixels with the same value. Using

this assumption, a raster search is done to find the first instance of a value x in the x-

channel. From this pixel, each of the eight pixels surrounding this pixel is searched for

the same value of x. This process is iterated until every instance of the value x is found.

This constitutes a set of pixels Px in which the corresponding y value must be contained.

A second search is done on just the set of pixels Px, in the y-channel, for the value y.

95

3.4. SURFACE ATTRIBUTION AND CLASSIFICATION 96

This pixel position (X,Y) is the corresponding pair that can be used for mapping the un-

orthorectified pixel position (x, y), to the orthorectified image. Figure 3.31-(a) shows an

example x-channel with one x value highlighted. These pixel locations are then searched

in the t-channel for the corresponding y value, shown in Figure 3.31-(b).

(a) A search along all equal x values (b) A search along these values for y

Figure 3.31: A two-dimensional search through the x and y-channel maps would be very

computationally expensive. An efficient method of searching can be done by exploiting

the fact that each unique x value is always adjacent to another equal x value. Finding

every x value can be simplified using this property of orthorectification maps, shown in

(a). Once every unique x pixel is found, these pixels are searched in the Y-channel for the

corresponding y value.

Model Attribution

With a one-to-one mapping of hyperspectral data to R,G,B pixels in the original im-

agery, the estimated surface structure of an object can be directly attributed with hy-

perspectral reflectance data. This is performed on a per-facet basis, where each facet

is assigned a spectra. The spectra is assigned by projecting the facet into the original

imagery, and then using the orthorectification map registration process to map to a re-

flectance spectra, which is then attributed to the projected facet. The average spectra of

the projected area is used for attribution. In terms of data representation, each facet is

assigned a different material, and each material corresponds to a single reflectance spectra

in the hyperspectral imagery. This is conceptually shown in Figure 3.32.

96

3.4. SURFACE ATTRIBUTION AND CLASSIFICATION 97

Figure 3.32: Each facet has a spectra assigned to it via projection through the orthorecti-

fication map process.

3.4.2 Surface Material Segmentation with R,G,B Spectral Information

In many cases atmospherically compensated hyperspectral imagery will not be available

for reflectance attribution. Determining such information for just R,G,B spectral infor-

mation can be a significant challenge. From this perspective, a semi-automated approach

for material identification and attribution is taken. Using the R,G,B spectral information

combined with spatial information from the three-dimensional estimated surface structure,

segmentation algorithms can be created. These classification algorithms can be used to

identify distinct clusters of materials on the surface of the three-dimensional structure.

These clusters can be treated as separate classes, which a user can then use to assign

material information.

One approach for segmentation, using graph theory, is known as the normalized cuts

algorithm. This algorithm can be used to identify and segment structures. The weighted

graph can be built from the three-dimensional points in the reconstructed structure, and

the weighted connections can be created using a spatial-spectral approach. Another type

of segmentation algorithm which is examined, takes a region-growing approach to identi-

fying segments. By seeding the initial segments with a distribution of points across the

structure, these seeds can be grown and merged within a specific set of spatial-spectral

rules in order to identify unique segments on the surface of the structure. These two

approaches are examined in this work.

97

3.4. SURFACE ATTRIBUTION AND CLASSIFICATION 98

Segmentation Using Normalized Cuts

It has been shown that using graph-based approaches for classification or segmentation

with high spatial and spectral resolution data produces good results [22]. Similar graph-

based approaches have been successfully used to segment and model three-dimensional

point clouds with and without additional information [63, 60, 66]. It follows that utilizing

spectral-graph theory for segmenting three-dimensional point clouds is possible with good

results.

Normalized cuts (NC) is an algorithm which finds the minimum normalized cut in an

undirected weighted graph. Often the minimum cut in a graph will provide an undesirable

cut. This algorithm weights each segment by the total weight of all edges connected to

that segment, thereby reducing the impact of larger segments in the minimization pro-

cess. The normalized cut can be calculated using spectral graph theory [33], a detailed

description of Normalized Cuts is shown in Appendix B.

The weights for each edge in the graph representing the point cloud is defined in

Equation 3.10. The weights are in the form of an N × N matrix, where N is the total

number of points. Weights are calculated for k points surrounding every point, the sur-

rounding points are determined using a k-nearest neighbor approach. The minimum cut

is recursively solved in order to segmented multiple classes.

wi,j =

e
−|Ii−Ij|

σI · e
−|Xi−Xj|

σX ∀j ∈ ki
0 otherwise

(3.10)

Using a color attributed point cloud, I will be the vector of R,G,B values for points

i and j. The value X is the vector of x, y, and z values for i and j. The values of σI

and σX control the sensitivity of the similarity metric. Figure 3.33 shows an example of

a segmented point cloud using Normalized Cuts. A simple build segmentation is shown

in Figure 3.33-a, where there are very few materials and significant spatial variation. In

Figure 3.33-b, a slightly more difficult segmentation is shown. In this point cloud there

are multiple materials in the building roof which are difficult to identify using just the

surrounding structure, shown in the circles. Due to the spectral similarity metric used in

the normalized cut algorithm, two of the materials were totally segmented, and one of the

materials was partially segmented.

98

3.4. SURFACE ATTRIBUTION AND CLASSIFICATION 99

(a)

(b)

Figure 3.33: A point cloud segmented using Normalized Cuts. The original point cloud is

on the right and the segmented point cloud on the left (Colors corresponding to different

segments). This segmentation process can segment different materials from a point cloud

using R,G,B attributes.

This segmentation process is capable of segmenting multiple different materials from

a point cloud with R,G, and B attributes. The spatial segmentation is performed in all

dimensions, therefore materials that are large may still be segmented into different parts

due to their size. A secondary recombination process needs to be performed in order to

merge segments which belong together. This approach can be extended to the voxelized

estimated surface (Section 3.3.2), which would allow for a quicker k-nearest neighbor

search.

While the normalized cuts segmentation approach is very powerful, it does not scale

well with the potential size of reconstructed point clouds. Solving for the minimum cut

requires the repeated solving for eigenvectors of an N-by-N matrix, where N is the number

of points in the point cloud. This value can become very large, depending on the structure.

A better approach would be able to exploit spatial-spectral relationships, but also be able

to scale to large structures.

99

3.4. SURFACE ATTRIBUTION AND CLASSIFICATION 100

Segmentation Using a Region-Growing Approach

Region growing is another method for performing a spatial-spectral segmentation. This

approach grows segments starting from seeds, based on some similarity criterion.

In many segmentation algorithms, it can be useful to partition the lightness from the

chroma information. This partitioning can be used to group colors which may have the

same chroma but different lightness. A practical example of this situation is a shadowed

material on a structure’s surface, the material class should still be the same. For this rea-

son, the colorspace used for this segmentation process is the hue, saturation and lightness

(H,S,L) color space. Through comparison of just the hue and saturation, shadowed effects

can be minimized.

The region growing segmentation algorithm requires seeds to start growing segments,

these seeds should be chosen such that the total number of segments is minimized. The

curvature of every three-dimensional point is calculated relative to it’s neighbors, and

then each point is sorted from lowest to highest curvature. The local principle curvature

is calculated for each point, through principle component analysis of the distribution of

point vertex normals [75].

By selecting the lowest curvature points as seed points, the growth will originate in the

structurally flat areas on the object and reduce the total number of segments [6]. Surface

normals can also be computed and compared for the region growing process. By making

sure the surface normals for each segment pointing in the same direction (within some

tolerance), the region can be prevented from growing beyond a point on a structure where

there is a change from a horizontal surfaces to vertical surfaces (i.e. from the structure’s

roof to the walls).

The region growing process compares two properties between three-dimensional struc-

ture when growing from seeds. The first property is the angular difference between the

hue/saturation vectors, and the second property is the angular difference between the

three-dimensional normals of the points. Seeds are recursively added from the minimum

curvature list and grown. Segments are merged, and if the grown segment it too small,

it is removed. This is done until all points are part of a segment, or have been removed.

Neighboring segments are merged using the same criterion. A visualization of the possible

outcome for a set of surface points is shown in Figure 3.34.

100

3.4. SURFACE ATTRIBUTION AND CLASSIFICATION 101

(a) A hypothetical surface point (b) The result of the region growing process

Figure 3.34: A region growing process is used for segmenting the surface points through

comparison of spatial-spectral properties. The set of points are first sorted according to

minimum curvature. From this list, seeds are chosen and the neighbors of these seeds

are compared using two tests. The first test checks the angular difference between the

hue/saturation vector of the two points. The second test checks the angular difference

between the three-dimensional normals of the two points. If both these tests are below a set

threshold, then the neighboring point is added to the segment. Part (a) of this figure shows

an example colored surface set of points, and part (b) shows the hypothetical segmentation.

The region growing process works well for segmenting points all over a given struc-

ture. The angular requirement of the set of normals prevents the regions from growing

over edges. This is an advantage in the presence of color noise. However, there could

be segments on surfaces with opposing normals that should be part of the same class.

Therefore, a final k-means clustering is done on the average hue and saturation of each

segment. This reduces the overall number of segments and yields a result such as the one

shown in Figure 3.35.

101

3.4. SURFACE ATTRIBUTION AND CLASSIFICATION 102

Figure 3.35: The results shown in Figure 3.34-(b) provides a good segmentation, but a num-

ber of surfaces which should belong to the same class are segmented differently. Therefore,

a final k-means segmentation is done on the average hue and saturation values for each

segment. The clustered segments are merged and the hypothetical result of this is shown

here.

Taking a region-growing approach to segmentation may be a simplified approach as

compared to the normalized cuts approach presented in the previous section, however, this

approach scales very well to a large number of points and can still provide a good seg-

mentation. The results of the segmented point cloud shown in Figure 3.33-(b) segmented

using the region growing approach are shown in Figure 3.36.

(a) Before final clustering (b) After final clustering (k = 5)

Figure 3.36: The example results of the same object shown in Figure 3.33-(b). These

surface points have been further estimated using the voxel-based estimation approach.

102

3.5. DISCUSSION 103

3.5 Discussion

The methodology presented in this chapter builds on the foundation provided by

Chapter 2, in order to estimate and analyze the surface structure of reconstructed three-

dimensional points. These points are transformed into a geoaccurate coordinate system,

then modeled through application of the Manhattan-world assumption, and finally the

surface structure is analyzed to either attribute or classify surface materials. This results

in a three-dimensional surface structure that has some form of material attribution, which

can be used as the basis for a physical model.

A number of approaches are presented in this chapter, however, a specific set of ap-

proaches are recommended. An in-depth analysis of each georegistration approach is

presented in Chapter 4, it will be shown that the augmented camera model transform

performs the best and should be used for the georegistration. The voxel-based surface

reconstruction method is recommended for surface estimation. It is not limited to specific

primitive types, and can use the Manhattan-world assumption to interpolate surface struc-

ture. Finally, for R,G,B limited classification, the region-growing segmentation method is

the preferred approach for segmentation. It is a simpler approach than the normalized-

cuts method, but can scale easily to large point cloud sets. Combining each one of these

processes with the SfM algorithms presented in Section 3.1, results in a full workflow to ex-

tract and analyze the materials on the surface of geoaccurate three-dimensional structure.

The complete workflow is shown in Figure 3.37.

103

3.5. DISCUSSION 104

Figure 3.37: This shows the full workflow to exploit three-dimensional structure to gen-

erate estimated surface structure which is either attributed with reflectance properties or

classified for attribution.

104

Chapter 4

Results and Analysis

This chapter will review the results produced by the methodology presented in Chap-

ter 3. An analysis of each georegistration method presented in Section 3.2 is presented

in Section 4.1. Examples of the voxel-based reconstruction method with the confidence

metric calculation are shown in Section 4.2. Examples of surface structure attributed with

reflectance spectra are shown in Section 4.3. Finally, an analysis of the region-growing

based segmentation process is shown in Section 4.4. A description of the datasets used in

this work can be found in Appendix C.

4.1 Georegistration Analysis

The ability to control every parameter within an image collection is necessary to fully

understand how each georegistration method performs. To this end, a synthetic aerial

image dataset was generated using the DIRSIG model described in Section 3.4. This work

utilized a variant of Megascene 1, a hand-created three-dimensional scene of a small subur-

ban region in northeast Rochester, New York [29]. Larger block-style apartment buildings

were added to the scene to increase the depth of targets within the scene [37].

DIRSIG uses a ray tracer to calculate the sensor response at each pixel in every syn-

thetic frame, the pixel to ground intersections for each ray is recorded and can be used as

ground truth. Each synthetic frame is explicitly defined with calibration parameters and

an exterior orientation, which is used to create a noiseless sensor model. Error analysis

for each georegistration method is performed using absolute truth for every pixel and a

perfect sensor model using this DIRSIG image dataset. An example image from the data

used in this work along with a SfM derived point cloud is shown in Figure 4.1.

105

4.1. GEOREGISTRATION ANALYSIS 106

Figure 4.1: DIRSIG is used to generate synthetic imagery which is input to the SfM

process. Shown here on the left is a sample DIRSIG image created for this work along

with the corresponding truth. On the right is a view of the SfM derived point cloud.

Every three-dimensional point in the SfM process is created from corresponding pixels

in multiple images. These pixels are tracked and used with the DIRSIG truth imagery

to calculate the error in each three-dimensional point. The average of every truth mea-

surement is used for error calculation. The Euclidean distance between the georegistered

three-dimensional point and it’s corresponding truth point is taken as the error.

Each method for calculating a georegistration transform from Section 3.2 is analyzed

using the DIRSIG truth. Finally, the georegistration error for each method is calculated

again after random noise was added to the sensor model in order to simulate a more real-

istic scenario. The amount of random noise was determined based on RMS error reported

in the Applanix POSTrack performance summary [3].

106

4.1. GEOREGISTRATION ANALYSIS 107

4.1.1 Georegistration Error Using DIRSIG Noiseless Sensor Model

Two major sources of error are analyzed in this work. The first source of error comes

from the SfM process itself. The effects of this error are isolated by using noiseless DIRSIG

sensor models in the georegistration process. Error in geoaccuracy caused by the SfM pro-

cess often manifests itself in poor image correspondence. Optimized image correspondence

can still contain some small amount of error. This can cause small errors in camera pose

estimation as well as point triangulation. The synthetic DIRSIG test imagery is taken

from a nadir-looking direction, and therefore has a very low base-to-height ratio (B/H).

This low B/H causes poor image correspondence to have significantly more effect on the

error in the Z-dimension [73].

Error is calculated for each dimension X, Y and Z, however, for illustrative purposes

the error is displayed as the Euclidean distance from the truth. Given the low B/H, the

error resulting from the SfM process will primarily be in the Z-dimension. However, if the

georegistration transform is flawed the error will be in every dimension. Figure 4.2 shows

error for each method calculated using the DIRSIG noiseless sensor models.

Figure 4.2-(a) shows a significant amount of error, caused by a poor estimation in the

georegistration transform. Small errors in the relative camera pose estimation are ampli-

fied in the scale change between the relative and absolute coordinate systems. The other

two methods shown in Figure 4.2-(b) and (c) show approximately the same amount of

error, almost completely in the Z-dimension. Figure 4.3 shows the X,Y, and Z error distri-

butions for Figure 4.2-(b). Given the random distribution of the error in the Z-dimension

it is likely caused by error from the SfM process. This result is expected when using

noiseless sensor models.

107

4.1. GEOREGISTRATION ANALYSIS 108

(a) Camera centers (b) Augmented Camera Model

(c) Direct Triangulation

Figure 4.2: Error is calculated using DIRSIG truth and represented as the Euclidean

distance from the truth. The georegistration methods are processed using the noiseless

DIRSIG sensor models. Three methods are tested, (a) is the error found using the camera-

center based georegistration transform, (b) is the error found using the camera model based

transform, and (c) is simply triangulating correspondence using the sensor model. Each

plot shows a histogram of error with the bar representing 1m of error highlighted in red, as

well as the bar corresponding to the 95% cumulative distribution value. The histogram’s

CDF is plotted over the histogram as well.

108

4.1. GEOREGISTRATION ANALYSIS 109

(a) Error in X (b) Error in Y

(c) Error in Z

Figure 4.3: Error is calculated in all three dimensions, however, for visualization purposes,

only displayed as Euclidean distance. The error for the methods shown in Figure 4.2-(b)

and (c) have error primarily in the Z dimension. This suggests that the error is mostly

due to error in image correspondence. The X,Y, and Z error for Figure 4.2-(b) is shown

here.

109

4.1. GEOREGISTRATION ANALYSIS 110

4.1.2 Georegistration Error Using DIRSIG Noisy Sensor Model

A more realistic scenario would be when the sensor models contain a small amount

of random noise. The error analysis was repeated adding random error to the sensor

position and pointing information, the amount of error was determined from Applanix

specifications [3]. The RMS error in position is 0.1 meters in horizontal directions, 0.2

meters in the vertical. The error in pointing is 0.015 degrees for roll and pitch, and 0.040

degrees for heading. Figure 4.4 shows the error calculated for each method.

Similar to the noiseless sensor, the camera center based transform has a significant

amount of error, the addition of noise increased the error further. Adding noise to the

sensor information had a significant impact on directly re-triangulating each point, seen in

Figure 4.4-(c). A small change in pointing information from a long distance will drastically

alter the projection of each pixel in each frame, causing the triangulation solution to

contain significantly greater error. The augmented camera model based transformation

remained only mildly affected by the noise. This can be seen by measuring the change in

position of the 95% cumulative distribution value relative to the noiseless sensor position,

shown here in Table 4.1.

Table 4.1: A comparison of the 95% cumulative distribution values for each georegistration

approach between noiseless and noisy sensors

95% CDF Value

Noiseless (m)

95% CDF Value

Noisy (m)

Change

(m)

Camera Centers Approach 8.3 13.5 5.2

Augmented Camera Model

Approach

8.3 8.5 0.2

Direct Triangulation

Approach

8.3 12.9 4.6

110

4.1. GEOREGISTRATION ANALYSIS 111

(a) Camera Centers (b) Augmented Camera Model

(c) Direct Triangulation

Figure 4.4: Adding noise to the DIRSIG sensor models yields a more accurate represen-

tation of a real life scenario. The georegistration methods are processed using a noisy

DIRSIG sensor model. Three methods are tested, (a) is the error found using the camera-

center based georegistration transform, (b) is the error found using the camera model based

transform, and (c) is simply triangulating correspondence using the sensor model. Each

plot shows a histogram of error with the bar representing 1m of error highlighted in red, as

well as the bar corresponding to the 95% cumulative distribution value. The histogram’s

CDF is plotted over the histogram as well.

111

4.1. GEOREGISTRATION ANALYSIS 112

4.1.3 Reducing the SfM Error

Two major sources of error are prevalent within this error analysis. The first source

of error is addressed in the previous sections, which originates from the georegistration

process itself. The second major source of error comes from the SfM process, in which

image features may be inaccurately matched between images. A mismatch of a few pixels

may translate into several meters of error in triangulation due to the small base-to-height

ratio in near-nadir imaging. Often SfM algorithms threshold the image correspondence

based on a threshold correspondence value, this threshold can be adjusted to filter the

corresponding points accordingly [19].

The algorithm used to generate these point clouds has one threshold metric which

filters image correspondence based on photometric consistency, using a normalized cross

correlation [18]. The software uses this threshold to determine the quality of an image

correspondence, with a range of -1 (bad) to 1 (good). The consistency value used in the

creation of every point cloud shown in this analysis so far has been 0.8, error analysis for

consistency values of 0.7, 0.8, and 0.9 are shown in Figure 4.5.

112

4.1. GEOREGISTRATION ANALYSIS 113

(a) Threshold 0.7 (b) Threshold 0.8

(c) Threshold 0.9

Figure 4.5: Error from the SfM process often comes from mismatch in image correspon-

dence. In the process used in this work, image correspondence is filtered using normalized

cross correlation photometric consistency measurement. This figure shows error analysis

done using the augmented sensor transform for different consistency threshold values.

113

4.1. GEOREGISTRATION ANALYSIS 114

The histograms shown in Figure 4.5 depict a trend as the consistency threshold

is increased. The total number of points decreases with the increase, which can be seen

by either the relative total area of each histogram or by the decreasing number of visi-

ble points in each error visualization. However, it is noted that the 95% point in each

histogram, shown by the highlighted blue bar, is moving closer to zero with the increase

of the consistency threshold. This means that even though the total number of points is

decreasing with the increase of threshold, the number of points with large geographic er-

ror is decreasing. It can be concluded that the extreme error values in the georegistration

process are likely due to triangulation error in the SfM process caused by error in image

correspondence.

4.1.4 Using a Large Number of Images

A larger set of images may reduce the error in transformation estimation, the error

analysis performed in Sections 4.1.1 and 4.1.2 was done on a dataset containing 10 images.

A second dataset containing 100 images was generated and analyzed. For this particular

dataset there is a large amount of noise in the camera pose estimation and this remained

true with the larger dataset. Figure 4.6 shows the camera centers for each camera as well

as the estimated camera centers transformed using the method described in 3.2.1.

Figure 4.6: This synthetic dataset had a significant amount of error in camera pose es-

timation, and this remained true for the larger dataset. This figure shows the known

camera centers alongside the estimated camera centers which have been transformed using

the method described in Section 3.2.1.

114

4.1. GEOREGISTRATION ANALYSIS 115

The small errors in the relative pose estimation are amplified with the scale change

from the SfM WCS to the Earth-based WCS. This causes the scale estimation to contain a

larger amount of error, and therefore the error in transformation increased. Error analysis

using the augmented sensor transform as well as the direct triangulation method is shown

in Figure 4.7.

(a) Camera Centers (b) Augmented Camera Model (c) Direct Triangulation

Figure 4.7: Increasing the number of images in the SfM process should reduce the amount

of error in the transformation. While this may be the case for many datasets, for this

synthetic dataset the error in the transformation increased, likely due to poor image cor-

respondence. However, conclusions from this experiment can still be drawn. The camera

center transform method is highly sensitive to error in the camera pose estimation, while

the camera model based method as well as the retriangulation method remain stable. The

error in (a) is likely caused by the large scale change between the SfM WCS and the Earth-

based WCS.

This error analysis was performed using noiseless sensor information. The results

for augmented sensor transform and direct triangulation method are similar to those shown

in 4.1.1. While it is logical to assume that a larger dataset would contain more redundancy,

higher image overlap, and therefore, lower error in image correspondence; this specific

dataset showed the opposite traits. It is likely that this was caused by the high occurrence

of image correspondence error. This was caused by the synthetic nature of the imagery,

which contains regions of low texture and regions of highly symmetric texture. While

this large amount of image correspondence error might not be the case for all datasets,

a conclusion can be drawn from this. The camera center transform method is highly

sensitive to error in relative pose estimation, while the augmented sensor transform stays

more robust to the increased error.

115

4.2. VOXEL-BASED SURFACE RECONSTRUCTION 116

4.2 Voxel-Based Surface Reconstruction

Two datasets were processed using the workflow presented in section 3.5, both datasets

are detailed in Appendix C. The first dataset covered the Rochester Institute of Technology

(RIT) campus in Henrietta, NY. Four buildings with varying levels of complexity were

chosen for analysis. The second dataset covered downtown Rochester, NY. This dataset

is significantly different from the RIT dataset due to the very tall buildings within the

scene. Four of these buildings were chosen for analysis.

Each structure had its surface estimated using the voxel-based method presented in

Section 3.3.2, and the confidence map for each surface was calculated as described in

Section 3.3.3. The surfaces are shown here facetized with the Marching Cubes algorithm

described in Section 3.3.2. The facets are colorized using the estimated surface structure

color and confidence metric. The confidence metric is colored using a grayscale color

scheme with white as the highest confidence. The −1 confidence value associated with

colorless voxels is shown in red.

4.2.1 Buildings From the RIT Dataset

(a) View of structure

(b) The intial reconstructed points (c) Facetized surface (d) Confidence metric

Figure 4.8: The voxel-based modeling results for Building 76 from the RIT dataset

116

4.2. VOXEL-BASED SURFACE RECONSTRUCTION 117

(a) View of structure

(b) The intial reconstructed points (c) Facetized surface (d) Confidence metric

Figure 4.9: The voxel-based modeling results for Building 7 from the RIT dataset

(a) View of structure

(b) The intial reconstructed points (c) Facetized surface (d) Confidence metric

Figure 4.10: The voxel-based modeling results for Building 6 from the RIT dataset

117

4.2. VOXEL-BASED SURFACE RECONSTRUCTION 118

(a) View of structure

(b) The intial reconstructed points
(c) Facetized surface (d) Confidence metric

Figure 4.11: The voxel-based modeling results for Building 5 from the RIT dataset

118

4.2. VOXEL-BASED SURFACE RECONSTRUCTION 119

4.2.2 Buildings From the Downtown Rochester Dataset

(a) View of structure

(b) The intial reconstructed points (c) Facetized surface (d) Confidence metric

Figure 4.12: The voxel-based modeling results for the Chase Tower from the downtown

Rochester dataset

119

4.2. VOXEL-BASED SURFACE RECONSTRUCTION 120

(a) View of structure

(b) The intial reconstructed points (c) Facetized surface (d) Confidence metric

Figure 4.13: The voxel-based modeling results for the Bausch & Lomb Place from the

downtown Rochester dataset

(a) View of structure

(b) The intial reconstructed points (c) Facetized surface (d) Confidence metric

Figure 4.14: The voxel-based modeling results for the Clinton Square Building from the

downtown Rochester dataset

120

4.2. VOXEL-BASED SURFACE RECONSTRUCTION 121

(a) View of structure

(b) The intial reconstructed points (c) Facetized surface (d) Confidence metric

Figure 4.15: The voxel-based modeling results for the Xerox Tower from the downtown

Rochester dataset

4.2.3 Confidence analysis

The histogram of positive confidence values are plotted for each reconstruction. The

following figures show the histograms for each of the reconstructions shown in Figures 4.8

through 4.15. The confidence is very high for most surfaces, however, poorly reconstructed

regions are highlighted by the values less than 0.9.

121

4.2. VOXEL-BASED SURFACE RECONSTRUCTION 122

(a) Building 76 (b) Building 7

(c) Building 6 (d) Building 5

Figure 4.16: The positive confidence values are plotted as a histogram for the buildings

shown in Figures 4.8- 4.11. The confidence histograms are plotted in bins of 0.02 from 0

to 1. The confidence is high for most reconstructions, with lower confidence corresponding

to poorly reconstructed regions.

122

4.2. VOXEL-BASED SURFACE RECONSTRUCTION 123

(a) Chase Tower (b) Bausch & Lomb Place

(c) Clinton Square Building (d) Xerox Tower

Figure 4.17: The positive confidence values are plotted as a histogram for the buildings

shown in Figures 4.12- 4.15.The confidence histograms are plotted in bins of 0.02 from 0

to 1. The confidence is high for most reconstructions, with lower confidence corresponding

to poorly reconstructed regions.

A thresholding of these histograms could be used to automatically identify voxels with

regions of poor reconstruction. An example of this is shown in Figure 4.2.3, where a

thresholded example of two buildings are shown.

123

4.2. VOXEL-BASED SURFACE RECONSTRUCTION 124

(a) Building 76 thresholded voxel cloud

(b) Xerox Tower thresholded voxel cloud

Figure 4.18: The histograms shown in Figures 4.2.3 and 4.2.3 can be used to automatically

identify voxels with regions of poor reconstruction. Here two buildings, with histograms

corresponding to 4.2.3-(a) and 4.2.3-(d) are thresholded at confidence equal to 0.85. The

yellow regions represent the thresholded voxels.

The yellow voxels in Figure 4.2.3 represent voxels that were assigned less than 85%

confidence, and it can be seen that these areas are in regions of poor reconstruction. In

Figure 4.2.3-(a), a number of structures on the roof of the building are missing, this led

to a high amount of color variation, since those voxels were considered part of the main

roofing material, therefore resulting in low confidence in those regions. In Figure 4.2.3-(b),

the voxel-based surface reconstruction method filled a void in the roof of the tower that

was actually part of the structure. This also led to a high amount of color variation, and

consequently, low confidence in the reconstruction region.

124

4.3. REFLECTANCE-ATTRIBUTED FACETIZED SURFACE STRUCTURE 125

(a) Simluated R,G,B image

(b) Simluated NIR image (b) Simluated SWIR image

Figure 4.19: Reflectance attributed models processed using DIRSIG. (a) shows an example

synthetic image processed with an R,G,B imaging platform, (b) shows an example synthetic

image processed with a NIR platform (0.7 µm to 1.0 µm), and (c) shows an example

processed with a SWIR platform (1.8 µm to 2.4 µm).

4.3 Reflectance-Attributed Facetized Surface Structure

A hyperspectral dataset was collected over the RIT campus, which can be used for the

reflectance mapping described in Section 3.4.1. Further information about this dataset can

be found in Appendix C. Each processed building from the RIT dataset from the previous

section had each facet mapped with reflectance spectra. Having this spectra mapped to

each facet allowed for the creation of a model which could be used for physical simulation.

An example of the physical simulation of these buildings is shown in Figure 4.19. This

125

4.4. CLASSIFIED FACETIZED SURFACE STRUCTURE 126

simulation was performed using the DIRSIG software. Since only reflectance spectra

was mapped to the facets, the simulation can only be performed within the bandpass of

the hyperspectral imagery. The simulation pictured is intended to replicate the R,G,B

platform which originally captured the data.

4.4 Classified Facetized Surface Structure

Each structure shown in Section 4.2 was segmented using the region-growing approach

described in Section 3.4.2. A user-provided estimate of the number of materials was used

for the final k-means clustering step in the segmentation process. The initial region-

growing segmentation and the final k-means clustering segmentation are shown for each

structure. The results are shown in Figures 4.20 and 4.21.

126

4.4. CLASSIFIED FACETIZED SURFACE STRUCTURE 127

(a) Inital Segmentation (b) After final clustering (K=5)

(c) Inital Segmentation (d) After final clustering (K=9)

(e) Inital Segmentation (f) After final clustering (K=2)

(g) Inital Segmentation (h) After final clustering (K=5)

Figure 4.20: (a)-(b): Building 76, (c)-(d): Building 7, (e)-(f): Building 6, (g)-(h):

Building 5

127

4.4. CLASSIFIED FACETIZED SURFACE STRUCTURE 128

(a) Inital Segmentation (b) After final clustering (K=6)

(c) Inital Segmentation (d) After final clustering (K=5)

(e) Inital Segmentation (f) After final clustering (K=6)

(g) Inital Segmentation (h) After final clustering (K=5)

Figure 4.21: (a)-(b): Chase Tower, (c)-(d): Bausch & Lomb Place, (e)-(f): Clinton

Square Building, (g)-(h): Xerox Tower

128

4.4. CLASSIFIED FACETIZED SURFACE STRUCTURE 129

4.4.1 k-Means Clustering Sensitivity Study

The k-means algorithm attempts to cluster points by minimizing the objective function

[31] shown in Equation 4.1. That is, by minimizing the average squared Euclidean distance

of each point from their cluster centers.

J =
k∑
j=1

x∑
i=1

‖xji − cj‖
2 (4.1)

Where xji is the ith element in the jth cluster, and cj is the centroid of cluster j.

The closer the objective function value J is to zero, the more compact the clustering will

be. Of course, as k goes to infinity, J will go to zero. However, there will be a point

at which increasing the value k has a diminishing effect on the value of J . The best

clustering scenarios will have a relatively low k value resulting in a strong minimization

of the objective function J .

An analysis was performed on each structure presented in this section. A range of k

values between zero and fifty was used in the final k-means clustering step of the region-

growing based segmentation. The objective function was measured for each structure

across the range of k values. Figure 4.22 shows the results for each structure.

It can be seen from Figure 4.22 that each structure had a relatively good clustering

with less than ten classes. This means that the region-growing based clustering scenario

is well posed for a quality classification.

129

4.4. CLASSIFIED FACETIZED SURFACE STRUCTURE 130

(a) Building 7 (b) Building 76

(c) Building 5 (d) Building 6

(e) Chase Tower (f) Bausch & Lomb Place

(g) Clinton Square Building (h) Xerox Tower

Figure 4.22: The objective function value vs. k value for each structure is shown here.

The structures in (a)-(d) are from the RIT dataset, and the structures in (e)-(h) are from

the downtown Rochester dataset. It can be seen that each structure minimizes it’s objective

function with a relatively low k value.
130

Chapter 5

Discussion

Geographically and physically accurate models of man-made structures are used as the

basis of many modeling applications. Automatically generating these models from aerial

imagery would provide new opportunities for applications and research. The automated

extraction of these types of models is split into two major sections; 1) the automated

extraction of the geographically accurate structure using imagery, and 2) the modeling

and analysis of this extracted structure. The computer vision community has developed

a strong understanding of automated structure extraction processes, through a workflow

known as Structure from Motion (SfM). The development of this understanding has pro-

duced many methods for implementing this workflow, including processes that have been

made open source and available to the public. Geographic accuracy requires knowledge of

additional geographic information from the imaging platform. The use of aerial imagery

provides a distinct advantage is this area, due to the common usage of highly accurate

INS and GPS systems which record positional information for each image. In addition to

this, aerial imaging platforms tend to be very well calibrated and characterized. These

attributes make aerial imagery an ideal candidate for geographically accurate and auto-

mated structure extraction.

Structure extracted from aerial imagery does not provide a complete understanding of a

scene. These structures are simply discrete measurements of the three-dimensional world.

These measurements can be processed, interpolated, and analyzed to develop a better

understanding. Through the application of certain assumptions, such as the Manhattan-

world assumption, man-made object surfaces can be estimated from the structure mea-

surements. The surface extraction is an incremental step towards scene understanding.

The following step is classification of materials of the object’s surface. This step combines

131

5.1. GEOREGISTRATION 132

spectral information with the three-dimensional spatial information to develop methods

for surface understanding.

Each process required to estimate a geographically and physically accurate model has

been discussed or developed in this work. Structure extraction is achieved from multi-view

aerial imagery through popular open-source SfM algorithms. This structure is combined

with INS/GPS measurements to generate a georegistration transform, bringing the esti-

mated structure to an Earth-based coordinate system. The geoaccurate structure is further

analyzed by estimating and interpolating an object’s surface using geometric primitives.

The approach developed in this work utilizes a voxel-based methodology, which allows for

estimation and interpolation using common morphological processes. A confidence metric

for the interpolated surface estimation was developed so users could further analyze the

estimated surfaces and determine regions and causes of error. Finally, incorporation of

spectral information from the imagery is used to develop methods of material attribution

and segmentation. Surfaces are mapped with reflectance spectra if additional high-spectral

resolution calibrated imagery is available. If this is not the case, the surface is mapped

with original R,G,B spectral information, and segmented using properties of the three-

dimensional surface along with the mapped spectral information. These segments can be

treated as classes for a user, in order to identify and attribute materials.

5.1 Georegistration

This work has analyzed three methods of SfM point cloud georegistration, namely

the camera centers approach (Section 3.2.1), the augmented camera model approach (Sec-

tion 3.2.2), and the direct triangulation approach (Section 3.2.3). Each method requires

additional information beyond the imagery, which is taken from INS/GPS systems. All

three methods use this additional information to varying degrees. Two main sources of

error contribute to the geoaccuracy of a georegistered SfM point cloud.

The first source of error comes from the SfM process itself, often from error in image-

to-image correspondence. Many factors can contribute to error in image correspondence,

for example, wide-baseline camera geometry lends itself to error due to the large difference

in object appearance. Poor texture definition or repetitive texture on the object’s surface

can also lead to mismatch. This is also the case with other imaging modalities, object in

thermal infrared imagery have rather poor texture and definition, which would prove a

132

5.2. SURFACE ESTIMATION AND ANALYSIS 133

challenge to most feature correspondence algorithms. Error in correspondence propagates

throughout the SfM process, causing error in camera pose estimation and scene structure

triangulation. For the photogrammetric applications of the SfM process it is important to

understand the limitations that are inherent in this process. It was shown that adjusting

a single parameter to minimize error in correspondence can have an impact on the total

amount of error. However, all aspects that contribute to correspondence error should be

considered when using the SfM process for photogrammetric purposes.

The second source of error is within the georegistration transform, which is affected by

error in the SfM process, but is also affected by error in the additional information used

to generate the transform. For this work, additional information is found in the INS/GPS

data. Given no error in this information, each approach was only affected by SfM error.

The SfM error in the test dataset for this work was substantial, and this translated to a

significant amount of the error in the camera centers approach. The augmented camera

model approach and the direct triangulation approach remain significantly less affected.

When random instrument error is added to the INS/GPS readings, the direct triangulation

approach fails. This is expected, as the instrument error directly affects the triangulation.

The random error increases the total error in both the camera centers and augmented cam-

era model approaches, however the latter was shown to be far more robust than the former.

5.2 Surface Estimation and Analysis

A CAD-like model is the desired output for physical modeling. That is, a model that

is defined by a number of geometric primitives. Two methods for extracting these primi-

tives were presented, a RANSAC-based and a voxel-based method. The RANSAC-based

extraction worked well for decomposing an object into planes, however, it is limited in the

shapes in which it can represent. The voxel-based reconstruction is far more robust for

representing any arbitrary shape. Furthermore, the nature of the voxel space allows for

interpolation of an object’s surface.

Scene reconstructions through nadir-looking aerial imagery tend to be noisy. Voxel-

based processing is inherently noise-reducing as it is a sampling of a continuous space,

although, a number of other noise reduction processes are implemented. Point density

and voxel proximity information are used for further noise reduction.

Using Manhattan-world assumptions, the vertical surfaces of the man-made structures

133

5.3. LIMITATIONS 134

are interpolated. Furthermore, using the same assumption, horizontal surfaces containing

holes are interpolated. A confidence metric is developed to help a user determine the

quality of a given surface reconstruction. This metric is important to have, since most

of an object’s surface in a noisy point cloud will be interpolated using the orthogonality

assumptions.

The surface estimation was augmented with spectral information for further analysis.

Given additional atmospherically compensated hyperspectral imagery, each facet on the

surface estimation is attributed with a reflectance spectra. The attribution is performed

by registering each pixel from the source and hyperspectral imagery to a digital elevation

map. This attribution allows for the direct physical modeling of these surfaces, within the

bandpass for the hyperspectral sensor.

It unlikely that many data collects will have coincident hyperspectral and high-resolution

multi-view imagery for three-dimensional reconstruction and analysis. For this reason, a

segmentation algorithm, using just the high-resolution R,G,B values from the multi-view

imagery, was developed. This segmentation algorithm analyzes the spatial-spectral prop-

erties of the surface to determine the segments. When used in conjunction with the

voxel-based surface estimation process, the interpolated voxel’s color is estimated though

projection into the source imagery.

The spatial-spectral segmentation algorithm’s final step is a spectral k-means clus-

tering. This is to ensure that similar materials which may be separated by a significant

distance, or may be on opposing sides of a surface, are part of the same segmentation class.

An analysis of the chosen k-value was performed to determine if this final k-means clus-

tering could provide a quality classification. It was shown that for every structure tested,

the quality of classification neared a maximum under ten classes. Using a relatively small

number of classes, a quality classification can be obtained. This segmentation approach

allows a user to automatically determine the potential classes of materials on the surface

of a reconstructed structure, using just the inherent R,G,B values.

5.3 Limitations

As with every process that makes some number of assumptions, there are limitations

to the performance of the algorithms. From a SfM perspective, there are a number of well-

known limitations, generally all related to image correspondence. Given imagery which

134

5.3. LIMITATIONS 135

has a significantly large baseline between the camera centers, the objects contained in the

scene will be difficult to match between views. Also, the content of a scene may provide

issues. A scene with very little texture, or a very large amount of random texture, can

provide difficulty for feature matching algorithms. Feature matching error propagates it-

self throughout the entire SfM process and to subsequent processes. The quality of the

feature matching algorithm can be a limiting factor in surface reconstruction processes,

therefore, the algorithm should be chosen carefully.

Georegistration transforms are derived from measured INS/GPS information. There

is inherent measurement error in this information, which can contribute to error in the

transformation calculation. This can be limiting when the measurement errors become

large.

The voxel-based surface reconstruction process presented here is robust to noisy point

clouds and object shape. However, given the assumptions used in the interpolation pro-

cesses, there are some limitations. One major limitation is the inability to close large holes

on sloped surfaces that are not closed during the Z-level morphological processing. This

process will have problems with poorly defined sloped roofs. A small amount of this error

can be seen in Figure 4.13-(c) on the sloped roof of the building. The other limitation,

which is also considered an advantage, is the hole-filling process. It is assumed that all

connected components in each Z-level in the morphological processing step contains the

same structure. This is a fairly accurate assumption for most buildings, however, if a

structure has a “hole” in the surface, it will be filled. This can be seen in both Figures 4.9

and 4.15. This situation provides further reasoning for a confidence metric. The calculated

confidence for these “hole” regions on the estimated surface is much lower than for the

quality surface estimations. An enlarged view of this is shown in Figure 5.1.

(a) Structure with “hole” (b) The filled “hole” (c) The filled hole’s confidence

Figure 5.1: The voxel-based surface reconstruction process assumes that there are no holes

on the surface of any structure. Therefore, if these are “holes”, there regions will be filled

in. This error can be detected in the confidence map for the surface reconstruction.

135

5.4. FUTURE WORK 136

The confidence metric can be used to identify surfaces which have been poorly recon-

structed. A histogram of the confidence values (Section 4.2.3) shows that most of the

reconstructed surfaces have a very high confidence value, however, in many regions such

as the ones shown in 5.1 the confidence is lower.

The spectral attribution and segmentation methods have a few limitations as well.

The largest limitation is in the reflectance spectra mapping, through orthorectification.

The orthorectification process removes any amount of parallax that might be in the im-

age. Conceptually, this means that all the structure is projected directly onto the ground

from the point of view of the camera. If the object undergoing registration through the

orthorectification map is too far off-nadir in the scene, then there will be some registration

error caused by this parallax. This can be mitigated by only registering objects through

images in which the objects are near the principle point (or most-nadir pointing part) of

the image.

The final limitation is in the last step of the spatial-spectral segmentation process, the

spectral k-means clustering. This step requires a user to identify the number of mate-

rials expected to be on the surface of the structure. While this is a limitation inherent

in k-means classification, it is one that may become an issue when trying to obtain full

automation.

5.4 Future Work

This work leads to a wide range of possible future work to be done in this same area.

The areas that require consideration are:

1. It is very important that any surface estimation process is seeded with the highest

quality structure reconstruction. Therefore, it would be useful to determine if other

reconstruction methods can provide better quality structure estimation than the

SfM software presented in this work. A couple related algorithms, probabilistic

voxel modeling [55], and semi-global image matching [24], should be tested. These

algorithms are not as widely used in the computer visions community, but have

significant potential to be very powerful.

2. The structure extraction process should be extended to include off-nadir imagery.

This limitation is reasonable due to the large amount of near-nadir aerial imagery

already in existence. However, off-nadir imagery can provide significantly more

136

5.4. FUTURE WORK 137

information about vertical structures in a scene (such as walls). A higher fidelity

reconstruction would allow for some of the assumptions to be relaxed.

3. All structure extraction processes must extract initial feature correspondences. This

work uses a GPU-based implementation of the SIFT algorithm. The GPU imple-

mentation was used for computational speedup due to the large number of features

often generated by aerial images. The computer vision community has moved past

SIFT towards other feature detection and description algorithms. A couple were dis-

cussed in Chapter 2 (ASIFT, DAISY), however, there are many more which should

be explored. Algorithms such as SURF [5] and HoG [12] have become the replace-

ment algorithms for SIFT. More recently, binary descriptors have become popular

using algorithms such as ORB [56] and FREAK [2]. All these feature detection and

description algorithms should be tested in the SfM framework to determine the best

option to use. A better feature extraction and matching will lead to lower overall

error throughout the process.

4. The surface estimation method presented in this work allows for the estimation of

surface structure without significant constraint on the shape of the structure. This,

however, causes edges, planes, and corners to smooth out or become noisy. A stronger

assertion of the Manhattan-world assumption could be implemented to make sure

that all edges, corners, and planes follow the orthogonality rules. This would results

in a more visually pleasing surface estimation.

5. The surface confidence metric could more than just a visualization tool. Confidence

could be used to guide surface estimation processes.

6. The segmentation methods explored in this work touch upon a whole new dimension

of classification algorithms. Through incorporation of a third spatial dimension,

objects and their materials can be further discriminated. There are many types of

spatial-spectral segmentation algorithms that should be explored and tested in the

framework of three-dimensional data.

7. For testing other segmentation methods, it would be useful to have a known, ac-

curate, test dataset to be used with these types of algorithms. A full set of classi-

fied objects and multi-view imagery for each of these objects would provide a good

amount of truth for classification algorithm testing.

137

5.5. CONCLUSIONS 138

8. An automated process for identifying materials from the segmented surface structure

could be explored. Using spectral statistics from the segmented class, as well as some

spatial statistics, it may be possible to narrow down a search to determine the type

of surface material.

9. A higher fidelity mapping of color to the surface structure would allow for more

thorough segmentation. Instead of assigning a color to each facet, if each facet was

UV-mapped back to the known imagery, a number of pixels could be associated

to a single facet. From this, texture-based segmentation methods could also be

incorporated to further analyze the surface structure.

5.5 Conclusions

The work presented here covers an end-to-end process for extracting three-dimensional

reconstructions from multi-view imagery, georegistering the reconstructions, estimating

their surface, and attempting to further attribute the surface with spectral information.

A number of contributions have been made as a result of this work.

• Open-source SfM algorithms were pulled together to form an end-to-end SfM work-

flow that was made available to the public. A tutorial on this workflow is shown in

Appendix D.

• A methodology for the analysis of georegistration accuracy was developed using

synthetic imagery. This methodology can be incorporated into other SfM-based

algorithms in order to quantify their geoaccuracy.

• A voxel-based surface estimation and interpolation method was developed, as well

as an interpolation confidence metric. This algorithm is open-source and available

to the public, a description of installation and usage can be found in Appendix E.

• A method for creating reflectance-attributed physical models of man-made struc-

tures, using hyperspectral imagery in addition to multi-view imagery, was developed.

Software to perform this registration was made open-source, and can be found in

Appendix F.

• A process for surface estimation classification was developed through the application

of spatial-spectral segmentation algorithms. This process is incorporated into the

138

5.5. CONCLUSIONS 139

voxel-based modeling software, and is consequently also open-source and available

to the public.

This work has explored some of the potential applications of three-dimensional recon-

structions from aerial imagery, primarily focusing on the analysis of distinct materials

on estimated surface structure. While much the commercial world is focused on photo-

realistic scene development, researchers should keep their eyes forward for the potential

applications of multi-view information. Incorporating the third-dimension into digital

image processing and remote sensing algorithms allows for greater possibilities and appli-

cations of future research and development.

139

Appendix A

Transforming the projection

matrix P using the georegistration

transform Ts

The transform Ts can be used to transform one point set Xa to another point set Xb. It

can also be important to understand the effect that transform Ts may have on projective

cameras which may have been used to create the point set Xa. The relationship of Ts

and the point sets is defined as

Xb = TsXa (A.1)

The relationship between the projection matrices, Pa and Pb with the set of points

Xa and Xb is

xa = PaXa (A.2a)

xb = PbXb (A.2b)

where xa and xb are the projections of Xa and Xb into the image. The image projec-

tions xa and xb only differ by a scale value in projective space, as they are projections of

points that only differ by an affine transform. Furthermore, in inhomogeneous coordinates,

they are equivalent. Using this relationship along with Equation A.1, Equation A.2a, and

Equation A.2b the following can be defined,

140

141

PaXa = PbTsXa (A.3)

From this, the desired projection matrix Pb can be solved for in terms of Pa and Ts,

Pb = PaTs
−1 (A.4)

To verify this solution, Equation A.2b is examined, by substituting Equation A.1 into

Equation A.4, and the following is obtained

xb = PbTsXa (A.5)

Substituting the solution for Pb into Equation A.6 yields

xb = PaTs
−1TsXa = PaXa (A.6)

Using the relationship xa = xb, Equation A.6 can be shown to be equivalent to Equa-

tion A.2a. It is important to note that due to this transformation, the scaling of the

projection matrix Pb may not be correct. Decomposing Pb into it’s fundamental parts

gives,

Pb = k [Rb|tb] (A.7)

where k is the camera calibration matrix, Rb is the rotation matrix, and tb is the

translation vector. This transformation cannot guarantee a normalized Rotation matrix

Rb. Therefore, the transformed projection matrix Pb should be scaled by the L2 norm of

the decomposed rotation matrix, Rb, yielding the normalized projection matrix P̃b,

P̃b =
1

‖Rb‖2
Pb (A.8)

This solution can be used for projecting the points, Xa, which have been transformed

to Xb.

141

Appendix B

Normalized Cuts

Normalized cuts is a graph partitioning algorithm, which has been shown to be powerful

for image-based segmentation [33]. This concept of normalized cuts can be easily extended

to a third dimension, and used for point cloud segmentation algorithms, such as the one

shown in Section 3.4.2. This appendix will cover the basic normalized cuts algorithm.

B.1 Representing Data as Graphs

Any set of data that has quantifiable relationships between datum can be represented

in a graph. For example, a cluster of points, as shown in Figure B.1, can be related by

proximity to each other, and represented as a graph.

Figure B.1: A cluster of points can be represented as a graph using their proximity to each

other as edges. Here, each point represents a node of the graph and the line connecting

the nodes represent an edge between the two nodes.

A graph, G, is defined as a collection of nodes, N, and edges between those nodes,

E. A graph can be represented using an adjacency matrix, A, which is an n-by-n binary

142

B.1. REPRESENTING DATA AS GRAPHS 143

matrix where each column and row represent a node in the graph. Each element, ai,j

represents a potential connection point between nodes. It is assumed that nodes are not

connected to themselves, therefore the diagonal of A is zero.

A =

0 a0,1 · · · a0,n

a1,0 0 · · · a1,n
...

...
. . .

...

an,0 an,2 · · · 0

 (B.1)

Often, edges are represented by a value or weight. Similar to the adjacency matrix,

these edges value are represented with the weight matrix, W, in which each non-zero

element represents a weighted edged between two nodes.

Another matrix can be defined from A or W, called the degree matrix, D. This is a

n-by-n diagonal matrix in which each element is the degree for the corresponding node.

The degree of a node is defined for an unweighted graph as the total number of terminating

edges on that node. For a weighted graph, the degree is defined as the sum of all edge

weights terminating on that node.

D =

d0,0 0 · · · 0

0 d1,1 · · · 0
...

...
. . .

...

0 0 · · · dn,n

 (B.2)

dn,n = deg (n) =

n∑
k=0

An,k (B.3)

Finally, a matrix called the Laplacian matrix, L, is defined as the difference between

the degree matrix and weight matrix.

L = D−W =

d0,0 −a0,1 · · · −a0,n
−a1,0 d1,1 · · · −a1,n

...
...

. . .
...

−an,0 −an,2 · · · dn,n

 (B.4)

Analysis of the matrix properties (i.e eigenvalues, eigenvectors) of these matrices leads

to a mathematical field called spectral graph theory. It is from this analysis that the

concept of normalized cuts arises.

143

B.2. GRAPH CUTS AND NORMALIZED CUTS 144

B.2 Graph Cuts and Normalized Cuts

A partitioning of the weight matrix represents a form of data segmentation. This

partitioning is called a cut, defined as follows,

cut (A,B) =
∑

i∈A,j∈B
wi,j (B.5)

The partitioning of the weight matrix will be one where the cut is minimized. A de-

tailed description of this process can be found in the literature [7]. This partitioning is

very sensitive to outliers, as shown in Figure B.2-(a), where the minimum cut would be

the one in which the sum of the weights will be the smallest.

(a) Minimum cut (b) Normalized Cut

Figure B.2: The solution to a minimum cut problem is very sensitive to outliers. For

example in (a) the solution to the minimum cut would likely be shown by the dotted line. A

better partitioning would be one which normalizes these outliers so they have less effect on

the computation of the cut. Here, (b) shows the ideal cut which could be achieved through

normalization.

A better partitioning would take the relative size of each cut into account, such that

outliers have limited effect on the calculation of the cut. This can be done by weighting the

cut by the total size of each partition. The total size of each partition can be calculated

by summing all of the edge weight terms in the partition, this measure is called the

association. For partition A this is defined as,

assoc (A, V) =
∑

i∈A,j∈V
wi,j (B.6)

where V represents all the nodes in A. Using this, a normalized cut definition can be

created,

144

B.3. CALCULATING THE MINIMUM NORMALIZED CUT 145

nCut (A,B) =
cut (A,B)

assoc (A, V)
+

cut (A,B)

assoc (B, V)
(B.7)

This cut will weight each partition according to the total weight of the partition.

Resulting in a cut that is less sensitive to outliers, and that will perform similarly to the

cut shown in Figure B.2-(b). Calculating this cut is computationally difficult, but it can

be done through spectral graph theory analysis of the Laplacian matrix for the weighted

graph [33].

B.3 Calculating the Minimum Normalized Cut

It has been shown that the minimum normalized cut can be found using the graph

Laplacian [33],

minnCut (A,B) = miny
yT (D−W) y

yTDy
(B.8)

where y is the partitioning vector, that is, a vector where each element corresponds to

a node. It has also been shown that this can be solved using eigenanalysis if the values of

y are allowed to take on real values. This is done by solving the eigenvalue system,

(D−W) y = λDy (B.9)

The smallest eigenvalue for this system will be equal to zero, and have an eigenvector

with values equal to one. The second smallest eigenvalue would provide the solution to

Equation B.8. This second smallest eigenvector can be used to partition the graph. This

is done by solving Equation B.8 with this eigenvector, and using the solution to partition

the eigenvector. This partition can be used to segment the nodes in the graph into two

segments. A recursive segmentation algorithm can be created from this process.

1. Create a weighted graph representation of the data

2. Calculate the second smallest eigenvector for the graph Laplacian

3. Use this eigenvector to partition the graph into two smaller graphs

4. Repeat steps 2-4 on the smaller graphs until the cut size becomes too small, as

defined by a threshold

145

Appendix C

Datasets

This appendix presents the details each dataset used in this work. Three real datasets

were used for testing the geometrical and physical accuracy of the three-dimensional mod-

eling processes. A fourth synthetic dataset was created for geoaccuracy analysis.

The first two datasets were collected with the RIT Wildfire Airborne Sensor Pro-

gram (WASP) imaging platform. The WASP platform is comprised of four imaging sen-

sors; a 4000x2672 pixel visible/near infrared (VNIR), a 640x512 pixel short wave Infrared

(SWIR),a 640x512 pixel midwave infrared (MWIR), and a 640x512 pixel long wave in-

frared (LWIR) sensor [40]. The WASP datasets shown in the following sections only take

advantage of the VNIR imagery. The final real dataset was provided by SpecTIR using

their airborne hyperspectral platform, as part of the SHARE2010 collect [26].

C.1 Downtown Rochester, NY

The data presented in this section was collected over downtown Rochester, NY. This

data was collected with the intention of use in SfM processing algorithms. Each image

was collected with approximately 80% forward overlap and 90% side overlap. Flightlines

were flown east-west, north-south, and in each cardinal direction over the city [52]. This

provided a very dense collection of imagery over the center of Rochester. Each image is

4000x2672 pixels with a GSD of approximately 0.3 meters. Figure C.1 shows the camera

centers drawn over an aerial map of the downtown area.

146

C.1. DOWNTOWN ROCHESTER, NY 147

Figure C.1: The camera centers for each image capture for the data collect over downtown

Rochester, NY (approx. 2 sq. km.). This collect was specifically designed to have high

overlap for use with three-dimensional reconstruction algorithms. The yellow triangles

represent the densest area of the collect.

A 120-image subset of the densest section of the collect shown in Figure C.1 was pro-

cessed using the software described in Section 3.1. Figure C.2 shows the dense geoaccurate

point cloud generated using this process.

147

C.1. DOWNTOWN ROCHESTER, NY 148

(a) Full view

(b) Four buildings point cloud (c) Four buildings image

Figure C.2: The geoaccurate dense point cloud reconstruction (a) of downtown Rochester,

NY using a 120-image subset of the densest section of the collect shown in Figure C.1.

The four center buildings that are used for processing are shown in (b), as well as a nadir-

looking reference image in (c) for context.

A manual verification of the accuracy was performed, yielding an average error of

approximately 0.3 meters, the GSD for the collection. Four buildings were segmented

from the point cloud for model extraction processing, the results of this processing can be

seen in Chapter 4.

148

C.2. RIT DATASET 149

C.2 RIT Dataset

This dataset was collected over the Rochester Institute of Technology campus with

the intention of use with SfM processing algorithms. The imagery was collected with

significant overlap over the entire campus. Each image is 4000x2672 with a GSD of

approximately 0.3m, the total area covered is shown in Figure C.3 and the reconstructed

dense point cloud is shown in Figure C.4.

Figure C.3: The area covered by the RIT dense imagery collect

149

C.2. RIT DATASET 150

(a) Full view

(b) Four buildings point cloud

(c) Four buildings image

Figure C.4: The geoaccurate dense point cloud reconstruction (a) of RIT. The four center

buildings which were used for processing are shown in (b), as well as a nadir-looking

reference image in (c) for context.

150

C.3. SHARE-2010 151

C.3 SHARE-2010

Another collection that was incorporated in this work was the SHARE-2010 collection

[26]. This collection was an attempt to generate a collection of multi-modal imagery, which

included airborne hyperspectral, LiDAR, and high-resolution multispectral imagery. One

section of the SHARE-2010 collect was a high resolution hyperspectral collect over the

Rochester Institute of Technology campus. Figure C.5 shows the footprints of the data

collected. Each flightline was calibrated and atmospherically compensated by the data

provider so the imagery is presented in reflectance units. This hyperspectral data was used

in combination with the data described in Section C.2 to perform the model reflectance

attribution as described in Section 3.4.1.

Figure C.5: The footprint of the hyperspectral collect over RIT from the SHARE 2010

data collect. This figure was provided by SpecTIR.

151

C.4. SYNTHETIC DIRSIG DATASET 152

C.4 Synthetic DIRSIG Dataset

A synthetic dataset was created for geoaccuracy testing, based on a previously created

synthetic dataset[37]. Two versions of this dataset were created, one with 10 nadir-looking

images, and one with 100 nadir looking images. Figure C.6 shows a sample of synthetic

images.

(a) (b) (c)

Figure C.6: (a) through (c) show different views of the synthetic image created for geoac-

curacy analysis.

These images were processed through the SfM workflow, extracting three-dimensional

structure that was used for testing. A view of both versions of the point cloud is shown in

Figure C.7. As expected, the point cloud with more imagery has a denser reconstruction.

(a) Point cloud from 10 images (b) Point cloud from 100 images

Figure C.7: Two sets of synthetic images were produced, one with ten images and one

with one hundred. This shows the point cloud reconstructions from each, (a) 10 (b) 100.

As expected, the point cloud which was created using more imagery has a denser recon-

struction.

152

Appendix D

Structure from Motion Workflow

Tutorial

A complete workflow for running the software presented in Section 3.1 was developed

for this work. An algorithm which implements the georegistration transform (Section 2.5)

using camera centers (Section 3.2.1) was written and implemented as part of this SfM

workflow. This tutorial will detail how to install and run this software. This tutorial can

also be found online at http://dirsapps.cis.rit.edu/3d-workflow/?q=3d-workflow.

It should be noted that the computational requirements for this software are very high.

Beyond needing a CUDA-capable GPU, mutlicore CPUs are recommended for reasonable

processing times. For reference, this software has been successfully run on the following

systems:

• Intel Core i5-2400 3.10Ghz Quad Core, 8 GB RAM, nVidia GTX 460 V2 Fermi 1GB

336 processing cores

• Intel Pentium G6950 2.8Ghz Dual Core, 16 GB RAM, nVidia Tesla C1060 4GB 240

processing cores

• (Dual) Intel Xeon X5680 3.33Ghz Hex Core Hyper-threaded, 72GB RAM, nVidia

GT430 2GB 96 processing cores

153

http://dirsapps.cis.rit.edu/3d-workflow/?q=3d-workflow

D.1. INSTALLATION 154

D.1 Installation

The installation described here is for a machine running the latest version of Fedora

(https://fedoraproject.org/). A number of supporting third party software packages

must be installed for the successful compilation of siftGPU, Bundler and PMVS/CMVS.

Update First

$ sudo yum update −y −−skip−broken

Reboot if needed then perform the the following command

$ sudo yum i n s t a l l g i t patch make gcc−c++ f r e e g l u t−deve l

l ibXi−deve l libXmu−deve l DevIL−deve l boost−deve l

g s l−deve l l i b j p e g−deve l lapack−deve l z l i b−deve l

opencv opencv−deve l

D.1.1 Installing CUDA

The NVIDIA CUDA module must be installed for siftGPU. This requires a number of

steps for successful installation.

Install the RPM fusion repositories

$ sudo yum l o c a l i n s t a l l −−nogpgcheck

http :// download1 . rpmfusion . org / f r e e / f edora /

rpmfusion−f r e e−r e l e a s e−s t a b l e . noarch . rpm

http :// download1 . rpmfusion . org / nonf ree / f edora /

rpmfusion−nonfree−r e l e a s e−s t a b l e . noarch . rpm

Install the NVIDIA drivers

$ sudo yum i n s t a l l kmod−nv id ia akmod−nv id ia kerne l−deve l

Back up the initramfs image and generate a new one

154

https://fedoraproject.org/

D.1. INSTALLATION 155

$ sudo mv / boot / in i t r amf s−$ (uname −r) . img

/ boot / in i t r amf s−$ (uname−r) . nouveau . img

$ sudo dracut / boot / in i t r amf s−$ (uname −r) . img $ (uname −r)

Run nvidia-xconfig

$ sudo nvidia−xcon f i g

Once the proper NVIDIA drivers have been installed, the CUDA toolkit should be

downloaded (https://developer.nvidia.com/cuda-toolkit) and installed.

$ chmod +x c u d a t o o l k i t

$ sudo c u d a t o o l k i t

Two files must be edited to complete the CUDA installation.

In /usr/local/cuda/include/host_config.h

Change Line 80 to :

#i f GNUC > 4 | | (GNUC == 4 && GNUC MINOR > 7)

In ~/.bashrc add

export PATH=$PATH: / usr / local /cuda/ bin

export LD LIBRARY PATH=

$LD LIBRARY PATH: / usr / local /cuda/ l i b

: / usr / local /cuda/ l i b 6 4

D.1.2 Installing Graclus

Version 1.2 of Graclus needs to be installed for CMVS. This software can be downloaded

from their website (http://www.cs.utexas.edu/users/dml/Software/graclus.html).

If building on a 64-bit system the following change must be made:

In graclus1.2/Makefile.in, Change line 11 to:

COPTIONS = −DNUMBITS=64

155

https://developer.nvidia.com/cuda-toolkit
http://www.cs.utexas.edu/users/dml/Software/graclus.html

D.1. INSTALLATION 156

Once this is done, Graclus can be built, and installed.

$ cd g rac lu s1 . 2

$ make

$ sudo mv ∗ . a / usr / l i b

$ sudo cp −p metisLib /∗ . h / usr / inc lude

D.1.3 Installing the SfM Workflow

The last step in this installation process is to download and install the workflow which

was developed as part of this research. This workflow can be downloaded as shown,

$ g i t c l one https : // github . com/drn2369/workflow−3d . g i t

$ cd workflow−3d/ s r c

$ sh setup . sh

Running setup.sh will download and install Bundler, PMVS and CMVS from their

respective websites. Finally, typing make in the source directory will build each software

package as well as GTransform.

In workflow-3d/src/

$ make

Finally, the script which runs the workflow must be updated with the full path to the

workflow directory.

In workflow-3d/scripts/RunProcess.sh

BASEPATH=/ f u l l /path/ to /workflow−3d

156

D.2. EXAMPLE USAGE 157

D.2 Example Usage

The workflow-3d git repository contains a demonstration set of data. The following

directory tree is used for processing,

/

bin

src

scripts

data

Rochester-Demo

workspace

demo

It is recommended that the data and processing sections be kept in separate direc-

tories. This allows for multiple processes to be run on large datasets without having to

copy imagery between directories. The workspace directory tree is where the processing

is done. Every process requires it’s own directory.

The RunProcess script located in the script directory must be copied into each pro-

cessing folder and run from the base level of that folder. Each folder must also contain a

file named list.txt, that contains the full path to each image in the data directory which

will be processed. In order to run the full demo, type the following

$ cd workspace /demo

$ sh RunProcess . sh −ag

Upon successful completion, the following output should be seen,

[− Prepping Data −]

[− Running siftGPU −]

[− Running Bundler −]

[− Prepar ing PMVS −]

[− Running CMVS −]

[− Running PMVS −]

[− Running GTransform −]

[− Clean Up −]

[− Done −]

This will run the full SfM workflow and produce the following directory tree

demo

157

D.2. EXAMPLE USAGE 158

logs

results

Backup

trans

models

txt

The non-georegistered point clouds will be located in the results directory. The georeg-

istered point clouds will be located in the trans/models directory, and the corresponding

camera projection matrices will be located in the trans/txt directory. An example of the

expected output for each point cloud is shown in Figure D.1.

Figure D.1: This shows the expected point cloud result for running the demo data through

the SfM workflow.

D.2.1 RunProcess.sh Script Parameters

The RunProcess script has a number of parameters that can be altered to adjust the

workflow. These parameters are shown in Table E.1.

158

D.2. EXAMPLE USAGE 159

Table D.1: A description of all the parameters that can be used in the RunProcess.sh

script

Parameter Description

-a Run the whole workflow (equivalent to -sbp)

-s Run siftGPU

-b Run Bundler

-p Run CMVS/PMVS

-g Run GTransform

-k Prevent the script from running cleanup. This will keep all the output of

siftGPU, Bundler, CMVS/PMVS, and GTransform.

-d Set the GPU device number for siftGPU (Default: 0)

-x Set the maximum dimension for an image for siftGPU, this will cause sift-

GPU to down sample images larger than this dimension (Default: 2000).

-y Set the maximum number of features for siftGPU. This is useful for running

siftGPU at full resolution but limiting the memory usage (Default: 8000).

-f Set the focal length of the camera used to take the images, currently assum-

ing all images taken with the same camera at the same focal length. The

focal length must be in pixel units (focal length in mm / pixel size in mm)

(Default: 6111.11).

-i Set the focal length constraint weight for the bundler adjustment in Bundler

(Default: 0.0001).

-c Set the max cluster size for CMVS (Default: 30).

-l Set the level for PMVS (Default: 1).

-e Set the cell size for PMVS (Default: 2).

-t Set the threshold level for PMVS (Default: 0.7).

-w Set the window size for PMVS (Default: 7).

-m Set the min image number for PMVS (Default: 3).

-u Set the number of CPUs to use for CMVS and PMVS.

D.2.2 Running additional data

Processing additional imagery which was not provided with the repository is possible.

There are a few parameters that must be set based on data from the imagery. First,

the maximum resolution must be set such that it does not exceed the resolution of the

159

D.2. EXAMPLE USAGE 160

imagery. Second, the focal length of the camera must be set.

In order to run GTransform, each image must be accompanied by a POS file. The

format of the POS file must be as follows,

imageFileName.pos

X−p o s i t i o n Y−p o s i t i o n Z−p o s i t i o n

where imageFileName.pos is the exact file name for the image file, with the .pos ex-

tension. Also each X,Y and Z parameter is the location of the camera center for each

image. These coordinates should be in the desired Euclidean output coordinate system

(i.e. UTM, NEU, etc).

160

Appendix E

Three-dimensional Surface

Estimation and Classification

Software

This appendix presents the software written for the surface estimation and R,G,B seg-

mentation described in Section 3.3.2 and Section 3.4.2. These two methods are combined

into one software code. Steps for installation and running a demo reconstruction and seg-

mentation are presented here. The output of this code are three point clouds. The first

point cloud is a colorized point cloud where each point is the voxel center. The second

point cloud, also using voxel centers, is colored with the initial region-growing segmenta-

tion. The third point cloud is colored with the final segmentation.

E.1 Installation

This software uses the OpenCV [21] and Point Cloud Library (PCL) [6] libraries for

processing. These libraries are widely used and available for many platforms. This sec-

tion will discuss installation on a machine running the latest version of Fedora. These

dependencies, along with CMake and Git, can be installed as follows,

$ sudo yum i n s t a l l g i t cmake opencv opencv−deve l

pc l pcl−deve l pcl−t o o l s pcl−doc

The source code for this software can be downloaded from the git repository,

161

E.2. USAGE 162

$ g i t c l one https : // github . com/drn2369/ voxe lProce s s ing . g i t

Lastly, the binary can be built using the following commands:

$ cd voxe lProce s s ing / s r c /

$ mkdir bu i ld

$ cd bu i ld

$ cmake . .

$ make

The binary will be in the voxelProcessing/bin/ directory. A set of demo data are

included in the repository and can be found int he voxelProcessing/demo/ directory.

E.2 Usage

This code is intended to be used on individual structures separated into their own

individual Standford PLY files [54]. This is a manual process for now, and can be done

using common point cloud editing software, such as Meshlab [8]. The following arguments

are used to run the voxelProcessing software,

$ voxe lProce s s ing plyPath transPath visPath v o x e l S i z e numMaterials

depth useDiagonalNorms useL ightnes s

A description of each of these parameters is found below.

162

E.2. USAGE 163

Table E.1: A description of all the input parameters for the voxel processing software

Parameter Description

plyPath The path to a single building cropped from a ply file

transPath The path to a txt file containing the full path to each

projection matrix

visPath The path to a txt file containing the full path to each

image

voxelSize The desired voxel size in world coordinate units

numMaterials An estimate of the number of materials on the object

depth The length along a projected ray that will be used to con-

sider if a voxel is occluded or not. Default is 1, 2 is better

for taller buildings.

useDiagonalNorms Flag to turn diagonal norms on, default is 0 (false).

useLightness use L from HSL color default is 1 (true).

An example output from this software is shown in Figure E.1 and can be reproduced

using the included data. After installing the software, use the following commands to run

the code:

$ cd voxe lProce s s ing /demo/76/

$. . / . . / bin / voxe lProce s s ing 76−crop . ply t rans . txt v i s . txt

0 .004 8 1 1 1

The software will run on this code, and produce the three point clouds shown in Fig-

ure E.1. The code will produce three point clouds files; segmentedVoxels init.ply, segment-

edVoxels.ply, and voxelTrueColor.ply.

163

E.2. USAGE 164

(a) segmentedVoxels init.ply (b) segmentedVoxels.ply

(c) voxelTrueColor.ply

Figure E.1: The voxel processing software produces three point clouds. The points in each

of these point clouds are created from the voxel centers. The points in (a) are colorized

to show the initial segmentation from the region-growing approach. The points in (b) are

colored to show the final segmentation. Finally, the points in (c) represents the true color

for all the voxel centers. The uncolored voxel centers were occluded from every image, and

therefore do not have color.

164

Appendix F

Surface Attribution with

Hyperspectral Imagery

This appendix presents the software written for registering and attributing hyperspec-

tral imagery with three-dimensional models, as described in Section 3.4.1. This software

is a combination of C++ and MATLAB code. Steps for installation and running the demo

are presented here. The output of this code is a DIRSIG [58] model with facets that have

been attributed using atmospherically corrected hyperspectral imagery.

F.1 Installation

This software uses OpenCV, GDAL, and MATLAB. The MATLAB scripts could also

be run using GNU Octave. This section will discuss installation on a machine running the

latest version of Fedora. These dependencies can be installed as follows,

$ sudo yum i n s t a l l g i t opencv opencv−deve l

gdal gdal−deve l octave−f o r g e

The source code for this software can be downloaded from the git repository,

$ g i t c l one https : // github . com/drn2369/ genMater ia l s . g i t

The binaries can be built using the following commands,

$ cd genMater ia l s / s r c /genSpec

$ make

165

F.2. USAGE 166

The binaries will be built in genMaterials/bin/.

F.2 Usage

A demo is included in this software, however, it requires the use of a hyperspectral

data collection which must be downloaded from the RIT SHARE 2010 data collect [26].

This data can be downloaded at http://dirsapps.cis.rit.edu/share-2010/cgi-bin/

share-2010.pl. This demo requires the data file named 001_0729-1929_ref_corr.dat.

The software consists of two steps, the first step attributes the point cloud with the

hyperspectral reflectance data. This is performed using the genSpec software, this software

uses an options file to read in parameters. The options file has the following format,

Path to p r o j e c t i o n matrix o f the ortho map

Base path to o r t h o r e c t i f i c a t i o n map

Spec (l eave t h i s as i s)

Path to ply f i l e o f s t r u c t u r e to a t t r i b u t e

For the demo, the only path which must be changed, is the one which points to the

hyperspectral data file 001_0729-1929_ref_corr.dat. The genSpec software can then

be as follows,

$ cd genMater ia l s /demo/7

$. . / . . / bin /genSpec opt ions . txt

This will create a .spec file, which can then be used with the MATLAB script to generate

the input DIRSIG files. This can be done by running the MATLAB script found here at

genMaterials/src/MATLAB/GenerateDIRSIGFiles.m. This script will generate a set of

DIRSIG model files which can be used in a DIRSIG scene.

F.2.1 Use with your own data

The orthorectification map which is used to generate the mapping from the original

image to the hyperspectral image must be made. This can be done by using any orthorec-

tification software, along with maps which have been generated in the manner described

in Section 3.4.1. This work used the open source software package OSSIM [53] for or-

thorectification.

There are a number of edits that must be made to the MATLAB script for customiza-

tion. The input variable section at the top of the script must be edited. This script

166

http://dirsapps.cis.rit.edu/share-2010/cgi-bin/share-2010.pl
http://dirsapps.cis.rit.edu/share-2010/cgi-bin/share-2010.pl

F.2. USAGE 167

was written specifically for the data from the SHARE 2010 collection, however a different

hyperspectral sensor could be used. This would require the user to edit the wavelength

variable at line 367 to be the wavelengths of the spectra generated in the .spec file, in

microns.

167

Bibliography

[1] Bjorck A. Numerical methods for least squares problems. 51. Society for Industrial

Mathematics, 1996.

[2] Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst. “Freak: Fast retina key-

point”. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Confer-

ence on. IEEE. 2012, pp. 510–517.

[3] Applanix. POSTrack Specifications. url: www.applanix.com.

[4] Blostein S.D. Arun K.S Huang T.S. “Least-squares fitting of two 3-D point sets”.

In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 9.5 (1987),

pp. 698–700.

[5] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “Surf: Speeded up robust fea-

tures”. In: Computer Vision–ECCV 2006. Springer, 2006, pp. 404–417.

[6] Cousins S. Bogdan R. “3D is here: Point Cloud Library (PCL)”. In: IEEE Interna-

tional Conference on Robotics and Automation (ICRA). Shanghai, China, 2011.

[7] Zabih R. Boykov Y. Veksler O. “Fast approximate energy minimization via graph

cuts”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 23.11

(2001), pp. 1222–1239.

[8] Visual Computing Lab ISTI CNR. MeshLab. url: http://meshlab.sourceforge.

net/.

[9] Yuille A. Coughlan J. “Manhattan world: Compass direction from a single image

by bayesian inference”. In: Computer Vision, 1999. The Proceedings of the Seventh

IEEE International Conference on. Vol. 2. IEEE. 1999, pp. 941–947.

[10] A. Snavely N. Crandall D. Owens and Huttenlocher D. “Discrete-continuous opti-

mization for large-scale structure from motion”. In: Computer Vision and Pattern

Recognition (CVPR), 2011 IEEE Conference on. IEEE. 2011, pp. 3001–3008.

168

www.applanix.com
http://meshlab.sourceforge.net/
http://meshlab.sourceforge.net/

BIBLIOGRAPHY 169

[11] Nistér D. “An efficient solution to the five-point relative pose problem”. In: Pattern

Analysis and Machine Intelligence, IEEE Transactions on 26.6 (2004), pp. 756–770.

[12] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human de-

tection”. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on. Vol. 1. IEEE. 2005, pp. 886–893.

[13] Lowe D.G. “Distinctive image features from scale-invariant keypoints”. In: Interna-

tional journal of computer vision 60.2 (2004), pp. 91–110.

[14] Marquardt D.W. “An algorithm for least-squares estimation of nonlinear parame-

ters”. In: Journal of the Society for Industrial & Applied Mathematics 11.2 (1963),

pp. 431–441.

[15] Mücke E. Edelsbrunner H. “Three-dimensional alpha shapes”. In: ACM Transactions

on Graphics (TOG) 13.1 (1994), pp. 43–72.

[16] Seidel R. Edelsbrunner H. Kirkpatrick D. “On the shape of a set of points in the

plane”. In: Information Theory, IEEE Transactions on 29.4 (1983), pp. 551–559.

[17] Bolles R.C. Fischler M.A. “Random sample consensus: a paradigm for model fitting

with applications to image analysis and automated cartography”. In: Communica-

tions of the ACM 24.6 (1981), pp. 381–395.

[18] Ponce J. Furukawa Y. “Accurate, dense, and robust multiview stereopsis”. In: Pat-

tern Analysis and Machine Intelligence, IEEE Transactions on 32.8 (2010), pp. 1362–

1376.

[19] Ponce J. Furukawa Y. Patch-based Multi-view Stereo Software (PMVS - Version 2).

url: http://grail.cs.washington.edu/software/pmvs/.

[20] Seitz S.M. Szeliski R. Furukawa Y. Curless B. “Towards internet-scale multi-view

stereo”. In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Confer-

ence on. IEEE. 2010, pp. 1434–1441.

[21] Bradski G. “OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools (2000).

[22] Bowles J.H. Gillis D. B. “Hyperspectral image segmentation using spatial-spectral

graphs”. In: SPIE Defense, Security, and Sensing. International Society for Optics

and Photonics. 2012, 83901Q–83901Q.

[23] Coxeter H. Projective geometry. Springer Verlag, 2003.

169

http://grail.cs.washington.edu/software/pmvs/

BIBLIOGRAPHY 170

[24] Hirschmuller H. “Accurate and efficient stereo processing by semi-global match-

ing and mutual information”. In: Computer Vision and Pattern Recognition, 2005.

CVPR 2005. IEEE Computer Society Conference on. Vol. 2. IEEE. 2005, pp. 807–

814.

[25] Zisserman A. Hartley R. Multiple View Geometry in Computer Vision. 2008.

[26] Weatherbee O. Messinger D. van Aardt J. Ientilucci E. Ninkov Z. Faulring J. Raqueño

N. Herweg J. Kerekes J. and Meola J. “SpecTIR hyperspectral airborne Rochester

experiment data collection campaign”. In: SPIE Defense, Security, and Sensing.

International Society for Optics and Photonics. 2012, pp. 839028–839028.

[27] Smolic A. Frohlich B. Wiegand T. Heymann S. Muller K. “SIFT implementation

and optimization for general-purpose GPU”. In: Proceedings of the International

Conference in Central Europe on Computer Graphics, Visualization and Computer

Vision. 2007, p. 144.

[28] Tarjan R. Hopcroft J. “Algorithm 447: efficient algorithms for graph manipulation”.

In: Communications of the ACM 16.6 (1973), pp. 372–378.

[29] Brown S. Ientilucci E. “Advances in wide-area hyperspectral image simulation”. In:

AeroSense 2003. International Society for Optics and Photonics. 2003, pp. 110–121.

[30] Boissonnat J. “Geometric structures for three-dimensional shape representation”.

In: ACM Transactions on Graphics (TOG) 3.4 (1984), pp. 266–286.

[31] MacQueen J. “Some methods for classification and analysis of multivariate obser-

vations”. In: Proceedings of the fifth Berkeley symposium on mathematical statistics

and probability. Vol. 1. 281-297. California, USA. 1967, p. 14.

[32] Philip J. “A Non-Iterative Algorithm for Determining All Essential Matrices Cor-

responding to Five Point Pairs”. In: The Photogrammetric Record 15.88 (1996),

pp. 589–599.

[33] Shi J. and Malik J. “Normalized cuts and image segmentation”. In: Pattern Analysis

and Machine Intelligence, IEEE Transactions on 22.8 (2000), pp. 888–905.

[34] Schunck B. Jain R. Kasturi R. Machine vision. Vol. 5.

[35] Schaefer S. Warren J. Ju T. Losasso F. “Dual contouring of hermite data”. In: ACM

Transactions on Graphics (TOG). Vol. 21. 3. ACM. 2002, pp. 339–346.

[36] Gwun O. Juan L. “A comparison of sift, pca-sift and surf”. In: International Journal

of Image Processing (IJIP) 3.4 (2009), pp. 143–152.

170

BIBLIOGRAPHY 171

[37] Salvaggio K. and Salvaggio C. “Automated identification of voids in three-dimensional

point clouds”. In: SPIE Optical Engineering+ Applications. International Society for

Optics and Photonics. 2013, 88660H–88660H.

[38] Walli K. “Relating Multimodal Imagery Data in 3D”. Ph.D. Thesis. Rochester In-

stitute of Technology.

[39] Hoppe H. Kazhdan M. Bolitho M. “Poisson surface reconstruction”. In: Proceedings

of the fourth Eurographics symposium on Geometry processing. 2006.

[40] DIRS Laboratory. Wildfire Airborne Sensor Program (WASP). url: http://lias.

cis.rit.edu/projects/wasp.

[41] Kerekes J.P. Lach S.R. “Multisource data processing for semi-automated radiometrically-

correct scene simulation”. In: Urban Remote Sensing Joint Event, 2007. IEEE. 2007,

pp. 1–10.

[42] Hartley R. Li H. “Five-point motion estimation made easy”. In: Pattern Recognition,

2006. ICPR 2006. 18th International Conference on. Vol. 1. IEEE. 2006, pp. 630–

633.

[43] Cline W. Lorensen W. “Marching cubes: A high resolution 3D surface construction

algorithm”. In: ACM Siggraph Computer Graphics. Vol. 21. 4. ACM. 1987, pp. 163–

169.

[44] Argyros A.A. Lourakis M.I.A. “SBA: A software package for generic sparse bundle

adjustment”. In: ACM Transactions on Mathematical Software (TOMS) 36.1 (2009),

p. 2.

[45] Xie Z. Mathews V.J. “A stochastic gradient adaptive filter with gradient adaptive

step size”. In: Signal Processing, IEEE Transactions on 41.6 (1993), pp. 2075–2087.

[46] Bethel J.S. Mullen R. American Society for Photogrammetry McGlone J.C. Mikhail

E.M. and Remote Sensing. Manual of Photogrammetry. American Society for Pho-

togrammetry and Remote Sensing, 2004.

[47] Vining G.G. Montgomery D.C. Peck E.A. Introduction to linear regression analysis.

Vol. 821. Wiley, 2012.

[48] Yu G. Morel J.M. “ASIFT: A new framework for fully affine invariant image com-

parison”. In: SIAM Journal on Imaging Sciences 2.2 (2009), pp. 438–469.

[49] Snavely N. Bundler: Structure from Motion (SfM) for Unordered Image Collections.

url: http://phototour.cs.washington.edu/bundler/.

171

http://lias.cis.rit.edu/projects/wasp
http://lias.cis.rit.edu/projects/wasp
http://phototour.cs.washington.edu/bundler/

BIBLIOGRAPHY 172

[50] Snavely N. “Scene Reconstruction and Visualization from Internet Photo Collec-

tions”. Ph.D Thesis. University of Washington, 2008.

[51] Salvaggio C. Nilosek D. “Applying computer vision techniques to perform semi-

automated analytical photogrammetry”. In: Image Processing Workshop (WNYIPW),

2010 Western New York. IEEE. 2010, pp. 1–5.

[52] Nilosek D. Ontiveros E. Salvaggio C. 3D-Rochester Image and LiDAR Dataset for

Point Cloud Reconstruction and Processing Algorithms. url: http://dirsapps.

cis.rit.edu/3d-rochester/.

[53] OSGeo. OSSIM: Advanced Image Processing and Geospatial Data Fusion. url: http:

//trac.osgeo.org/ossim/wiki.

[54] PLY - Polygon File Format. url: http://paulbourke.net/dataformats/ply/.

[55] Mundy J. Pollard T. “Change detection in a 3-d world”. In: Computer Vision and

Pattern Recognition, 2007. CVPR’07. IEEE Conference on. IEEE. 2007, pp. 1–6.

[56] Ethan Rublee et al. “ORB: an efficient alternative to SIFT or SURF”. In: Computer

Vision (ICCV), 2011 IEEE International Conference on. IEEE. 2011, pp. 2564–

2571.

[57] Brown S. DIRSIG Documentation. url: http://dirsig.org/documentation.

[58] Brown S. DIRSIG: The Digital Imaging and Remote Sensing Image Generation

model. url: http://dirsig.org/.

[59] Sun S. “Automatic 3D Building Detection and Modeling from Airborne LiDAR Point

Clouds”. Ph.D Thesis. Rochester Institute of Technology.

[60] Zara J. Sedlacek D. “Graph Cut Based Point-Cloud Segmentation for Polygonal

Reconstruction”. In: ISVC Part II. Ed. by G. Bebis. 2009.

[61] Merriman M. Smith D. History of modern mathematics. J. Wiley & Sons, 1896.

[62] Szeliski R. Snavely N. Seitz S. “Photo tourism: exploring photo collections in 3D”.

In: ACM transactions on graphics (TOG). Vol. 25. 3. ACM. 2006, pp. 835–846.

[63] Olson E. Strom J. Richardson A. “Graph-based Segmentation for Colored 3D Laser

Point Clouds”. In: Proceedings of the IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS). 2010.

172

http://dirsapps.cis.rit.edu/3d-rochester/
http://dirsapps.cis.rit.edu/3d-rochester/
http://trac.osgeo.org/ossim/wiki
http://trac.osgeo.org/ossim/wiki
http://paulbourke.net/dataformats/ply/
http://dirsig.org/documentation
http://dirsig.org/

BIBLIOGRAPHY 173

[64] Fua P. Tola E. Lepetit V. “A fast local descriptor for dense matching”. In: Computer

Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE.

2008, pp. 1–8.

[65] Fua P. Tola E. Lepetit V. “Daisy: An efficient dense descriptor applied to wide-

baseline stereo”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions

on 32.5 (2010), pp. 815–830.

[66] Dijkman S. Vosselman D. “3D building model reconstruction from point clouds and

ground plans”. In: International Archives of Photogrammetry Remote Sensing and

Spatial Information Sciences 34.3/W4 (2001), pp. 37–44.

[67] Changchang W. SiftGPU: A GPU Implementation of Scale Invariant Feature Trans-

form (SIFT). url: http://cs.unc.edu/~ccwu/siftgpu/.

[68] Kabsch W. “A discussion of the solution for the best rotation to relate two sets of

vectors”. In: Acta Crystallographica Section A: Crystal Physics, Diffraction, Theo-

retical and General Crystallography 34 (1978), pp. 827–828.

[69] Kabsch W. “A solution for the best rotation to relate two sets of vectors”. In: Acta

Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General

Crystallography 32.5 (1976), pp. 922–923.

[70] Paul B. Brower B. Pellechia M. Walvoord D. Rossi A. “Geoaccurate three-dimensional

reconstruction via image-based geometry”. In: SPIE Defense, Security, and Sensing.

International Society for Optics and Photonics. 2013, pp. 874706–874706.

[71] Snavely N. Wang C. Wilson K. “Accurate Georegistration of Point Clouds Using

Geographic Data”. In: 3DTV-Conference, 2013 International Conference on. IEEE.

2013, pp. 33–40.

[72] Irschara A. Wendel A. and Bischof H. “Automatic alignment of 3D reconstructions

using a digital surface model”. In: Computer Vision and Pattern Recognition Work-

shops (CVPRW), 2011 IEEE Computer Society Conference on. IEEE. 2011, pp. 29–

36.

[73] Dewitt B.A. Wolf P.R. Elements of Photogrammetry: with applications in GIS. Vol. 3.

McGraw-Hill New York, NY, USA, 2000.

[74] Furukawa Y. Clustering Views for Multi-view Stereo (CMVS). url: http://grail.

cs.washington.edu/software/cmvs/.

173

http://cs.unc.edu/~ccwu/siftgpu/
http://grail.cs.washington.edu/software/cmvs/
http://grail.cs.washington.edu/software/cmvs/

BIBLIOGRAPHY 174

[75] Yong-Liang Yang et al. “Robust principal curvatures on multiple scales”. In: Sym-

posium on Geometry Processing. 2006, pp. 223–226.

[76] Neumann U. Zhou Q. “2.5 D dual contouring: a robust approach to creating build-

ing models from Aerial LiDAR point clouds”. In: Computer Vision–ECCV 2010.

Springer, 2010, pp. 115–128.

174

	Introduction
	Accurate Structure Extraction
	Physical Model Estimation
	Summary
	Contributions

	Background
	Epipolar Geometry
	Projective Geometry
	Homogeneous Coordinates
	Homographies

	Camera Model
	Pinhole Camera Model
	World to Camera Frame Transformation
	Camera Projection Matrix

	Stereo Geometry and the Fundamental Matrix
	Fundamental Matrix Properties

	Fundamental Matrix Derivation
	Using Correspondence
	Using Cameras

	Relative Camera Pose Estimation
	The Essential Matrix
	Five-Point Solution to the Essential Matrix
	Camera Pose Retrieval From the Essential Matrix

	Feature Detection, Description, and Matching
	SIFT
	SIFT Feature Detection and Description
	SIFT Feature Matching

	Affine-SIFT
	DAISY
	Epipolar Line Matching
	Patch-Based Model

	Reconstruction Techniques
	Photogrammetric Approach
	Linear Triangulation

	Optimization Techniques
	Feature Matching Optimization Using RANSAC
	Bundle Adjustment
	Gauss-Newton Iteration Solution
	Steepest Descent Iteration
	Levenberg-Marquardt Optimization
	Bundle Adjustment with Sparse Levenberg-Marquardt Optimization

	Deriving Geo-Accurate Structure Measurements
	Calculating Ts

	Discussion

	Methodology
	Software
	siftGPU
	Bundler
	PMVS with CMVS

	Obtaining an Accurate Coordinate System
	Using Camera Position Estimates
	Using the Camera Model and Image Correspondence
	Using the Camera Model Directly

	Surface Reconstruction Methods
	Model Extraction Using RANSAC Plane Fitting and Alpha Shapes Boundary Extraction
	Voxel-Based Surface Estimation
	Using the Manhattan-World Assumption for Surface Estimation
	Extracting Facets from Surface Estimation

	Constructing a Confidence Metric for Voxel-Based Estimated Surface Structure
	Occlusion Handling

	Using a Depth Map for Structure Segmentation
	Vegetation Removal

	Surface Attribution and Classification
	Reflectance Attribution Through Hyperspectral Imagery
	Orthorectification Using Direct Georeferencing
	Mapping Image-Derived Point Clouds to Orthorectified Imagery
	Efficient Searching Through the Orthorectification Map
	Model Attribution

	Surface Material Segmentation with R,G,B Spectral Information
	Segmentation Using Normalized Cuts
	Segmentation Using a Region-Growing Approach

	Discussion

	Results and Analysis
	Georegistration Analysis
	Georegistration Error Using DIRSIG Noiseless Sensor Model
	Georegistration Error Using DIRSIG Noisy Sensor Model
	Reducing the SfM Error
	Using a Large Number of Images

	Voxel-Based Surface Reconstruction
	Buildings From the RIT Dataset
	Buildings From the Downtown Rochester Dataset
	Confidence analysis

	Reflectance-Attributed Facetized Surface Structure
	Classified Facetized Surface Structure
	k-Means Clustering Sensitivity Study

	Discussion
	Georegistration
	Surface Estimation and Analysis
	Limitations
	Future Work
	Conclusions

	Transforming the projection matrix P using the georegistration transform Ts
	Normalized Cuts
	Representing Data as Graphs
	Graph Cuts and Normalized Cuts
	Calculating the Minimum Normalized Cut

	Datasets
	Downtown Rochester, NY
	RIT Dataset
	SHARE-2010
	Synthetic DIRSIG Dataset

	Structure from Motion Workflow Tutorial
	Installation
	Installing CUDA
	Installing Graclus
	Installing the SfM Workflow

	Example Usage
	RunProcess.sh Script Parameters
	Running additional data

	Three-dimensional Surface Estimation and Classification Software
	Installation
	Usage

	Surface Attribution with Hyperspectral Imagery
	Installation
	Usage
	Use with your own data

	Bibliography
	dissertation.pdf
	Introduction
	Accurate Structure Extraction
	Physical Model Estimation
	Summary
	Contributions

	Background
	Epipolar Geometry
	Projective Geometry
	Homogeneous Coordinates
	Homographies

	Camera Model
	Pinhole Camera Model
	World to Camera Frame Transformation
	Camera Projection Matrix

	Stereo Geometry and the Fundamental Matrix
	Fundamental Matrix Properties

	Fundamental Matrix Derivation
	Using Correspondence
	Using Cameras

	Relative Camera Pose Estimation
	The Essential Matrix
	Five-Point Solution to the Essential Matrix
	Camera Pose Retrieval From the Essential Matrix

	Feature Detection, Description, and Matching
	SIFT
	SIFT Feature Detection and Description
	SIFT Feature Matching

	Affine-SIFT
	DAISY
	Epipolar Line Matching
	Patch-Based Model

	Reconstruction Techniques
	Photogrammetric Approach
	Linear Triangulation

	Optimization Techniques
	Feature Matching Optimization Using RANSAC
	Bundle Adjustment
	Gauss-Newton Iteration Solution
	Steepest Descent Iteration
	Levenberg-Marquardt Optimization
	Bundle Adjustment with Sparse Levenberg-Marquardt Optimization

	Deriving Geo-Accurate Structure Measurements
	Calculating Ts

	Discussion

	Methodology
	Software
	siftGPU
	Bundler
	PMVS with CMVS

	Obtaining an Accurate Coordinate System
	Using Camera Position Estimates
	Using the Camera Model and Image Correspondence
	Using the Camera Model Directly

	Surface Reconstruction Methods
	Model Extraction Using RANSAC Plane Fitting and Alpha Shapes Boundary Extraction
	Voxel-Based Surface Estimation
	Using the Manhattan-World Assumption for Surface Estimation
	Extracting Facets from Surface Estimation

	Constructing a Confidence Metric for Voxel-Based Estimated Surface Structure
	Occlusion Handling

	Using a Depth Map for Structure Segmentation
	Vegetation Removal

	Surface Attribution and Classification
	Reflectance Attribution Through Hyperspectral Imagery
	Orthorectification Using Direct Georeferencing
	Mapping Image-Derived Point Clouds to Orthorectified Imagery
	Efficient Searching Through the Orthorectification Map
	Model Attribution

	Surface Material Segmentation with R,G,B Spectral Information
	Segmentation Using Normalized Cuts
	Segmentation Using a Region-Growing Approach

	Discussion

	Results and Analysis
	Georegistration Analysis
	Georegistration Error Using DIRSIG Noiseless Sensor Model
	Georegistration Error Using DIRSIG Noisy Sensor Model
	Reducing the SfM Error
	Using a Large Number of Images

	Voxel-Based Surface Reconstruction
	Buildings From the RIT Dataset
	Buildings From the Downtown Rochester Dataset
	Confidence analysis

	Reflectance-Attributed Facetized Surface Structure
	Classified Facetized Surface Structure
	k-Means Clustering Sensitivity Study

	Discussion
	Georegistration
	Surface Estimation and Analysis
	Limitations
	Future Work
	Conclusions

	Transforming the projection matrix P using the georegistration transform Ts
	Normalized Cuts
	Representing Data as Graphs
	Graph Cuts and Normalized Cuts
	Calculating the Minimum Normalized Cut

	Datasets
	Downtown Rochester, NY
	RIT Dataset
	SHARE-2010
	Synthetic DIRSIG Dataset

	Structure from Motion Workflow Tutorial
	Installation
	Installing CUDA
	Installing Graclus
	Installing the SfM Workflow

	Example Usage
	RunProcess.sh Script Parameters
	Running additional data

	Three-dimensional Surface Estimation and Classification Software
	Installation
	Usage

	Surface Attribution with Hyperspectral Imagery
	Installation
	Usage
	Use with your own data

	Bibliography

