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Abstract

Target temperature estimation from thermal infrared (TIR) imagery is a complex

task that becomes increasingly more difficult as the target size approaches the size

of a projected pixel. At that point the assumption of pixel homogeneity is invalid

as the radiance value recorded at the sensor is the result of energy contributions

from the target material and any other background material that falls within a

pixel boundary. More often than not, thermal infrared pixels are heterogeneous and

therefore subpixel temperature extraction becomes an important capability. Typical

subpixel estimation approaches make use of multispectral or hyperspectral sensors.

These technologies are expensive and multispectral or hyperspectral thermal im-

agery might not be readily available for a target of interest.

A methodology was developed to retrieve the temperature of an object that is

smaller than a projected pixel of a single-band TIR image using physics-based mod-

eling. Physics-based refers to the utilization of the Multi-Service Electro-optic Sig-

nature (MuSES) heat transfer model, the MODerate spectral resolution atmospheric

TRANsmission (MODTRAN) atmospheric propagation algorithm, and the Digital

Imaging and Remote Sensing Image Generation (DIRSIG) synthetic image genera-

tion model to reproduce a collected thermal image under a number of user-supplied
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conditions. A target space is created and searched to determine the temperature of

the subpixel target of interest from a collected TIR image.

The methodology was tested by applying it to single-band thermal imagery collected

during an airborne campaign. The emissivity of the targets of interest ranged from

0.02 to 0.91 and the temperature extraction error for the high emissivity targets

were similar to the temperature extraction errors found in published papers that

employed multi-band techniques.
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Chapter 1

Introduction

Target temperature estimation from thermal infrared (TIR) imagery is a complex

task that becomes increasingly more difficult as the target size approaches the size of

a projected pixel. At that point the assumption of pixel homogeneity is invalid as the

radiance value recorded at the sensor is the result of energy contributions from the

target material and any other background material that falls within a pixel bound-

ary. More often than not, thermal infrared pixels are heterogeneous and therefore

subpixel temperature extraction becomes an important capability. A typical prob-

lem would involve a small, hot target, since most objects of interest that exist at

elevated temperatures are small dimensioned. Running engines or motors, exhaust

plumes from processes at manufacturing plants, electrical transformers, individual

light sources, and hot water discharges from power plants are just a few examples of

these types of targets, all of which are small relative to the footprint of the typical

remote sensing systems that are used to monitor them.

A methodology has been developed to retrieve the temperature of an object with

a uniform temperature that is smaller than a projected pixel of a single-band TIR

image using physics-based modeling. The process is broken into two distinct pieces.

In the first part, the Multi-Service Electro-optic Signature (MuSES) thermal signa-

ture program in conjunction with the Digital Imaging and Remote Sensing Image

1



2 1.1. OBJECTIVES

Generation (DIRSIG) tool will be used to replicate a collected TIR image based on

parameter estimates from the collected image as well as companion high resolution

visible imagery of the target. This is done many times to build a multi-dimensional

lookup table (LUT). For the second part, a regression model is built from the data

in the LUT and is used to perform the temperature retrieval.

1.1 Objectives

The objectives of this research are as follows:

1. Develop a methodology to extract the temperature of an object that is smaller

than a projected thermal pixel. This object is assumed to have a uniform

temperature across its surface.

2. Provide a methodology that accounts for the heat transfer between objects as

well as for the radiometric phenomenology in the physics-based modeling.

3. A complete validation and verification of the developed technique will be car-

ried out using modeled data and data collected from a real airborne sensor

acquired during a monitored, ground-truthed experiment.

4. Perform an error analysis of the results to quantify the accuracy of the method-

ology.

1.2 Assumptions

Temperature extraction from an object that is smaller than a pixel is a complicated

undertaking. The following assumptions (in no particular order) are made to limit

the scope of this research as well as make attainment of the goals tractable. However,

it should be noted that these assumptions are realistic for data obtained from most

TIR imaging systems.
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High-resolution visible imagery of target is available This approach relies heav-

ily on having accurate estimates of input parameters. The optical and thermal

properties of the target material as well as the physical size of the target and

the position of the target within the projected thermal pixel can be determined

from the having visible imagery available that is of a higher spatial resolution

than the thermal image. These parameters would be difficult to accurately es-

timate using the thermal image alone as the target of interest is smaller than

the projected pixel.

Geometry of target is available A three-dimensional model of the target of in-

terest is required for this methodology as it is the input to the physics-based

models. It is assumed that the geometry is available (e.g. from the visible

imagery) by some means and that it is of high enough resolution that no error

is introduced into the process from geometrical inadequacies.

Thermal sensor is well characterized It is assumed that sensor characteristics

(e.g. the point spread function and the spectral response function) are known

so that the sensor can be modeled in DIRSIG. It is also assumed that the

position of the sensor at the time of image capture is known.

Two pixel constituents The phenomenology for a heterogeneous pixel is com-

plex. To simplify matters, it is assumed that only two materials (known as

the target and the background) occupy a pixel. It is also assumed that the

background material will fill entire pixels surrounding the mixed pixel(s) of

interest so that the background temperature can be estimated.

Target of interest has a uniform temperature It is assumed that a large tem-

perature gradient does not exist on the surface of the target.

Atmospheric data available It is assumed that the surface weather conditions

are known for a time period preceding the TIR image collection time.

Atmospheric compensation An atmospheric compensation is assumed to have

been performed on the thermal imagery. The atmospheric transmission and
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upwelled radiance are not considered, however, the reflected downwelled com-

ponent will be taken into consideration.

Nadir-looking imagery The thermal infrared image of the target of interest has

been captured from nadir or near-nadir angles.

With the objectives and assumptions in mind, the remainder of this document de-

tails the theory and methodology for a physics-based target space approach to the

subpixel temperature extraction problem.



Chapter 2

Background

As stated previously this research uses a physics-based target space approach to the

subpixel temperature retrieval problem. Before diving deeper, it seems prudent to

discuss what exactly is meant by a physics-based target space. Physics-based refers

to the utilization of the Multi-Service Electro-optic Signature (MuSES) heat transfer

model, the MODerate spectral resolution atmospheric TRANsmission (MODTRAN)

atmospheric propagation algorithm, and the Digital Imaging and Remote Sensing

Image Generation (DIRSIG) synthetic image generation model to reproduce a col-

lected thermal image under a number of user-supplied conditions.

A target space is an N-dimensional space comprised of parameters that have a sig-

nificant effect on sensor-reaching radiance as well as the sensor-reaching radiance

due to the characteristics of an individual pixel. In the context of this subpixel tem-

perature retrieval method, the target space has two dimensions: target temperature

and pixel radiance. All other parameters can be estimated from the thermal image

or the high resolution visible image. The following sections will describe the phe-

nomenology and the tools required to build and search through the physics-based

target space.

5



6 2.1. ELECTROMAGNETIC RADIATION

2.1 Electromagnetic Radiation

Electromagnetic (EM) radiation is a form of energy that propagates through space as

a wave with electric and magnetic field components. EM radiation does not require

a medium through which to travel and is classified according to the wavelength of

the wave. The electromagnetic spectrum spans the entire range of wavelengths of

EM radiation, from gamma rays to radio waves, and is shown in Figure 2.1.

Figure 2.1: The electromagnetic spectrum

Traditionally, in remote sensing, the focus has been on the area of the EM spectrum

from the visible portion (0.4 microns) to the thermal infrared (14 microns). That

region can be further partitioned into five segments shown in Table 2.1. The par-

titions occur because of phenomenological changes from region to region as well as

coincidence with highly transmissive atmospheric windows.
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Name Abbreviation Wavelengths [µm])
Visible VIS 0.4 - 0.7

Near Infrared NIR 0.7 - 1.0
Shortwave Infrared SWIR 1.0 - 2.5
Midwave Infrared MWIR 3.0 - 5.0
Longwave Infrared LWIR 8.0 - 14.0

Table 2.1: Segments of the EM spectrum traditionally focused upon in remote
sensing.

The VIS portion of the spectrum contains the narrow band of wavelengths to which

the human visual system is sensitive. The NIR and SWIR portions are still in

the solar reflective region and can be used to monitor vegetation health as well as

further discriminate between material types (e.g. a black roof versus a black car).

During the day the energy in the MWIR is a result of both solar photons as well

as photons that are emitted directly from an object. However, at night when the

sun is down, the energy sensed in the MWIR is a result of self-emission. Finally,

the energy in the LWIR is solely a result of self-emission as the solar contribution

is deemed negligible. The LWIR is also referred to as the thermal infrared (TIR).

Using MWIR and LWIR imagery one can potentially determine the temperature of

objects within an image. However, this research will rely solely on LWIR imagery.

2.2 Radiometry

In order to understand subpixel temperature extraction techniques it is important

to understand the origin of the LWIR energy and how it is propagated from the

ground to the sensor.

2.2.1 Blackbody Radiation

A blackbody is an idealized surface that can perfectly reradiate all absorbed incident

energy. That is to say that the reflectivity of the surface is zero and the absorptivity
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is one [1]. The radiance leaving a blackbody can be modeled by Planck’s Law, which

is defined in Equation 2.1.

LBB(λ, T ) =
2hc2

λ5ehc/λkT − 1

[
W

m2srµm

]
(2.1)

where:

h Planck constant 6.6256 ·10−34[J · s]
c speed of light in a vacuum 2.99792 ·108[m/s]
k Boltzmann constant 1.3807·10−23[J/K]
λ wavelength [µm]
T absolute temperature [K]

Equation 2.1 depends only on the temperature of the object and the wavelength, or

wavelengths, of interest. If the temperature is held constant, a blackbody curve can

be generated for a range of wavelengths as shown in Figure 2.2.
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Figure 2.2: Blackbody curves for a 6000 K blackbody (top), 1000 K blackbody
(middle), and a 300 K blackbody (bottom).

The magnitude of a blackbody curve varies with temperature, with higher temper-
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atures producing curves with larger overall magnitudes. The peak of the blackbody

curve also shifts as the temperature changes. As the temperature increases the

peak value shifts to shorter wavelengths. Wein’s displacement law, defined in Equa-

tion 2.2, gives the relationship between the temperature of an object, T, and the

wavelength of maximum radiance emission.

λmax =
2897.768[µmK]

T
[µm] (2.2)

2.2.2 Emissivity

A blackbody is an idealized surface, therefore real objects will emit less energy than

a blackbody with the same temperature. Emissivity is a parameter that takes into

account the emission efficiency of an object. It is the ratio of the self-emitted spectral

radiance, L(λ, T) from an object at temperature T to the spectral radiance from a

blackbody at the same temperature LBB(λ, T)

ε(λ) =
L(λ, T )

LBB(λ, T )
(2.3)

Emissivity is a wavelength-dependent unitless parameter that can vary between 0

and 1. For a Lambertian material that emits radiance equally into the hemisphere

above its surface, the emissivity is dependent upon wavelength only. Most surfaces

are not exactly Lambertian (although approximately Lambertian surfaces can be

found in nature [1]) and will radiate more into one part of the hemisphere than

another. In other words the amount of radiance observed from a material will be

dependent upon the viewing geometry. In this case the emissivity term needs to

take into account where the sensor is in relation to the material of interest. This

quantity is known as directional emissivity. Table 2.2 shows a summary of the

emissivity terms.
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Table 2.2: Summary of emissivity terms
Lambertian? Emissivity Term Dependencies

Yes ε(λ) Wavelength (λ)
No ε(θ,φ, λ) Sensor orientation (θ,φ), Wavelength (λ)

2.2.3 Conservation of Energy

Radiance incident upon a material can be reflected, transmitted, or absorbed. Re-

flectivity, transmissivity, and absorptivity are wavelength-dependent material prop-

erties that are described by unitless metrics. Reflectivity describes how well a ma-

terial can send incident electromagnetic energy back into the medium from which

it came. The reflectance, ρ(λ), is defined as the proportion of reflected energy to

the amount of energy incident on the surface. Transmissivity characterizes how well

electromagnetic energy is allowed to pass through a medium. The transmission,

τ(λ), is defined as the ratio of the energy at the back of a surface to the energy inci-

dent on the front of the surface. Absorptivity is the ability of a material to remove

electromagnetic energy from the system by converting it to another form of energy

[1]. The absorptance, α(λ), is the ratio of the energy taken out of the system to

the amount of incident energy onto a surface. Conservation of energy dictates that

these three quantities sum to one so that all energy in the system is accounted for.

ρ(λ) + τ(λ) + α(λ) = 1 (2.4)

For an opaque material the transmission is zero and the conservation of energy

equation becomes

ρ(λ) + α(λ) = 1 (2.5)

According to Kirchhoff’s Law, the absorptivity of a material at thermal equilibrium

is equal to the emissivity ε(λ) of the material [2]. Kirchhoff’s Law for an opaque

material is
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ρ(λ) + ε(λ) = 1 (2.6)

2.2.4 Energy Paths to the Sensor

The radiance recorded by a thermal infrared (TIR) sensor is due to energy originat-

ing from multiple sources. Unlike the visible portion of the spectrum, the energy

from an object in the TIR is a result of it having a temperature above absolute

zero. Figure 2.3 illustrates the four major energy paths to the sensor in the thermal

infrared.

A B C D 

Figure 2.3: Energy paths in the thermal infrared. (Adopted from Schott, 2007, pg.
62 [1])

Path A represents the self-emitted radiance from a target of interest. Path B is the

reflected downwelled radiance from the atmosphere. The atmospheric self-emission

that is propagated directly to the sensor is represented by path C, and the self-

emitted radiance from nearby objects that reflects off the target material is path D.

These energy paths will be described in more detail in the following sections.
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2.2.5 Material Self-Emitted Radiance

The self-emitted radiance from the material of interest (energy path A in Figure 2.3)

is the only path to the sensor that contains information about the temperature of

the material [1]. To produce the self-emitted radiance, the emissivity modifies the

blackbody radiance by serving as a wavelength-dependent multiplicative factor.

L(λ, T ) = ε(λ)LBB(λ, T )

[
W

m2srµm

]
(2.7)

Equation 2.7 gives the radiance from a Lambertian material solely due to its tem-

perature. The self-emission for a non-Lambertian surface is

L(θ, φ′, λ, T ) = ε(θ, φ, λ)LBB(λ, T )

[
W

m2srµm

]
(2.8)

where (θ, φ′) are the zenith and azimuth angles, respectively, describing the direction

of the sensor.

2.2.6 Reflected Radiance

Equation 2.6 can be rearranged to show that when the emissivity of an opaque ob-

ject is less than one, some fraction of incident energy is reflected from its surface.

Energy paths B and D in Figure 2.3 represent radiance from non-target sources

being reflected off the target toward the sensor.

2.2.6.1 Shape Factor

It is rarely the case where an object has a totally unobstructed view of the sky

and/or is perfectly horizontal. Most of the time the skydome above the object is

blocked and/or the object is tilted at some angle (e.g. a sloped roof). This reduces

the amount of downwelled radiance onto the object as well as introduces energy

into the system from the object obscuring the sky. The fraction of the skydome not

masked by the background can be quantified by the shape factor, F . To compute the
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shape factor, the fraction of the hemisphere that is obstructed by the background

is computed and then subtracted from 1. The fraction of the hemisphere blocked

by the background is computed by integrating the solid angle element (dΩ) over the

solid angle obstructed by the background and dividing that quantity by the solid

angle of the hemisphere [1].

F = 1−
∫
dΩ

2π
(2.9)

It follows that the fraction of skydome that is masked by the background is given

by (1-F ). The shape factor is an important concept when talking about the two

reflected energy paths to the sensor: reflected downwelled (path B) and reflected

background radiance (path D).

2.2.6.2 Reflected Downwelled Radiance

As stated previously the energy in path B is the energy that the atmosphere emits

because of its temperature. The question becomes one of how much of that energy is

reflected off of the target toward the sensor. To answer this, the energy contribution

of every location in the sky must be determined. This is done by approximating

the non-homogeneous atmosphere as a series of N homogeneous layers stacked on

each other where the first layer is defined to be the one closest to the ground. The

blackbody radiance of each layer can be calculated using Planck’s Law. However, the

atmosphere is not a blackbody so (as in the case of the target self-emitted radiance)

the emissivity of the atmosphere will serve as a wavelength-dependent modifier of

the blackbody radiance of each layer. To determine the emissivity of each layer

recall that conservation of energy requires that the reflectance, transmission, and

absorptance of a medium equal one. This can be also applied to each layer of the

atmosphere

∆ρi + ∆τi + ∆αi = 1 (2.10)

where ∆ρi, ∆τ i, and ∆αi are the reflectance, transmission, and absorptance of
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the ith layer of the atmosphere. Since atmospheric scattering is negligible in most

portions of the thermal infrared [1], ∆ρ is zero leaving

∆τi + ∆αi = 1 (2.11)

Kirchhoff’s Law can be applied by replacing the absorption term with emissivity

and the terms can be rearranged to show that the emissivity of the entire ith layer

can be expressed as

∆εi = 1−∆τi (2.12)

At this point the self-emitted radiance of a single layer of the atmosphere can be

calculated. However, the energy from each layer needs to be propagated down to

the target of interest. This is done by multiplying the radiance term of the ith layer

by the product of the transmissions of the (i - 1) layers that came before. To obtain

the total downwelled radiance contribution from the atmosphere in the direction

defined by the angles (σ, φ), the radiance from each of the N atmospheric layers is

summed giving

Ld(σ, φ) =
N∑
i=1

Latm i(1−∆τi)
i−1∏
j=1

∆τj (2.13)

If the spectral dependence is included, the amount of radiance reflected toward the

sensor from a horizontal, Lambertian surface with an unobscured view of the sky is

Lrd(λ) = Ld(λ)r(λ) (2.14)

If the surface is non-Lambertian (but still has an unobscured view of the sky),

the reflected downwelled radiance has an angular dependence as well as a spectral

dependence.

Lrd(θ, φ
′, λ) =

∫
2π

Ld(σ, φ) cosσ
r(σ, φ, θ, φ′, λ)

π
dΩ (2.15)
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where (θ, φ′) represent the direction of the sensor.

For surfaces whose view of the sky is obstructed, the shape factor, F , from Sec-

tion 2.2.6.1 is included in the limit of integration. The equation for the amount

of radiance reflected toward the sensor due to the downwelled component of self-

emitted sky radiance is

Lrd(θ, φ
′, λ) =

∫
F

Ld(σ, φ) cosσ
r(σ, φ, θ, φ′, λ)

π
dΩ (2.16)

2.2.6.3 Background Reflected Radiance

The equation for the amount of radiance from background objects that is reflected

off of the target toward the sensor, Lrbk, is derived in the same way as the reflected

downwelled radiance. However, in this case the integration is performed over the

amount of sky obstructed by the background (1-F) and the amount of radiance from

the background, Lbk, is used.

Lrbk(θ, φ
′, λ) =

∫
1−F

Lbk(σ, φ) cosσ
r(σ, φ, θ, φ′, λ)

π
dΩ (2.17)

Equation 2.16 and Equation 2.17 can be combined for the sake of simplicity into a

reflected radiance term

Lr(θ, φ
′, λ) =

∫
F

Ld(σ, φ) cosσ
r(σ, φ, θ, φ′, λ)

π
dΩ +

∫
1−F

Lbk(σ, φ) cosσ
r(σ, φ, θ, φ′, λ)

π
dΩ

(2.18)

2.2.7 Upwelled Radiance

The upwelled component of the sensor-reaching radiance (path C in Figure 2.3 ) is

also due to the self-emission of the atmosphere. The energy is emitted by the at-
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mosphere directly into the line of sight of the sensor, as opposed to the downwelled

component, where the energy is reflected into the sensor line of sight by scene el-

ements. The expression for the upwelled radiance is derived in the same manner

as the downwelled radiance except that the layers of the atmosphere are defined

with the first layer being at the sensor and the last at the ground. Therefore the

transmission term, τ i, is the transmission of the atmosphere from the sensor to the

top of the ith layer. Finally, the upwelled radiance is expressed as

Lu(θ, φ
′) =

N∑
i=1

LBB(λ, Ti)(1−∆τi)
i−1∏
j=1

∆τj (2.19)

2.2.8 Atmospheric Transmission

Atmospheric transmission refers to the loss of energy in a beam of radiation as

it is propagated from the object of interest to the sensor. The mechanisms by

which energy is lost due to the atmosphere occurs are atmospheric absorption and

scattering.

2.2.8.1 Absorption

In general, absorption occurs when energy in a beam is converted to another form

of electromagnetic energy (typically thermal). The converted energy is therefore

considered a loss from the original beam. Atmospheric absorption occurs when

molecules in the atmosphere absorb energy from a beam, which causes a molecular

vibration, rotation, or electron orbital transition to another energy state.

The amount of energy removed in a given path length depends on the effective size

of the absorbing molecules as well as the number of molecules in a volume. The

absorption cross section, Cα, is the effective size of a molecule relative to the photon

flux at that wavelength [1]. The absorption cross section can be computed as a

function of wavelength for an atmospheric constituent. The fractional amount of

energy absorbed per unit length of travel is given by
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βα = mCα [m−1] (2.20)

where m is the number of molecules per unit volume. For a beam passing through

a horizontal layer of gas with an infinitesimally small thickness, dz, the absorption

through the layer is

dα =
dΦ

Φ
= −βα(z) sec(θ) dz (2.21)

where θ is the zenith angle, Φ is the incident flux entering the layer, and dΦ is the

flux lost to absorption in the layer. Integrating both sizes and taking the antilog

gives the transmission,

τα = e
−
z2R
z1

βα(z) sec θ dz

(2.22)

where the limits of integration are the starting and ending altitudes of the path. If

more than one constituent is contained within the layer, the absorption coefficient

becomes the sum of the absorption coefficients of the individual constituents.

2.2.8.2 Scattering

Energy can be lost from a beam of radiation via scattering. The transmission loss

due to scattering can be written in a similar fashion to the transmission loss due to

absorption

τs = e
−
z2R
z1

βs(z) secφ dz

(2.23)

where βs(z) is the scattering coefficient. The scattering coefficient depends on the

cross-sectional area of the particles as seen by the beam as well as their index of

refraction. It can be expressed as a function of a dimensionless size parameter a,

a =
2πr

λ
(2.24)
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The a value is the ratio of the size of the scattering particle to the wavelength of the

incident radiation [3]. Rayleigh scattering encompasses the area where the particle

size is much smaller than the wavelength (a � 1). Lord Rayleigh showed that for

a given index of refraction the scattering coefficient is inversely proportional to the

fourth power of wavelength. Incident radiation is scattered evenly in the forward

and backward hemispheres [1].

The Mie scattering region spans the intermediate values of a (0.1 < a <50) [3] and is

often referred to as “aerosol scattering”. Mie scattering is weakly dependent on the

wavelength of the radiation and, unlike Rayleigh scattering, the radiation is highly

forward-scattered [1].

When the particle size is much larger than the wavelength (a � 50) nonselective

scattering occurs. With nonselective scattering the incident radiation is scattered

approximately equally in all directions. There is also little dependency on the wave-

length of incident radiation. Nonselective scattering is most often associated with

raindrops, hail, and large dust particles, for example.

In the thermal infrared, significant scattering is not produced by ordinary gas

molecules. However scattering will become important when dust particles and

aerosols are present in the atmosphere [3].

2.2.8.3 Total Transmission

Atmospheric absorption and scattering can be taken into account by an overall

atmospheric transmission term

τatm = e
−
z2R
z1

βext(z) secφ dz

(2.25)

where βext is the extinction coefficient that represents the sum of the individual

absorption and scattering coefficients.
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2.2.9 The Governing Equation

The terms described in Sections 2.2.5 - 2.2.8 can be combined into a single equa-

tion that describes how energy is propagated from ground to sensor in the thermal

infrared portion of the spectrum. This is given by the governing equation.

L(θ, φ′, λ) = [Lself + Lr] τatm + Lu (2.26)

The governing equation gives the total spectral radiance reaching the sensor in units

of [W m−2 sr−1 µm−1].

2.3 Mixed Pixels

Mixed pixels occur when two or more materials are contained within a pixel bound-

ary. The governing equation discussed in Section 2.2.9 models energy propagation

to the sensor for a pixel comprised of a single material. The nature of the subpixel

problem requires the consideration of another material within a pixel and therefore

another governing equation for heterogeneous pixels. Equation 2.27 shows the gov-

erning equation for a pixel with two constituents that are expressed as target and

background (note that the angular dependencies are left off for brevity).

Lsensor(λ) = [ftεt(λ)LBB(Tt, λ) + (1− ft)εb(λ)LBB(Tb, λ) + ftLrt(λ) + (1− ft)Lrb(λ)] τ(λ)

+Lu(λ)

(2.27)

where f t is the areal fraction of the target. The reflected radiance terms are denoted

by Lrt and Lrb and account for the reflection of downwelled and background radiance

from the target and background materials, respectively.
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2.3.1 Target position

One important parameter to the small target problem that the governing equa-

tion does not take into account is the position of the target relative to the projected

thermal pixels. Figure 2.4 illustrates what is meant by the target position parameter.

The target in the leftmost image in Figure 2.4 is located such that each of the four

pixels that it is physically projected into will see an equal radiance contribution and

therefore they will all have the same radiance. The center image has the target

centered in the lower right pixel which will cause the lower right pixel to have a

different radiance than the other pixels in the neighborhood. However, due to adja-

cency effects and the point spread function of the imaging system there will still be

some contribution of energy from the target in the surrounding pixels. The same is

true for the image on the right.

vs vs 

2 pixels 2 pixels 2 pixels 

Figure 2.4: The location of a subpixel target (red circle) changes the radiance values
for the pixels in the neighborhood surrounding the target.

In short, pixel radiance values vary with target position. It is important to have a

good estimate of the location of the target when modeling a scene in DIRSIG or else

there will be error in the pixel radiance values used to derive the target temperature

at the end of the process which will in turn cause a larger temperature extraction

error.
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2.4 Heat Transfer

Heat transfer is thermal energy in transit due to a spatial temperature difference [4].

There are three modes of heat transfer: conduction, convection, and thermal radia-

tion. Conduction is the transfer of energy from more energetic atoms or molecules to

less energetic atoms or molecules through collisions. The more energy a particle has,

the higher the temperature, so energy via conduction must occur in the direction

of decreasing temperature. The conductive heat flux, q”conduct, is the rate of heat

transfer per unit area for conduction and is governed by Fourier’s Law. In vector

form the heat flux due to conduction is

q′′conduct = −k
(

i
dT

dx
+ j

dT

dy
+ k

dT

dz

)
(2.28)

where k is the thermal conductivity in units of [Wm−1K−1] and dT
dn

is the change in

temperature over a distance in the n direction. The negative sign indicates the heat

is being transferred in the direction of decreasing temperature.

Convection occurs between a fluid in motion and a surface when the two surfaces

are different temperatures [4]. Convection can be due to force (e.g. HVAC systems)

or nature (e.g. oceanic currents). The convective heat flux is given by Newton’s

Law of Cooling

q′′convec = h(Ts − T∞) (2.29)

where h is the convective heat transfer coefficient, Ts is the temperature of the sur-

face, and T∞ is the temperature of the free stream. The convective heat transfer

coefficient is a measure of how effective a fluid is at carrying heat to and away from

a surface. The higher the convection coefficient, the more effective the fluid is at

transporting the heat energy. It is dependent on factors such as the fluid density,

velocity, and viscosity. In general, fluids that are dense and/or have a higher velocity

have a larger value for h. The same is true for rougher surfaces [5].
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Thermal radiation is the exchange of heat energy through electromagnetic progaga-

tion and requires no matter. The net rate of radiation heat transfer from a surface

is

q′′rad = εσ
(
T 4
s − T 4

sur

)
(2.30)

2.5 Point Spread Function

The point spread function (PSF) is a characteristic of all optical systems and is

the measure how the energy from a point source is spread spatially across the focal

plane. The degraded image, g(x,y), can be modeled as a convolution

g(x, y) = f(x, y) ∗ h(x, y) (2.31)

where f(x,y) is the incoming energy, and h(x,y) is the point spread function. The

h(x,y) term is also called the impulse response of the system. It should be noted

that while the optics have an impulse response. other steps in the imaging process

(e.g. the detector) have their own impulse responses, each of which can be convolved

together to arrive at the total impulse response of the system.

2.6 Modeling Tools

Three modeling tools will be used extensively in the completion of this research.

The first is the Digital Imaging and Remote Sensing Image Generation (DIRSIG)

tool [6]. DIRSIG will be used to model the collected thermal image. In conjunction

with DIRSIG, the MuSES (Multi-Service Electro-optic Signature) program [7] will

be used to model the heat transfer between objects in a scene. The third tool is

the MODerate spectral resolution atmospheric TRANsmission (MODTRAN) atmo-

spheric radiative transfer program. MODTRAN [8] will be used to estimate the

downwelled component of the radiance as well as the atmospheric transmission and

the upwelled radiance.
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2.6.1 DIRSIG

The DIRSIG tool was developed by the Digital Imaging and Remote Sensing (DIRS)

Laboratory at the Rochester Institute of Technology (RIT). It is a synthetic image

generation application that is capable of modeling imaging systems with sensitivity

in the visible through thermal infrared regions of the spectrum as well as polari-

metric, RADAR, and LiDAR systems [6]. To accurately reproduce the radiometry

of a scene, DIRSIG utilizes ray tracing and first principle physics and mathemati-

cal theories. Sub-models based on first principles, including BRDF prediction, facet

temperature prediction, sensor models, and atmospheric models are used to generate

the synthetic imagery. All modeled components are combined using a spectral rep-

resentation and integrated radiance images can be simultaneously produced for an

arbitrary number of user-defined bandpasses. The DIRSIG model can also model

multiple reflections as a photon interacts with a scene. The standard output of

DIRSIG is an image file with an associated header. Truth images containing the

data used by DIRSIG during simulations (e.g. material ID) can also be rendered.

DIRSIG is an appropriate choice for a modeling tool for this research for multiple

reasons. One is that it is able to model radiometric interactions between facets of

a model as well as pieces of geometry in a scene without making any simplifying

assumptions. It can also model (with the help of MODTRAN) the interaction

between the atmosphere and the scene. It was also chosen because of the addition

of an improved subpixel sampling scheme that would facilitate the subpixel problem

present in this research.
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2.6.1.1 Adaptive Subsampling

(a) Single ray sampling shown for
4x4 pixels.

1 Pixel 

(b) Grid oversampling shown
for one pixel.

1 Pixel 

(c) Adaptive subsampling
shown for one pixel.

Figure 2.5: Sampling methods in DIRSIG. Each dot represents a single sampling
ray.

Typically in DIRSIG, one sampling ray is cast from the center of each detector ele-

ment and calculates the radiometry for the entire pixel based upon the material the

ray intersects with. This single ray sampling method, shown in Figure 2.5(a), will

return the correct answer for a material that completely fills a pixel.

Prior to the start of this project a sampling method that accounted for mixed pix-
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els was already implemented in DIRSIG. This method, shown in Figure 2.5(b),

uses a grid sampling approach where each pixel in the focal plane is divided into

sub-elements and a sampling ray is cast from the center of each sub-element. The

sampling rays from one pixel are averaged together to produce the pixel’s radi-

ance value. The sub-samples in grid sampling are spread evenly over the pixel and

therefore spatially sample all sub-elements equally. An improvement to this method

would be to send more samples to the important areas of a scene (e.g. areas of

change) as opposed to areas of less importance (e.g. large, uniform areas).

Adaptive subsampling, while not new to the computer graphics community, is a new

sampling scheme in DIRSIG introduced for this research that seeks to only send sub-

pixel samples to areas of importance. This method, shown in Figure 2.5(c), divides

each pixel into a user-specified number of sub-elements and a sampling ray is cast

from a random location within the pixel. Adaptive subsampling looks for varia-

tion within and between sub-elements and sends more sampling rays where it finds

variation. There are thresholds that the user can specify so that the code does not

keep casting sampling rays ad nauseam. One is the maximum number of sampling

rays cast per pixel and the other is a change in radiance threshold, where, if the

radiance value computed from one sampling ray to the next changes by less than

the threshold, no more rays will be cast. If either of these stopping criteria are met

the adaptive sampling code ceases casting rays and moves on to the next pixel.

This improvement in the way DIRSIG handles mixed pixels reduces the amount of

computation time needed to arrive at a radiometrically accurate answer by way of

sampling based on importance [9]. This reduction in time becomes crucial when

multiple DIRSIG simulations are required.

2.6.2 MuSES

One piece of the puzzle that DIRSIG does not compute is the heat transfer via con-

vection, conduction, and thermal radiation between objects in the scene. Appendix



26 2.6. MODELING TOOLS

A contains temperature measurements showing the heating of a surface by a trans-

former. In the span of approximately 7ft the temperature of the surface changed by

over 3◦C due to heat transfer. In order to accurately model the interactions within

a piece of collected imagery the heat transfer needs to be taken into account. This

will be done using the Multi-Service Electro-optic Signature (MuSES) thermal sig-

nature prediction program from ThermoAnalytics. MuSES employs first-principles

physics and empirical data to run simulations [7]. A voxel-based ray-tracer is used

to compute view factors for all facets of a model as well as radiosity, and BRDF.

The program can simulate low-resolution models for real-time predictions as well

as high-resolution models with millions of elements. MuSES can compute a multi-

bounce radiosity solution for all model facets as well as background pixels [7]. The

output of MuSES is a Thermal Description File, or TDF. This file contains the

temperature solutions and the geometry of the simulations.

MuSES can ingest a number of geometric models including the Wavefront Tech-

nologies’ OBJ file format. MuSES is very sensitive in the type and quality of the

surface mesh used in the model. MuSES will only use tri (three vertices) and quad

(four vertices) meshes. The thermal solution is calculated at a node placed at the

centroid of each mesh element. The size of the mesh elements affects the length and

quality of the simulations. A finely meshed surface will produce a more accurate

thermal solution but this comes at the cost of increased simulation run time. The

mesh elements should be small enough to provide sufficient resolution to avoid large

thermal gradients.

The aspect ratio (the ratio of the length to the width) of a mesh element is recom-

mended to be no larger than 4:1, however 10:1 is the absolute largest aspect ratio

allowed. In short, long, skinny polygons are not ideal shapes for a mesh element.

The quality of the mesh of a model has a large effect on the thermal conductiv-

ity within the model. If nodes of adjacent surfaces are joined together so that they

form a perfect seam, there will be conduction between the elements. If there is a gap

or misalignment of the nodes, there will be no conduction. Other mesh problems
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include penetrating elements which occur when one object goes through another

without sharing vertices and coincident vertices where two separate vertices occupy

the same point in space. In both cases heat transfer via conduction cannot occur.

The characteristics of a good quality mesh for import into MuSES [10] are as follows:

1. All adjacent polygons share common vertices

2. All polygons are three or four-sided

3. All polygons are planar

4. All polygons have an aspect ratio near unity

5. Polygons are spread uniformly across the surface

6. No overlapping or repeated facets

7. Surface mesh only (e.g. thin plates are represented by their exterior surface

only)

8. Mesh is broken into meaningful parts

MuSES is typically run from a graphical user interface (GUI) but can also be run

from the command line, which allows for scripting to execute multiple simulations

without user interaction.

2.6.3 MODTRAN

The MOderate spectral resolution atmospheric TRANsmission (MODTRAN) algo-

rithm is an atmospheric radiative transfer program developed by Air Force Research

Laboratory (AFRL) and Spectral Sciences, Inc (SSI). MODTRAN models the at-

mosphere as a stack of homogeneous layers [11]. Each layer can be assigned a

temperature and pressure either from one of the standard atmospheric models in

MODTRAN or radiosonde data input by the user. There are six standard atmo-

spheres in MODTRAN ranging from tropical to mid-latitude summer to sub-arctic
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winter. Each of the standard atmospheric profiles can be made to be more represen-

tative of a specific location by incorporating user-specified variables such as aerosol

and cloud parameters, time of year, time of day, and the latitude and longitude of

the location. The standard output of a MODTRAN run is the atmospheric trans-

mission and the upwelled radiance. For this research, DIRSIG will use MODTRAN

to compute the total downwelled radiance by placing a sensor at ground level so

that it looks at an unobscured sky and running MODTRAN for each combination

of 6 zenith angles and 12 azimuthal angles of the sensor. The atmospheric values

from these runs are stored in the atmospheric database (ADB) file. After a ray from

the sensor strikes a spot on the ground , DIRSIG sends out rays from the spot to

sample the radiance from the sky dome by referencing the ADB file. Each ray cast

from the sensor will have a specific look-angle and DIRSIG interpolates the value

for each ray from the surrounding look-angles in the ADB file.

2.7 Regression

When analyzing a dataset, the goal is often to look for relationships between the

variables so that an output can be determined from one or more input parameters.

It would be nice to be able to collect an infinite amount of data so that for every

possible value of x that there was a corresponding y value and a relationship between

the two variables was exactly known. This is impossible in practice so regression

analysis is used as a way to interpolate between collected x values by finding a re-

lationship between a sampled set of x and y. In regression analysis, y is typically

called the dependent variable and x is called the independent variable, or the regres-

sor variable. It is not uncommon for there to be more than one independent variable.

As stated above, regression analysis is used to functionally relate a dependent vari-

able to a set of independent variables. In order to perform regression analysis a

functional form for the relationship must first be specified. This form can and

should be checked for adequacy later on in the process. In the case of simple linear
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regression the model is

y = β0 + β1x+ ε (2.32)

Since the model is estimating the relationship between the variables, an error term,

ε, is introduced. The error is a random model error component that is assumed to

have a mean of zero and a variance of σ2 [12] The errors are also assumed uncor-

related and normally distributed. The model error term describes the deviation of

each dependent variable value from the unknown population regression line and is

unknown [13]. An extension of simple linear regression is multiple linear regression

where a linear relationship is found between the dependent variable and multiple

regressor variables. The functional form for multiple linear regression is

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε (2.33)

Models might also include interaction terms which are the product of regressor

variables, for example x1x2. A third type of regression is polynomial regression where

the functional form of the relationship between y and the independent variables is

a kth-order polynomial. Polynomial regression is still considered to be a form of

linear regression because it is linear in the regression coefficients. For one variable

the model is

y = β0 + β1x+ β2x
2 + · · ·+ βkx

k + ε (2.34)

The model in Equation 2.34 can be extended to account for multiple regressor vari-

ables as well as interaction terms. The models listed are not a comprehensive list

of functional models in regression analysis, they are simply the ones that are used

most often.

Regardless of the functional form of the model chosen for the linear regression anal-

ysis, it can be expressed in matrix form as
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y = Xβ + ε (2.35)

where y is an n × 1 vector of the observations, X is an n × m matrix of the levels of

the regressor variables and is also sometimes referred to as the design matrix, β is an

m × 1 vector of the regression coefficients, and ε is an n × 1 vector of random errors.

In this case, n is the number of rows in the X matrix and m is the number of columns.

Multiple methods exist to calculate the vector of regression coefficients that best fit

the model. One of the most widely used is the method of least squares.

2.7.1 Least Squares

Least squares problems can be divided into two main categories: linear and non-

linear. This research will only deal with a linear least squares approach. The least

squares estimates of the regression coefficients are calculated by

β̂ = (X′X)
−1

X′y (2.36)

which is the pseudoinverse of X multiplied by the dependent variable observations.

The vector of fitted values ŷi that correspond to the observed values yi is calculated

by

ŷ = Xβ̂ (2.37)

The quantity yi - ŷi is known as the residual. The residuals are the observed vertical

deviation of the dependent variable values from the fitted regression line [13]. The

vector of residuals can also be written in matrix notation

e = y − ŷ (2.38)

The method of least squares estimates the regression coefficients such that the sum

of the squared residuals is minimized. At this point the least squares estimates of
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the regression coefficients can be used to make predictions of a new set of outcomes

from a new set of observed regressor values.

2.7.2 Model Adequacy

Once a functional form is chosen for a model it should be tested to determine if

it is an adequate representation of the data. This research employs two methods

to determine which model is most adequate for the data set. The first method is

analysis of the residuals of a model. The second involves comparing models and

using a numeric metric to determine the superiority of one model over another.

2.7.2.1 Residual Analysis

Since residuals can be thought of as the deviation between the observed data and

the fitted data, they can also be thought of as a measure of the variability in the

dependent variable not explained by the regression model [12]. Plotting the residuals

versus the fitted values, ŷ, is a useful way of detecting common inadequacies. Ideally

the residual plot would show the residuals randomly scattered within a horizontal

band about zero. This is shown in Figure 2.6.

e 

0 

ŷ 

Figure 2.6: Plot showing the ideal pattern of residuals.
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If the residuals are contained within a horizontal band then there are no obvious

inadequacies in the model. If, for example, a first order model was being tested and

the residuals revealed a polynomial shape, that would indicate that a higher-order

model was required to explain all of the variation in the data set.

2.7.2.2 Testing Individual Coefficients for Significance

Another model-to-model comparison involves comparing the number of statistically

significant coefficients in different models. One rule of thumb when choosing the

order of a polynomial regression model is to check the number of statistically signifi-

cant coefficients for a given model and compare that to the next higher order model

[14]. If the number of significant coefficients increases then the higher order model

should be used, the thought being that an increase in the number of significant co-

efficients means that the model is explaining variability in y that the other models

are not able to.

Statistically significant means that a result is unlikely to have happened by chance.

When testing the significance of an individual regression coefficient the hypotheses

are as follows:

H0 : βj = 0, H1 : βj 6= 0 (2.39)

where H0 is the null hypothesis and H1 is the alternative hypothesis. The null

hypothesis is that the coefficients are equal to zero. Rejection of the null hypothesis

implies that a coefficient is different enough from zero that its regressor variable is of

value in explaining the variability in the dependent variable. The test statistic that

is used to determine whether the coefficient is different enough from zero to reject

the null hypothesis is the two-tail t-test. The t-test quantifies the contribution of a

regressor given that all of the other regressors are in the model [12]. The t-statistic

for the coefficient βj is:
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to =
β̂j√
σ̂2Cjj

(2.40)

where Cjj is the diagonal element of (X’X)−1 corresponding to the coefficient β̂j,

and σ̂2 is defined as

σ̂2 =
y′y − β̂

′
X′y

n− p
(2.41)

where n is the number of observations and p is the number of regression coefficients.

The t-test is performed at a certain significance level, α. The value of α is the

threshold for rejecting the null hypothesis and is set prior to the t-test being admin-

istered. In other words α sets the standard for how different the coefficient has to

be from zero in order for the null hypothesis to be rejected. Common values used

for α are 0.05 and 0.01 and, in general, the smaller α is the more the coefficient has

to differ from zero in order for it to be deemed statistically significant.

All test statistics have an associated probability called the p-value. The p-value is

the probability of obtaining a value of the test statistic that is at least as extreme

as the one observed, assuming the null hypothesis cannot be rejected. For the t-test

the p-value is computed as

p = 2 [1− F (|to|)] (2.42)

where F (|to|) is the cumulative distribution function of the t-distribution with n - p

degrees of freedom. In order to make a determination concerning the null hypothe-

sis, the p-value is compared to α. If the p-value is less than α, the null hypothesis

is rejected and the coefficient is statistically significant at that α-level.

One other factor to consider when testing for the significance of the regression co-

efficients is the multiple testing problem. With an increased number of hypothesis

tests comes an increased likelihood of a chance finding [15]. For example if α was
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set to 0.05 for one test then the probability of a false positive occurring is 5%. How-

ever, if 100 independent tests are conducted then the probability of at least one false

positive rises to 99.4% if the null hypothesis is true for all 100 tests. The Bonferroni

correction, developed by Italian mathematician Carlo Emilio Bonferroni, provides

one solution to the multiple testing problem. The Bonferroni correction says that

if one wants a familywise alpha level of α then each of the n individual hypothesis

tests should be conducted at the α/n significance level [16].

2.7.3 Sample size selection

One logical question is how many samples are required in order for the regression

model to find a significant relationship in the data set. There are many metrics

that have been published and the rules-of-thumb give a wide range of sample sizes.

Brooks and Barcikowski [17] compiled a listing of nine sample size selection rules-

of-thumb. The sample sizes ranged from N = (10·p), where p is the number of

independent variables, to N > 100. For this research 50 samples will be used. This

number of samples could support a regression model with five independent variables,

according to the metric. However, there will only be one independent variable in

the equation so the number 50 was chosen because it fell between the minimum and

maximum sample sizes as given by the rules-of-thumb.

2.8 Error propagation

A process with one or more inputs will contain some degree of error. If the process

can be modeled using a governing equation where the parameter of interest, Y , is a

function of one or more inputs, namely

Y = f(X1, X2, ..., XN) (2.43)

then the error in Y can be expressed as
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Sy =

[(
∂Y

∂X1

SX1

)2

+

(
∂Y

∂X2

SX2

)2

+ ...+

(
∂Y

∂XN

SXN

)2
] 1

2

(2.44)

where sXi is the error in the individual input variables. The partial derivatives with

respect to each input represent the how sensitive the process is to a change in each

individual input. Equation 2.44 assumes that the inputs are uncorrelated, meaning

a change in one input does not induce a change in another. If some of the input

variables are correlated then Equation 2.44 has to be modified to account for the

correlation [1].

Sy =

[(
∂Y

∂X1

SX1

)2

+

(
∂Y

∂X2

SX2

)2

+ ...

(
∂Y

∂XN

SXN

)2

+
∑

2ρij
∂Y

∂Xi

∂Y

∂Xj

sXisxj

] 1
2

(2.45)

where ρij is the correlation coefficient between X i and Xj and the sum is over all

combinations of correlated variables.

If a governing equation is not available the values of the partial derivatives are

computed using simulated data and Monte Carlo methods [1]. In this situation one

input variable is varied at a time for multiple values and the relationship between

the parameter of interest and the varied parameter is derived from the empirical

data.

2.9 Temperature extraction from multiple pixels

If enough terms are known, the governing equation from Section 2.6.5 can be in-

verted and solved for the background temperature. The imagery is assumed to be

atmospherically corrected so the atmospheric transmission and upwelled radiance

terms drop out of the equation. This leaves the self-emitted term and the reflected
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downwelled radiance term. Section 2.6.3 describes the method for calculating the

downwelled radiance term. The downwelled radiance is multiplied by (1 - εB) to

arrive at the reflected downwelled radiance. The self-emitted term contains the tem-

perature of the background as well as its emissivity. The background emissivity can

be estimated using methods described in the next chapter. This leaves the back-

ground temperature as the only unknown in the governing equation. An iterative

process can be employed where the radiance is computed for different background

temperatures using the governing equation. After each computation, the radiance

value is compared to the background radiance value from the collected image and

the process continues until the two radiance values are equal. The input temper-

ature that equalized the radiance values is used as the background temperature

estimate. This result could also be achieved by inverting the governing equation.

This technique was used to estimate the background temperature as the assump-

tion was made that the pixels surrounding the target of interest only contained the

background material.



Chapter 3

Previous Work

This section will discuss the previous research into subpixel temperature retrieval

methods as well as provide a summary of the methods.

3.1 Subpixel Temperature Retrieval with Multi-

spectral Sensors

Szymanski et al. (1999) [18] published a method to extract temperatures from ob-

jects smaller than a pixel using multispectral thermal infrared data with emphasis

on retrieval accuracy. The focus was on pixels containing two materials, each with a

temperature near 300K. They considered the case of materials having substantially

different, but known, emissivities as well as a pixel containing a single material at

two different temperatures. The bulk of the paper focused on the former case with

retrieval results and errors being presented. The analysis was performed on a night-

time synthetic river scene with pixels along the riverbank containing a mixture of

land and water. Atmospheric effects were not considered in this study although

methods for estimating the atmospheric transmission and the upwelled radiance

were described in the paper.

The authors used a spectral mixture analysis approach to solving the problem and

37
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SENSORS

started with the following equation for the top-of-the-atmosphere (TOA) radiance

for a mixed pixel in band i

Limixed = f1ε
i
1LBB(T1) + f2ε

i
2LBB(T2)τ iatm + Liu + Lid(r

i)τ iatm (3.1)

where f 1 and f 2 are the areal fractions of the pixel that are at temperatures T 1 and

T 2, the ε’s are the emissivities of the two materials, τ iatm is the transmission of the

atmosphere, Liu is the upwelled radiance, Lid is the downwelled radiance, and ri is

the reflectance of the mixed pixel. They noted that the temperatures, emissivities,

and transmissions are effective values because of band-averaging. It was assumed

that the downwelled radiance would be a negligible effect due to the high emissivities

of natural surfaces and therefore was removed from the equation.

One issue that arises from using this approach to the subpixel temperature estima-

tion problem is that there are 2(N+1) unknowns (N emissivities for each material

and a temperature for each material) and only N observations (bands). In the

method presented the assumption is made that the areal fractions can be deter-

mined from another source and that the emissivities are known. In this method

the emissivity of water is assumed to be well-known in all bands and therefore are

assigned no error. This assumption limits the method to calm water surfaces as

the emissivity would change with surface roughness introducing error. Atmospheric

effects were not included in the simulations so the upwelled radiance was removed

from the equation and the TOA radiance becomes

Lireduced = f1ε
i
1LBB(T1) + f2ε

i
2LBB(T2) (3.2)

If an atmosphere had been added in their simulation, the quantity Lreduced would be

the radiance from a mixed pixel after atmospheric correction. The only unknowns

in the Lreduced equation are the two temperatures and there are N bands, therefore

Equation 3.2 can be fit for T1 and T2.

The authors added detector noise, calibration errors, emissivity uncertainties (ex-
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cluding water emissivity), and/or areal fraction error into the simulations. Cali-

bration error and detector noise characteristics of the Moderate Resolution Imaging

Spectroradiometer (MODIS) and Advanced Spaceborne Thermal Emission and Re-

flection Radiometer (ASTER) were used. It was assumed that the ground sample

distance (GSD) of the visible sensor is four times smaller than that of the thermal

sensor which results in the visible pixel area being approximately 6% smaller than

the thermal pixel area. Therefore an areal fraction error of ±3% was used in the

analysis. The GSD of the ASTER VNIR bands is six times smaller than that of

the thermal bands which would translate to a smaller areal fraction error. The land

emissivities were determined by performing the temperature retrieval using the av-

erage of the emissivities of eight soil types found in the Salisbury database [19]. The

pixels analyzed were comprised of 30% - 90% water and 10% - 70% land (soil).

For the simulations of ASTER data with a calibration error of 1.5% and an signal-

to-noise ratio (SNR) of 200 the root mean square (RMS) error was 27K for land

temperature retrieval and 13 K for water temperature retrieval. These values de-

creased with lower calibration error and higher SNR. A retrieval was also performed

using a hypothetical MWIR band (3.66µm - 4.08µm) with 1.5% calibration error

which resulted in an RMS error of 5K for land temperature and 2.4K for water

temperature. For the MODIS simulations a 1.5% calibration error was added and

the SNR was 200 for the LWIR bands which resulted in an RMS error of 3.9K for

the land temperature retrieval and 1.5K for water temperature retrieval.

3.2 A Method for Satellite Identification of Sur-

face Temperature Fields of Subpixel Resolu-

tion

A method for subpixel target temperature and subpixel target area using surface

radiance temperatures from two channels of the AVHRR instrument was developed
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by Dozier (1981) [20]. It takes advantage of the assumption that a hot target

will contribute proportionately more radiance to the MWIR signal compared to the

LWIR signal from the same scenario, and can be used with any sensor with a band in

each of the spectral regions as long as neither band saturates. The method assumes

two temperature fields within a pixel, the target and a uniform background. The

target material is at a temperature, T T and occupies a proportion p of the pixel

of interest, where (0 < p < 1). The background material is at a temperature, TB,

and occupies (1 - p). The radiance values observed in AVHRR channels 3 and 4

are denoted by L3 and L4, respectively and are assumed to be blackbodies (ε =

1). In the absence of an atmosphere or reflected background radiance, the radiance

temperatures sensed by AVHRR are

T3 = L−1
3 [pL3(TT ) + (1− p)L3(TB)] (3.3)

T4 = L−1
4 [pL4(TT ) + (1− p)L4(TB)] (3.4)

where Ln
−1 denotes the inversion of the Planck equation. The target temperature

and the proportion can be solved for by rearranging Equations 3.3 and 3.4 and

solving the set of simultaneous non-linear equations.

L3(T3)− [pL3(TT ) + (1− p)L3(TB)] = 0 (3.5)

L4(T4)− [pL4(TT ) + (1− p)L4(TB)] = 0 (3.6)

Knowledge of the background temperature is required, otherwise there are more un-

knowns than equations. The paper also describes an atmospheric correction factor.
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3.2.1 Retrieval of Subpixel Fire Temperature and Fire Area

in Moderate Resolution Imaging Spectrometer

Lim et al. (2002) [21] applied the Dozier method to fire temperature and area using

the MODIS sensor. MODIS was used because its fire sensitive bands have higher

saturation values. The background temperature was determined by looking at the

cloud-free pixels surrounding the fire in the 10µm band and computing the mean

temperature. The background emissivity was assumed to be 0.97, which they state is

an emissivity typical of vegetation. The Iterative Newton-Raphson Method (INRM)

was used to determine fire temperature and area. A sensitivity analysis showed that

the fire temperature can be determined to within 5% if the background temperature

is known to within ±1K and the emissivity is known to within 0.01 of a unit. The

uncertainty of the fire area was as large as 50%.

3.2.2 Application of the Dozier Retrieval to Wildfire Char-

acterization: A Sensitivity Analysis

Giglio and Kendall (2000) performed a sensitivity analysis on the Dozier technique

and found that under realistic conditions the random error in retrieved fire temper-

ature to be ±100K and the error in area to be ± 50% for a fire that occupies more

than 0.05% of the pixel area [22].

3.3 Estimating Subpixel Surface Temperatures and

Energy Fluxes from the Vegetation Index-Radiometric

Temperature Relationship

Kustas et al. [23] developed a procedure, called DisTrad, for subpixel temperature

estimation that makes use of the functional relationship between radiometric sur-

face temperatures (TR) and the Normalized Difference Vegetation Index (NDVI).

More often than not, NDVI imagery is available at a higher resolution than the TR
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imagery and therefore can be used to disaggregate the surface temperature pixels to

the resolution of the NDVI image. In other words, the DisTrad uses the relationship

between NDVI and radiometric temperature to derive TR at the NDVI pixel reso-

lution [23]. The procedure was developed and tested using data from a single day

during the 1997 Southern Great Plains Experiment (SGP97). On this particular day

there was significant heterogeneity in TR from a large spatial variation in moisture

and vegetation cover across the scene [23]. The NDVI imagery had a resolution of

24m and the TR imagery had a resolution of 96m.

The first step in the procedure is to aggregate the 24m NDVI imagery to the 96m

resolution of the TR imagery. This creates NDVI96 imagery where 16 of the NDVI24

pixels are used to form one NDVI96 pixel. The NDVI96 pixels are divided into three

classes: sparse canopy/bare soil, partial canopy, and high/full canopy. The class

assignments are based on the NDVI value. The most homogeneous pixels from

each class were selected to be in the analysis. This is done using the NDVI24 data

and calculating the coefficient of variation (the standard deviation divided by the

mean) among the 16 pixels that make up each NDVI96 pixel. For each class in

the NDVI96 image, 25% of the pixels with the lowest coefficient of variation are

chosen to be included in the analysis. The thought being that using pixels with

uniform cover at the NDVI96 scale to derive the relationship between NDVI and

TR at 96m will produce a relationship that will closely resemble the relationship at

higher resolutions. To determine the TR - NDVI96 relationship, a least squares fit is

performed using a second-order polynomial

T̂R96(NDV I96) = β0 + β1NDV I96 + β2NDV I
2
96 (3.7)

where T̂96 is the estimate of the radiometric temperature at the 96 m resolution.

Equation 3.7 does not take into account variability from soil moisture. This is done

by calculating a correction factor that accounts for the deviations from the mean

value of TR96.
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∆T̂R96 = TR96 − T̂R96 (3.8)

The correction factor is applied in the final equation to calculate the radiometric

temperature at the 24 m resolution.

T̂R24 = T̂R96(NDV I24(i)) + ∆T̂R96 (3.9)

where i = 1, 2, 3, ..., 16 and T̂R96(NDV I24(i)) is calculated using Equation 3.7 with

the NDVI24 value at the ith pixel.

The procedure was tested by deriving subpixel temperature estimates at 25m and

200m which roughly correspond to the NDVI resolutions of ASTER/Landsat and

MODIS, respectively. At the MODIS-equivalent resolution the temperature can

be estimated to within ±1.5oC uncertainty. At the ASTER/Landsat resolution it

was found that the results from the DisTrad procedure are no more reliable than

assuming a uniform subpixel TR field.

3.4 A Novel Method to Estimate Subpixel Tem-

perature by Fusing Solar-Reflective and Thermal-

Infrared Remote-Sensing Data with an Arti-

ficial Neural Network

A new approach to estimating subpixel temperature in heterogeneous areas (e.g.

urban) was developed by Yang et al. in 2010. The method makes use of information

from high spatial resolution VNIR imagery as well as lower spatial resolution tem-

perature maps to generate temperature estimates at a resolution higher than that

of the temperature map [24]. The mechanism used to estimate the subpixel tem-

peratures was the genetic algorithm and self-organizing feature map (GA-SOFM)

artificial neural network (ANN) based on the VNIR and TIR data. The authors used
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the Kustas method [23] as a benchmark to assess the performance of their algorithm.

Three ASTER VNIR bands (green, red, and near-infrared) were used in the analy-

sis, each with a spatial resolution of 15m. The ASTER surface temperature map,

with a resolution of 90m, was used as not only the truth data for the analysis but

the basis of the temperature extraction. In other words, a temperature map was

used as the input to this process, not a thermal infrared radiance image. Moreover,

the temperature map was never converted to a radiance image so all of the analysis

was done in temperature space. The VNIR imagery was degraded to a resolution

of 90m and the temperature map was degraded to resolutions of 360m and 1080m

which gave way to two estimation modes. Mode 1 tried to estimate the surface

temperature of the 360m temperature map at the aggregated VNIR resolution of

90m. Mode 2 estimated the surface temperature of the 1080m temperature map at

the 90m spatial resolution level. The following example is for Mode 1.

The 90m VNIR image, V NIR90, was classified into four land cover types using

a supervised classifier. The classes were: vegetation, bare soil, urban, and water.

Then the pixels from each land-cover type were separated so that the V NIR90 im-

age and the class map derived from the V NIR90 image could be degraded to the

resolution of the temperature image. This produced a VNIR image with a spatial

resolution of 360m (V NIR360) and a class map of the same resolution (CLASS360).

From the VNIR imagery and the class maps at the two resolutions along with the

360m temperature resolution map (T 360) estimates of input parameters to the GA-

SOFM ANNs could be made. The input parameters included NDVI, temperature

vegetation dryness index (TVDI), leaf area index (LAI), vegetation water content

(VWC), soil water content (SWC), NIR reflectivity, R waveband reflectivity, degree

of vegetation coverage, ratio vegetation index (RVI), soil sand content (SSC), and

differenced vegetation index (DVI). Two sets of the input parameters are obtained at

each resolution, namely, P 360 and P 90. Then the mapping relationships (MAP 360)

for each land cover class between P 360 and T 360 were built using GA-SOFM ANNs.

These mapping relationships were then applied to the P 90 and the 90m resolution
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class map to determine the subpixel temperatures at a resolution of 90m.

For all four land cover types in both modes the GA-SOFM procedure resulted in a

lower root mean squared error (RMSE) than the Kustas method. The GA-SOFM

procedure produced the smallest RMSE for the bare soil class (1.783K for Mode 1

and 1.573K for Mode 2) and the largest for the urban area for Mode 2 (3.975K).

3.5 Sub-pixel Water Temperature Estimation from

Thermal-Infrared Imagery Using Vectorized

Lake Features

The work of Sentlinger et al. (2008) recognized the need to take land temperature

contamination into account when looking at small bodies of water and developed

a method to extract subpixel skin temperatures of lakes using a priori knowledge

of water boundaries [25]. The method was tested using MODIS data and is vali-

dated using concurrent ASTER data and in-situ temperature data. MODIS offers

temperature and emissivity imagery as well as calibrated at-sensor radiance imagery.

Using the assumption that a mixed pixel is comprised of only two materials, water

and land, the at-sensor radiance measured in the kth channel of a sensor is

Lks = τk [f1εk1LBBk(T1) + f2εk2LBBk(T2)] + LkA (3.10)

where τ k is the atmospheric transmission in band k, f j is the fractional abundance

of the jth material in a pixel, εkj is the emissivity of the jth material in a pixel

in band k, and LBBk is the blackbody radiance of a material with temperature

T j. The last term in Equation 3.10 represents a combination of the upwelled and

downwelled radiance terms. The reflected downwelled radiance was assumed to be

relatively constant across the scene.
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TEMPERATURES FROM ASTER IMAGES

In order to solve for the two temperatures, T 1 and T 2, estimates of the other vari-

ables in 3.10 are needed. To determine the fractional abundances, the low resolution

radiance image was geo-referenced in a high resolution space using nearest neighbor

interpolation. Then the vectorized lake feature data was rasterized into the same

high resolution space. The rasterized lake data is cross-referenced into the original

low resolution space using the geo-referenced radiance image. The fractional abun-

dance was determined in each low resolution pixel by dividing the number of high

resolution pixels of a certain material by the total number of high resolution pixels

in a given low resolution pixel [25]. The material emissivity estimates are taken

from the MODIS emissivity product using only the pure pixels in the imagery. The

atmospheric parameters are estimated from the pure pixels in the radiance image

by fitting a line to the measure of at-sensor radiance and estimated ground-leaving

radiance, which is the term in square brackets in Equation 3.10. This leaves only

two unknowns in Equation 3.10 (the two temperatures). Therefore at least two es-

timates of the sensor-reaching radiance are required to solve for the unknowns, else

the system is underdetermined. The gradient descent method was used to solve for

T 1 and T 2 by minimizing the error between the observed at-sensor radiance and the

estimated at-sensor radiance from Equation 3.10.

The algorithm was able to estimate subpixel skin temperatures from MODIS data

to ±0.32oC of ASTER skin temperature. The absolute error in recovered skin tem-

perature was expected to be ±0.96oC.

3.6 An Image-Sharpening Method to Recover Stream

Temperatures from ASTER Images

Gustafson et al. developed a method to extract stream temperatures from 90 me-

ter spatial resolution ASTER TIR imagery to monitor stream water quality in the

Pacific Northwest. They used 15 meter ASTER VNIR data to sharpen the TIR

imagery and the method was unique with the use of four endmembers to unmix the
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VNIR imagery [26]. First, the VNIR imagery was unmixed into three fraction im-

ages corresponding to vegetation, a combined shade/water class, and “other”. The

“other” class contained everything that was not vegetation or shade/water.

The NDVI was computed for the VNIR bands and the NDVI values were used to

discriminate between vegetation, shade/water, and “other”. The vegetation in the

image was expected to have a high NDVI value, the shade/water to have a low value

in all bands, and the “other” to have a high NDVI value in Bands 1 and 2. The

vegetation endmember spectrum was determined by identifying locations where the

NDVI value was in the top 1% of the NDVI histogram and calculating the mean

value of the pixels in each band. The shade/water spectrum was calculated in the

same way except the bottom 1% of NDVI values in the sum of all three bands was

used. The “other” spectrum was computed using the top 1% of pixel NDVI values of

the sum of Bands 1 and 2. The endmember spectra were used in the linear mixture

model (with the constraint that the fractional abundances add to unity) to unmix

the VNIR imagery.

The fraction image for the shade/water endmember was used to separate shade and

water into two classes. This was done by finding pure water pixels in the shade/water

fraction image and making the assumption that the mixed pixels adjacent to the

pure water pixels contained some fraction of water. A 3x3 pixel area surrounding

the mixed pixel in question was sampled to determine the “typical” mix of shade,

vegetation, and “other”. The fraction of shade was renormalized to the same ratio

as the mean of the surrounding non-water pixels, and the remaining shade fraction

was used as the water fraction [26].

The four 15m spatial resolution fraction images were aggregated to the resolution of

the ASTER TIR imagery (90m) by summing and renormalizing the fractions. For

each TIR band, an estimate of the radiance for a “pure” pixel of a specific endmem-

ber was made. This was done by selecting a 5x5 pixel area in the fraction image as

well as the corresponding 5x5 area in the TIR bands and using the points in a linear
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regression model where the dependent variable was radiance and the independent

variable was endmember fraction. At the end of this process, there were twenty

radiance estimates (one for each of the endmembers for each of the five TIR bands)

which were used to estimate the 15m radiance. This was done by multiplying the

90m radiance estimates by the corresponding 15m fraction images for each of the

TIR bands, resulting in five 15m TIR radiance images. To extract the temperature

the five 15m TIR images were run through the ASTER Temperature Emissivity

Separation (TES) algorithm [27].

Since this was a preliminary study of this image sharpening method, an error analysis

was not included. However, one observation was that the methodology worked best

when the materials to be unmixed had very different kinetic temperatures and/or

emissivity spectra [26].

3.7 Subpixel Temperature Estimation from Low

Resolution Thermal Infrared Remote Sensing

Ottlé et al. (2008) [28] presented a method to estimate subpixel temperatures from

TIR imagery using a linear mixing model approach where the model was constrained

using estimates of pixel constituent temperatures derived from a land surface model.

The derivation of their method begins with the Stefan-Boltzmann law which gives

the integrated exitance of an object at a temperature, T , from 3 - 100µm.

M = εσT 4 (3.11)

where ε is the integrated emissivity from 3 - 100µm and σ is the Stephan-Boltzmann

constant. The total exitance of a homogeneous pixel with n materials is
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M =

n∑
i=1

αiMi∑
i

αi
(3.12)

where αi is the proportion of the pixel area covered by a material. Substituting

Equation 3.11 into Equation 3.12 and requiring that the proportions sum to unity

gives

εT =

(∑
i

εiαiT
4
i

)1/4

(3.13)

where T is the temperature of the composite surface and is determined from a

thermal sensor, ε is the surface emissivity of the entire pixel and εi is the surface

emissivity of a material. The authors make the assumption that for a vegetated area

the emissivity is approximately unity so Equation 3.13 becomes

T =
∑
i

αiTi + ξ (3.14)

where ξ is an error term that accounts for the error in making the assumption

that vegetation has an emissivity of one which they claim to be less than 0.1K in

all cases. The authors state if a priori estimates of the constituent temperatures,

T i, are known then they can be considered Gaussian random variables because the

temperature extraction can be performed in the framework of Bayesian theory and

maximum likelihood estimation [28]. Therefore solving for the constituent temper-

atures is analogous to solving for the minimum of the following cost function

J =
1

σ2
b

N∑
i=1

(Ti − Tbi)2 +
1

σ2
T

(
N∑
i=1

αiTi − T

)2

(3.15)

where T bi is the a priori temperature of a material,σb and σT are the standard de-

viations of the uncertainties related to the a prior solutions and the observations,

respectively. The performance of the method is sensitive to the magnitude of the
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observation error relative to the a priori error. To beat down the error, multiple

pixels can be used in the estimation process if the assumption that the surface tem-

perature for a material is homogeneous within the queried pixels.

A synthetic data set was used to test the method. The results demonstrated the

use of a priori temperature estimates in reducing the temperature extraction er-

ror. They showed the error increased with the number of pixel constituents. The

assumption of a homogeneous surface temperature for a material in multiple pix-

els helped the temperature estimation although the authors concede that this was

probably not a valid assumption in real landscapes.

3.8 Previous Work Summary

The methods reviewed in the previous subsections can be broken into two cate-

gories: spatial downscaling and spectral mixture analysis. With spatial downscaling

information from a high-resolution auxiliary image (e.g. VNIR, NDVI) is used to

disaggregate a low-resolution thermal image to the resolution of the auxiliary image.

The temperature is extracted from the high-resolution TIR image that is created

as a result of the process. Spectral mixture analysis starts with the equation for

sensor-reaching radiance of a mixed pixel. Variables in the equation are estimated

until the only unknowns are the temperatures of the pixel constituents. The number

of radiance observations (and therefore bands) required for spectral mixture analy-

sis techniques is equal to the number of unknown temperatures, else the system is

underdetermined. The multiple bands requirement is true for spatial downscaling

as well because the method requires a thermal image as well as at least one other

auxiliary image.

Another similarity between the methods is they are used to determine the tem-

perature of naturally occurring objects that tend to have high emissivities (e.g.

vegetation, water). Catering the methods to high emissivity targets means that the
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reflected downwelled component of sensor-reaching radiance can be assumed neg-

ligible. However, it should be noted that Sentlinger et al. (2008) did include an

estimate of the reflected downwelled radiance in their approach. The targets in the

methods were all flat surfaces. Most of the methods that might lend themselves

to using a small number of bands require many mixed pixels with the target and

background being close to the same temperature. This is a very unlikely scenario in

the real world.

The method described in the next chapter will extract the temperature of a uniform

small target, where uniform means the lack of a large temperature gradient across

the surface of the object. The background will be the only other material in the pixel

containing the target. The heat transfer between the target and background will be

accounted for as well as the reflected radiance term. Taking the reflected radiance

into account means that assumptions about the emissivity and the geometry of the

objects do not have to be made, given that the geometry is available by some other

means.



Chapter 4

Methodology

Whereas the previous chapter described the phenomenology and the tools that are

used to build a physics-based target space, this chapter will detail how the informa-

tion in the previous chapter is put into practice.

4.1 Overview

An exploitation scenario might go as follows: A thermal image along with a com-

panion higher resolution visible image is captured over a target that is of interest to

an analyst. The motivation for extracting the temperature of the target might be

to infer an internal process from its surface temperature. As stated in Section 1.2,

the assumptions of two pixel constituents and a homogeneous background are made.

In order to use the methodology that will be outlined in this chapter, the analyst

needs to determine which thermal pixel or pixels contain the target of interest. An

iterative algorithm will be used to determine the location of the target and that

information will be used to determine in which pixels the target resides. The pixel

radiance values from each target-containing pixel are averaged and recorded to use

as the input to the final stage of the method.

The analyst can estimate a number of parameter values by utilizing information

52
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from both the visible and thermal image. These parameters will be referred to

as the fixed parameters as they will not change during the simulations. The fixed

parameters are comprised of target emissivity, background emissivity, background

temperature, target size, target position, and the weather data. The first four pa-

rameters are deemed important because they are included in the governing equation

for sensor reaching radiance for a mixed pixel. The target position is another im-

portant parameter to the small target problem, even though it is not included in

the governing equation, it can influence its prediction. The weather data is used in

the estimate of the downwelled radiance as well as the temperature solutions that

are computed by the MuSES code. The analyst will also have to decide on a range

of target temperatures within which the true target temperature falls. Fifty target

temperature values will be generated so that they uniformly span this range. With

all other parameter values held constant, a synthetic image will be created for each

temperature in the target temperature range resulting in a lookup table (LUT).

There will be gaps in the values in the LUT that will be interpolated using linear

least squares. The result of the least squares is a set of regression coefficients that

are applied to the pixel radiance that was recorded at the beginning of the process

to produce a target temperature.

4.2 Parameter estimation

The target space described in the previous section can be thought of as infinitely

continuous. In other words, the parameters can take on any value and all possible

combinations of parameter values would be represented in the target space. This

scenario would be optimum, but it is not physically realizable to have all possible

values represented. Therefore the axes need to be bounded according to the prob-

lem at hand by making estimates of the range of likely values for the parameters

using information from the scene itself. The pixel radiance is physically dependent

on the target temperature and comes from the synthetic image created by DIRSIG,

so the only parameter range that needs to be estimated is the target temperature.
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By bounding the target temperature range, the pixel radiance range will also be

bounded. It is important to note that the target temperature range selected must

contain the true target temperature because regression analysis performance de-

grades when extrapolating data. The estimates of the fixed parameters will further

bound the range of values that the pixel radiance can take on. The following sub-

sections will discuss methods that are used to estimate the parameters.

4.2.1 Target temperature

Determining the target temperature is the objective of this methodology, however a

reasonable guess can be made as to the possible temperature range. For example,

if an ice cube were being imaged, the target temperature range would be centered

about 0◦C. The target temperature range must contain the true target temperature

because regression analysis will be used later on in the process to determine the

target temperature and it is not always a reliable technique when extrapolating

data.

4.2.2 Emissivity data

As stated previously the values of the fixed parameters can be derived from the

collected thermal and visible imagery. The analyst might have knowledge of the

material the target is made from as well as what type of background material is

usually found with the target. The visible imagery can confirm the target and/or

background type for the captured imagery as well as reveal surface features that

effect the emissivity of a material (e.g. rust). If the visible imager is multispectral

or hyperspectral, a reflectance spectrum from both the target and the background

could be used for material identification. Using some or all of that information, a

spectral database could be queried for an emissivity spectrum for both the back-

ground and target.



4.2. PARAMETER ESTIMATION 55

4.2.3 Background temperature

The background temperature can be estimated from other areas in the scene where

the background material fills multiple pixels. Since the pixels are homogeneous,

the temperature of the background can be estimated from the method described

in Section 2.9, which makes use of the estimate of background emissivity and the

assumption of having atmospheric data available to run MODTRAN to compute an

estimate of the downwelled radiance.

4.2.4 Target size

An estimate of the physical size of the target can be determined from the higher-

resolution visible imagery. The error on this term is ± 1 visible GSD. The analyst’s

knowledge of the target could be used to reduce that error. For example if the analyst

knew that a power plant only has a particular model transformer, its dimensions

could be researched from manufacturer specifications.

4.2.5 Target position

An automated algorithm was developed to determine the position of the center of an

unresolved target in a thermal image with subpixel accuracy. The idea is to generate

synthetic DIRSIG imagery where each image is a simulation of the target center in a

different location. The synthetic test images are compared to the collected thermal

image to determine which position from the test images is the closest to the actual

position. Figure 4.1 pictorially shows the overarching concept of the positioning

algorithm.
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Collected image,  
        “truth” 

Test images – generated by DIRSIG 

Compare 

Figure 4.1: Overview of positioning algorithm.

This could be executed in a brute force fashion where hundreds or thousands of

synthetic test cases are generated at once and compared to the collected image. It

is no surprise that the brute force method is inefficient in terms of the computation

time required. This algorithm takes an adaptive, iterative approach where the result

from one iteration dictates what happens in the next.

4.2.5.1 Comparison metric for target position determination

A direct pixel radiance comparison cannot be done because the target temperature

is unknown. Instead, this algorithm compares normalized pixel radiance values

by computing the angle between the vector of radiance values from the collected

image and the vector of radiance values from each of the test images. Equation 4.1
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computes the angle, θ, between two vectors.

θ = cos−1

(
a · b
||a|| ||b||

)
(4.1)

where a and b are the vectors of the radiance values of the collected and test images,

respectively. Each element of the vectors is a radiance value at the individual,

observed location. Each vector is divided by its magnitude to create a unit vector,

therefore the value of θ is independent of the magnitude of the input vectors. The

smaller the angle, the more similar two vectors are.

4.2.5.2 Implementation

The first step in the process is to create a vector of radiance values from the collected

thermal image, which will be called the truth vector.

L1 L2 

L3 L4 L5 

L6 

L7 L8 L9 L10 

L11 
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L13 L14 L15 L16 L17 

L18 

L19 

L20 
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Truth     =  
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L23 

L24 

L25 

. 

. 

. 

Figure 4.2: The radiance values from the 5x5 image chip are reformed into a 25x1
vector. In this example L1 is the pixel with the most contrast from the background.

It is assumed that the pixel with the most contrast from the background contains

the target of interest. A 5x5 pixel region surrounding the pixel with the most con-

trast from the background is selected and a 25x1 vector is created from the radiance

values. This is shown in Figure 4.2. The angle between the truth radiance vector,
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Ltruth, and the synthetic radiance vector, L, can be written as

θ = cos−1

(
L · Ltruth
||L|| ||Ltruth||

)
(4.2)

The parameter estimates from the previous sections are used to generate the test

images. The target temperature is estimated as well. It is important that the choice

of target temperature does not reverse the contrast. In other words, if the target

pixel appeared brighter in the truth image then it must also be brighter in the test

images. Initially the target center is positioned in the center of the simulated scene

(position [0,0,0] ). The camera position information is obtained from the IMU and

the GPS data collected during the capture of the thermal image. The camera po-

sition information is required so that the GSD of the test images match that of

the truth image. The sensor look-angle should also match between the two sets of

imagery so that any projected area effects are accounted for. For the first iteration

the target is moved one GSD from the center of the scene in every direction. A

test image is created for the initial position as well as for every movement giving a

total of nine test images. The angle between each test vector and the truth vector

is computed and the position from the image that yielded the smallest angle is said

to be the closest match.

The position corresponding to the smallest angle is the starting point for the next

iteration. In the second iteration the target center is moved by 1/2 of a GSD plus a

small random number in every direction, creating nine more candidate test images.

The random number is generated by pulling a value from a random normal distri-

bution with a mean of 0 and a standard deviation of 1 and multiplying it by 1/10

of 1/2 the GSD. In the case where the GSD is 1 meter, the value from the normal

distribution is multiplied by 1/20. The random number is added to each position

to avoid having half of the target centers always land on the edge of two pixels

when they are moved by 1/2 of a GSD in the second iteration. Again, the angle

between the truth and test vectors is computed and the position corresponding to
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the smallest angle is used as the starting point for the next iteration.

The third and fourth iterations have the target center moving by 1/4 and 1/8 of

a GSD, respectively. Figure 4.3 shows the locations of the center of the target for

each iteration.
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Figure 4.3: The locations of the center of the target are denoted by colored dots.
The location of the center of the target for the truth case is marked by the red x.
The target center locations in iteration 1 are found in (a). Iteration 2 has the target
centers move by GSD/2 + a small random number (b), iteration 3 has them move
by GSD/4 + a small random number (c), and iteration 4 has the target centers
move by GSD/8 + a small random number (d).

After the angles for the fourth iteration are computed, the position corresponding

to the smallest angle is deemed the best estimate of the true target position. This

position is recorded and used during the DIRSIG simulations. Using the DIRSIG

truth images, the target-containing pixels can be determined.
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The algorithm is stopped at the fourth iteration because, for the majority of cases

beyond this iteration, the smallest angle does not correspond to the closest position

candidate and therefore the starting point for the next iteration is incorrect. The

reason for the confusion is illustrated in Figure 4.4 with plots of the normalized

radiance vectors for the closest three positions to the truth position in iterations 1

and 4.
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Figure 4.4: Plots of the radiance vectors divided by their respective magnitudes
versus their array indices for iteration 1 (a) and iteration 4 (b). The red line in (a)
and (b) represents the vector from the truth image. The green line represents the
vector from the location that was closest to the truth vector. The blue and black
lines represent the locations that were the second and third closest, respectively.

In Figure 4.4(a), the maxima and minima of the green line coincide with those of

the red truth line, and more importantly the global maximum from each of the

lines appear in the same location; which is not true for the black and blue lines.

As a result, the dot product between the red and green vectors is larger than the

dot product between the red and blue or red and black vectors. It follows that the

angle between the red and green vectors is the smallest. This makes sense as large

movements of the target center from the truth position will result in vectors that are
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very different from the truth vector, in terms of where the maxima and minima lie.

However, when the movements about the truth position are small, the maxima and

minima of all of the test vectors will coincide with those of the truth vector. This

is illustrated in Figure 4.4(b). At this point the comparison metric is “confused”

because the only real distinction between any of the vectors is their magnitude. It

should be noted that it always selects one of the four closest positions as the final

answer when tested with synthetic imagery. In short, the comparison metric em-

ployed by this algorithm works well for larger target movements but starts to break

down as the movements approach 1/8 of a GSD and smaller.

4.2.6 Weather data

Section 1.2 stated that it is assumed that upper air atmospheric information was

known. This data could come from a radiosonde or a MODTRAN atmospheric

model. Another source of atmospheric data as well as surface weather data is the

Regional Atmospheric Modeling System (RAMS). RAMS was developed at Colorado

State University to simulate and forecast meteorological phenomena and render the

results. The major components of RAMS are [29]:

1. An atmospheric model which performs the actual simulations

2. A data analysis package which prepares initial data for the atmospheric model

from observed meteorological data

3. A post-processing model visualization and analysis package which interfaces

atmospheric model output with a variety of visualization software utilities.

RAMS uses models for solar and terrestrial radiation, effects of latent and sensible

heat exchange with surface water, soil, and vegetation, and the formation and inter-

action of clouds. It can simulate data for areas on the order of hundreds of meters

to areas the size of continents [30]. RAMS is used at Savannah River National Lab-

oratory (SRNL), which is part of the Department of Energy.
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Weather information could also come from a local weather station or a website like

Weather Underground.

Now that the estimates of the parameters have been determined, the geometry of

the scene needs to be acquired. This geometry will be attributed with the parameter

estimates and used as the input to the physics-based simulations.

4.3 Geometry

One fortunate outcome of the subpixel problem is that even though a thermal image

could cover thousands of square meters, only a relatively small area of the scene in

the neighborhood of the target has an effect on the pixel radiance. A geometric

model of the portion of the scene with the target in it is required for both MuSES

and DIRSIG. At a minimum, the MuSES model must contain the target and the

background material in order to model the heat transfer between the objects. How-

ever, if there is an obstruction (e.g. a tree) that shades the target or background,

the obstruction needs to be modeled in MuSES as well. It is crucial that the mesh

on each piece of geometry follows the meshing guidelines discussed in Section 2.6.2.

The geometry for the DIRSIG scene should include any surrounding objects that

could contribute to the reflected background radiance.

The geometry can come from a variety of sources. One source could be a three-

dimensional model extracted from a point cloud derived from multi-view visible

imagery or a LIDAR point cloud [31]. This has advantages in that the model is built

using real imagery of the target of interest as well as allowing for the extraction of a

large number of objects with varying shapes and sizes. However, the more complex

the geometry of the target the less accurate the extracted model will be. Even with

the highest resolution imagery available, the model extracted from the point cloud

will still contain error due to the model fitting process. If there is a priori knowledge

of what the target of interest is, a Computer-Aided Design (CAD) program could
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be used to produced a detailed model. This requires significant knowledge of the

target of interest as well as a knowledgeable CAD user. This method can produce

geometry of complicated objects but this comes at the cost of a significant amount

of time needed to produce the model.

4.4 Physics-based simulations

This section will discuss the implementation of the modeling tools described in Sec-

tion 2.6. The total simulation time between MuSES, MODTRAN, and DIRSIG has

the potential to become lengthy. The total simulation time depends on factors such

as the number of simulations used to build the LUT, the complexity of the scene

geometry, and the amount of sampling that is allowed per simulation.

There can only be one instance of MuSES running at a time per license file, so

the MuSES simulations are run serially on one core. A Symmetric Multi-Processor

large memory machine maintained by Research Computing at RIT is used for the

MuSES simulations. It has four dual core AMD Opteron processors, each rated at

2.8 GHz with access to 80 GB of main memory, and is connected via NFS to the high

performance file server. Multiple instances of MODTRAN and DIRSIG are allowed

to run at one time and the “condominium” cluster (also maintained by Research

Computing) is used to process those simulations. The cluster consists of 128 shared

cores spread over four nodes, however, the maximum number of cores allowed to one

user is limited to 80. Jobs are submitted to the head node which then doles each job

out to the individual cores. UNIX scripts were written to automate the simulation

process.

4.4.1 MuSES simulations

As stated previously, MuSES will be used to incorporate heat transfer due to con-

duction, convection, and thermal radiation into the synthetic imagery used to build

the lookup table. This section discusses how the geometric model from the previous
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section will be attributed, how the weather and solar loading will be taken into

account in the temperature solutions, and how the MuSES simulations will be run.

4.4.1.1 Attribution of material properties

The meshed model from Section 4.3 can be sectioned into parts by the user. Multi-

ple parts can be defined within a single model and each part contains mesh elements

that have common material properties. One such property is the surface emissivity,

whose value comes from the parameter estimates. Other properties include the spe-

cific heat, density, and conductivity. These values can be assigned using the values

for materials in the MuSES library or, for materials not in the library, they can be

manually assigned by the user. The type of convection and material thickness are

also required. MuSES specifies its own convection types., which are listed in the

MuSES User Manual. This research used the “Wind” type, which allows for wind

convection to be applied to the part being modeled. The thickness of the material

is used to determine the capacitance of the part for conduction and does not change

the model geometry. The parts for this research are specified as two-sided, meaning

they have a front side and a back side, and each side needs to be attributed with

a set of material properties. Each side can have a set of material properties that is

independent from the other.

Parts can be either solid, liquid, or gas. It is possible to simulate liquid partially

or completely filling a container simply by creating new parts and attributing them

appropriately with material properties and convection types. Figure 4.5 shows a

drum segmented such that half the volume is filled with water and half is filled with

air. To specify a liquid or gas requires knowledge of the convection coefficient, h,

which was described in Section 2.4.

At this point the geometry from Section 4.3 will be attributed with the proper

material properties and convection types. The next step is to model the effect the

environment has on the target and background using the weather data that was
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Figure 4.5: A drum broken into two parts. The blue represents the level of the water
volume in the container and the green represents the air volume.

collected.

4.4.1.2 Weather files

MuSES has three types of weather files that it can ingest when in the natural

environment mode. The PRISM format is the simplest of the three and is used in

this research. The fields contained in the PRISM format are found in Table 4.1.

Table 4.1: Weather history parameters
Date Time Wind speed
Wind direction Air temperature Relative humidity
Air pressure Cloud cover Sky radiance

If the sky radiance and solar emission terms have not been measured, MuSES will

model it based on geographic location. This requires the user to supply the latitude,

longitude, and elevation of the target of interest as well as the day of the year and

the time zone where the simulation should occur. The weather file contains cloud

cover expressed on a 10 point scale where 0 represents 0% cloud coverage and 10
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represents 100% cloud coverage. ThermoAnalytics provides a Perl script that in-

gests WeatherUnderground weather data and creates a MuSES weather file. When

the Perl script reads in the weather data, it correlates “partly cloudy” to 30% cloud

coverage, “scattered clouds” to 40% coverage, and “mostly cloudy” to 80% cover-

age. The coverage is averaged across the sky. In the actual weather on a day with

scattered clouds, they occasional drift past the sun and block it for some period

some time. MuSES lacks the ability to change cloud coverage with time in this

manner (except as it changes in the weather file). Therefore “scattered clouds” is

interpreted as 40% of the sun is covered by a cloud and the other 60% is “shining”.

However, the value for the amount of cloud coverage does not have to come from

Weather Underground inputs so any percentage value can be used in the weather

files (e.g. 15%, 60%).

Thermal inertia is a measure of a material’s ability of resist a change in temperature

and represents the ability of a material to conduct and store heat. The temperature

of a material with low thermal inertia changes significantly during the day, while the

temperature of a material with high thermal inertia does not change as drastically.

Furthermore, the temperature of a material with high thermal inertia can be a re-

sult of the environmental conditions more than 24 hours prior to the temperature

observation. It is because of this phenomenon, that multiple days worth of weather

data are required to get the most accurate temperature solution from the MuSES

simulations. The number of days depends upon the properties of the material or

materials in question. For example, a slab of asphalt 18” thick requires approxi-

mately five days of weather history, whereas a slab 6” thick requires approximately

3 days. Once the amount of weather history data is determined, the weather file

is built. The weather history can come from any reliable source, such as the ones

mentioned in Section 4.2.6, as long as it contains the parameters found in Table 4.1.

The weather data from the 24 hours prior to the collect will be interpolated so that

there is a data point every five minutes. The data is interpolated to such a fine

resolution so that the weather data can be changed on a smaller time-scale when

the cloud cover is refined.
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The raw weather data in the MuSES weather file will be inaccurate, to some degree,

due to the actual location of the target, especially if the weather data is not pulled

from a weather station at the target location. Therefore it is advantageous to refine

the weather data so that it more closely represents the conditions at the target lo-

cation. Cloud cover is a significant driver of temperatures in a heat transfer sense

and is also the parameter that will most likely be the least well characterized so it

was chosen as the means to refine the weather file. The refinement is done using the

imagery-derived estimate of the background temperature. This implies that there is

higher confidence in the fidelity of the imagery-derived metric than there is in the

cloud cover estimate.

Before the MuSES simulations are started, one simulation is run with the unrefined

weather file. When the simulation is complete, the background temperature from

the MuSES simulation is compared to the imagery-derived background temperature

estimate. If the two temperatures match to within 0.05◦C the process is stopped and

the original weather file is used during the rest of the process. If the temperatures

do not match, the cloud cover is modified as follows:

• If TMuSES < Tb, then 0.2 is subtracted from the daytime hours of the previous

24 hours of cloud cover and 0.2 is added to the nighttime cloud cover.

• If TMuSES >Tb, then 0.2 is added to the daytime hours of the previous 24

hours of cloud cover and 0.2 is subtracted from the nighttime cloud cover.

The process iterates until the two temperatures match to within the threshold.

The result of this process is a weather file with the cloud cover modified such that

the modeled background temperature matches its imagery-derived counterpart. A

flowchart of the process is shown in Figure 4.6.
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Run MuSES 

Compare  
TMuSES  to Tb 

TMuSES = Tb ? 
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Stop TMuSES < Tb: subtract 0.2 from previous 24 
hours of cloud cover 

TMuSES > Tb: add 0.2 to previous 24 hours of 
cloud cover 

Run MuSES with 
new weather file 

No 

Figure 4.6: FLowchart showing the process to refine the cloud cover data in the
MuSES weather file.

Again, any parameter can be modified. Cloud cover is chosen because that is the

parameter

4.4.1.3 Running MuSES

To build the lookup table the target temperature will be varied in MuSES. Since

the assumption of a uniform surface temperature has been made, the temperature

assigned to the surface of the target will remain fixed during a MuSES simulation.

Fifty target temperature values will be generated, each corresponding to a MuSES

simulation. The temperature values will be selected by generating 50 numbers from

a uniform random distribution and scaling the numbers so that they fall within the

pre-defined target temperature range. A uniform distribution was used so that there

would be an even distribution of the temperatures within the target temperature
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range. It should be noted that there are multiple ways to select the candidate

temperature, for example, dividing the temperature range into equally spaced steps.

Each temperature will be part of the TDF filename so that it can be used in the

LUT later on in the process. The temperature solutions in the TDF files form the

basis of the radiance computations in DIRSIG. Before the radiance solution can be

computed, MODTRAN runs are set up to compute the downwelling sky radiance.

4.4.2 MODTRAN simulations

MODTRAN is used to create an atmospheric database (ADB) file, which holds all

of the atmospheric data that DIRSIG needs to render a scene. Recall the thermal

image is assumed to be atmospherically corrected so DIRSIG will only use the sec-

tion of the ADB file that contains the downwelled radiance information.

The first step in creating the ADB file is to set up the MODTRAN tape5 file so that

it matches the collection conditions as closely as possible. Data from a radiosonde

can be imported or, if that information is not available, the most appropriate of the

six standard atmospheres can be used. To get the temperature of the boundary layer,

the weather history file in DIRSIG is invoked. The weather history file contains a

time history of meteorological conditions at the scene site. The air temperature

data in the weather file is used by MODTRAN as an estimate of the boundary layer

temperature. It is important that the air temperature from the weather file, used by

MuSES to compute the temperature solution, matches the air temperature that is

used by MODTRAN to compute the downwelled radiance so that the boundary layer

temperatures are the same. Therefore, before the ADB file is made, the DIRSIG

weather file is modified so that the air temperature matches the MuSES simulations.
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Figure 4.7: Flowchart depicting the process used to create the downwelled radiance
section of the DIRSIG ADB file. One ADB file is created per MuSES simulation.

Once the MODTRAN input is set up properly, the downwelled radiance is calcu-

lated by placing the sensor where the target is and sampling the sky at 12 azimuth

angles and 6 zenith angles. This creates a hemispherical map of the scattered and

emitted radiance in the sky for 72 distinct look-angles. Figure 4.7 shows the process

of creating the downwelled radiance section of the ADB file if radiosonde data is

present.

At this point, the temperature solutions from MuSES and their corresponding ADB

files are ready to be imported into DIRSIG, where the radiance images are created.

4.4.3 DIRSIG simulations

A DIRSIG enhancement that came about as a result of this research was the ability

to use a MuSES TDF to drive target temperatures during the radiometric computa-

tion. The TDF files containing the temperature solutions are imported into DIRSIG,

where one radiance image per TDF file is rendered. The geometry contained in the

TDF file can be placed in a pre-existing DIRSIG scene if need be.
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4.4.3.1 Setting up the DIRSIG scene

The sensor location (θ, φ) and height are known from the collection data and are

used in the DIRSIG simulations. The sensor is modeled using knowledge of the

spectral response function as well as attributes such as the focal length, pixel pitch,

and number of pixels on the focal plane. To sample the scene, adaptive subsampling

is invoked using the values for the user-supplied inputs found in Table 4.2.

Table 4.2: Adaptive sampling parameter values.
Parameter Value
Sub-element grid size 10 x 10 elements
Maximum number of samples per pixel 1000
Radiance difference threshold 0.001

The adaptive sampling code produces imagery with the same number of pixels as the

collected image. The oversampling occurs“ under the hood” during the radiometric

calculation process. Finally, the emissivity curve for each material type must be

specified. These curves come from the parameter estimates in Section 4.2. In the

DIRSIG glist file, each DIRSIG material ID has to be mapped to their corresponding

MuSES material ID. This mapping has to occur because DIRSIG cannot (at the time

of this research) automatically correlate the different material IDs.

4.4.3.2 Running the simulations

The scene and sensor parameters from the previous section do not change from one

simulation to another in this process. In other words, the only variant between the

DIRSIG simulations is the TDF file. Since each TDF contains a target with a dif-

ferent temperature, the only input parameter that is allowed to change in DIRSIG

is the target temperature. Each TDF is run through the DIRSIG code to produce

a radiance image. The radiance image incorporates the temperature distributions

as well as the downwelled radiance and any background reflected radiance from the

scene. The flag to only calculate the downwelled radiance component is turned on
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TDF file 

ADB file 

DIRSIG Radiance image 

Figure 4.8: Flowchart depicting the output of the DIRSIG simulation process for
every TDF.

so the atmospheric transmission and path radiance are not included in the simula-

tions. It also incorporates all of the sensor characteristics, meaning that the GSD

of the simulations will match that of the collected thermal image and the radiance

reaching the sensor will be modified according the spectral response function of the

real thermal imager.

After the DIRSIG simulations are complete, each of the 50 radiance images are read

into MATLAB where spatial degradation using the sensor MTF applied. This was

done in MATLAB vice DIRSIG because MATLAB serves as a “sanity check” as the

user has complete control over computations, whereas DIRSIG computes everything

“under the hood”.

4.5 Building the lookup table

The lookup table consists of two values per DIRSIG image. The first is the difference

between the target temperature and the background temperature (∆T). The second

is the difference between the radiance averaged over the target-containing pixels and



74 4.5. BUILDING THE LOOKUP TABLE

the radiance from the background. The second is the difference between the radiance

averaged over the target-containing pixels and the radiance from the background.

This is illustrated in Figure 4.9.

Tt

Tb

(a) ∆T = Tt - Tb

Lb

LAverage

(b) ∆L = Laverage - Lb

Figure 4.9: Illustration of the delta values computed for the LUT.

The delta values are used to help mitigate any additive errors. For example, the

atmospheric compensation might not have been perfect and so there might be an

error in the upwelled radiance, which is an additive term in the governing equation.

The delta values are computed from each of the 50 DIRSIG simulations and recorded

in the lookup table
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Figure 4.10: The lookup table is built by computing the delta temperature and delta
radiance values from a DIRSIG simulation and recording it as a line in the LUT.
This is done for all 50 simulations.

It should be noted that the LUT will only be valid for the geometry and atmospheric

conditions at the time of collect. At the end of this process the LUT is complete.

The next step is to perform a regression analysis on the data in the LUT to build

a statistical relationship between the delta temperature and delta radiance values

from the synthetic DIRSIG imagery. The delta radiance value computed from the

collected thermal image will be used as the input to the regression equation.

4.6 Regression

Regression analysis is used as a way of modeling the relationship between the data

contained in the LUT that was created in the previous section. The dependent

variable is ∆T, which will be used to solve for the actual target temperature. The

input to the equation is the ∆L value that is computed from the collected thermal

image. A single regressor does not allow for interaction terms, so the model is some

form of
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∆T = β0 + β1∆Lpix + β2∆L2
pix + . . .+ βi∆L

n
pix (4.3)

The number of significant coefficients is computed for a first through fourth-order

model at the α = 0.05/n level (where n is the number of regression coefficients) and

the model with the greatest number of statistically significant coefficients is selected

to be the most appropriate for the data. However, the residuals are also checked

to make sure they exhibit the characteristics that indicate a satisfactory model. It

should be noted that the order of the model does not imply anything about, or have

any relationship to, the physics-based processes used to populate the LUTs. The

regression model simply provides a statistical relationship between the dependent

and independent variables.

The fifth-order model was not tested because it produced similar results compared

to the fourth-order in terms of the magnitude of the residual error (standard de-

viation of the residuals for a fifth-order model is 0.01◦C smaller than the standard

deviation of the residuals for a fourth-order model) as well as the extraction error.

This conclusion is based on the analysis of LUT data from targets with simple ge-

ometry and might not be true for data from more complex targets, like electrical

transformers. For the sets of data used in this research, linear interpolation gave

the same result as regression analysis. However, regression analysis is extendable to

multi-dimensional lookup tables, making it slightly more robust. Once the regres-

sion coefficients are calculated, the ∆L value from the collected thermal image is

used as the input to the regression equation, which results in a value for ∆T. The

background temperature is added to ∆T to arrive at the target temperature

TT = ∆T + Tb (4.4)
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4.7 Testing the method

The methodology was tested using imagery collected with a single-band LWIR sensor

as well as synthetic imagery.

4.7.1 Airborne collection

The purpose of this study is to test the methodology by collecting thermal infrared

imagery with a single-band sensor on an airborne platform. Nine different conditions

were captured in each image, ranging from a high temperature/high emissivity target

on the asphalt background to an ambient temperature/low emissivity target. The

LWIR camera on RIT’s Wildfire Airborne Sensor Program (WASP) suite was used as

the imager. It is an Indigo Phoenix Quantum Well Infrared Photodetector (QWIP)

array whose specifications are found in Table 4.3

Table 4.3: Indigo Phoenix LWIR camera specifications
Specification Value

Model Quantum Well Infrared Photodetectors (QWIP)
Spectral range 8.0 - 9.2µm

Resolution 640 x 512 pixels
Detector size 25 x 25µm

Dynamic range 14 bits
Focal length 25mm
Field of view 35.5◦ x 28.7◦

IFoV 1.00 [mrad]

WASP flew over the targets at an altitude of 1,290ft above ground level, resulting in

a GSD of 1.27ft in the thermal infrared. Flying overhead allows for nadir and near-

nadir imaging. The experiment took place on the night of 5 August 2011 between

2145 and 2230 to ensure that the sun did not influence the targets. Nighttime

imaging also allowed the asphalt to cool down so that a larger temperature contrast

between target and background could be achieved. The sensor made four passes in

a south-north flight line and an additional two passes in an east-west flight line.
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4.7.1.1 Targets

The targets used in the collect were water-tight 11in x 8in x 3in aluminum boxes.

When compared to the GSD achieved with the thermal sensor, one box covered

approximately 38% of the projected area.

Figure 4.11: Polished box (bottom), sandblasted box (upper left), and box painted
with Krylon Ultra Flat Black paint (upper right).

Nine boxes were procured and three were painted with Krylon Ultra Flat Black

#1602 spray paint to produce a high emissivity surface, three were polished to pro-

duce a low emissivity surface, and three were sandblasted to produce an emissivity

in between. Examples of each box are found in Figure 4.11. Spouts were added to

the front face of each box so that they could be filled with water and laid out for

the collect without water leaking out of the spout. The surface temperature of the

boxes was modified by filling the boxes with water at different temperatures. Water

was used to modify the surface temperature for a number of reasons. One reason

being using hot and cold water was far less complex than designing a heating system

that would require a portable power source, electrical wires, etc. Another reason

was that water completely filling a box provides a way of modifying the surface
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temperature in a uniform fashion. Introducing a heating element into such a small

cavity would introduce localized hot spots on the surface.

The coldest water temperature achieved was near the ambient air temperature. If

water with a temperature lower than the dewpoint for that night was used, con-

densation would occur on the surface. This would have made it difficult to get an

accurate emissivity measurement as well as an accurate contact temperature mea-

surement during the collect. One box from each of the surfaces (Krylon Ultra Flat

Black #1602 spray paint, sandblasted, and polished) was filled with water 12 hours

prior to the collect and left outside until the collect took place. Another set of three

boxes were filled with the hottest tap water available (46◦C) and the final set of three

boxes was filled with water at an intermediate temperature (33◦C). This experiment

produced imagery containing nine combinations of target temperature/background

temperature and target emissivity/background emissivity differences.

4.7.1.2 Location

The parking lots on RIT’s campus provided a uniform background material large

enough such that homogeneous pixels surrounded the target location. The targets

were laid out in the parking lot at the location marked with a green “x” on the left

side of Figure 4.12. It provided a large, uniform area of asphalt rarely used during

the summer months. Two temperature-controlled calibration targets were placed

on the roof of the Chester F. Carlson Center for Imaging Science, denoted by the

yellow star in Figure 4.12
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Figure 4.12: Image from Google Maps showing the experiment locations that have
been tested for suitability. Location 1 is marked by red circles, Location 2 by blue
circles, and Location 3 is denoted by the green “x”.

4.7.1.3 Test plan

The boxes were laid out in a 3x3 grid depicted in Figure 4.13. The boxes were

placed on the ground so that their longest sides faced north and south. With a

GSD of 1.27ft, there were approximately 8 pixels in the thermal image separating

each box from its neighbors. This left enough space between boxes such that the

energy contribution due to the sensor and atmospheric MTF from one box will be

negligible in the pixel or pixels containing another box.
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Figure 4.13: Test target configuration

The boxes were arranged such that those in the leftmost column were the ones

painted with Krylon Ultra Flat Black #1602 spray paint. The boxes in the rightmost

column were polished aluminum and the middle column contained the sandblasted

boxes. If the boxes had not been modified in any other way (i.e. the surface tem-

peratures were the same), a thermal imager would see a difference in the radiance

coming from the three columns of boxes simply due to their emissivity differences.

Ideally there would be an identical 3x3 array of aluminum boxes laid out on a sur-

face other than asphalt so that multiple emissivity differences between the boxes and

the background material were observed. After a complete survey, it was determined

that no other location on RIT’s campus that would allow for that. The possibility of

placing layers of another material (e.g. plywood) was explored and approximately
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1600 square feet (corresponding to a square with dimensions of 40 feet x 40 feet)

of material would have to be laid down. The amount of material required was too

large to be laid out and secured. Therefore this experiment only had the parking

lot asphalt as a background material.

The aluminum boxes were all the same size, so physical target size differences were

not present in the experiment. The boxes remained stationary over the course of

the experiment. However, by shifting the camera between image captures, different

positions were simulated. Shifting the camera also leads to each target occupying

different proportions of pixel area. So, even though the target size did not physi-

cally change, the amount of pixel area it occupied with each shift of the camera did

change due to its position across pixel boundaries.

The boxes were filled with water and placed on the asphalt 30 minutes prior to the

plane flying overhead. This gave enough time for the temperature of the box to come

to an equilibrium as well as for heat transfer effects to occur. Five minutes prior to

the sensor flying overhead a contact temperature measurement of the top and one

side of each box was made using the Exergen Infrared Thermometer as well as a

measurement of the asphalt at the base of the box, 1in from the base, and 2in from

the base. During the collect, a temperature measurement of the top of each box

was made between each pass. The boxes were measured in multiple locations (3) on

their top surface and an average of the temperature measurements was computed

and recorded. The other locations were not measured due to the limited amount of

time available between aircraft passes. Immediately after the final pass of WASP,

the more extensive suite of measurements of the boxes and asphalt were taken. The

temperature of the background asphalt was measured with 10 samples in a location

approximately 12 feet from the Eastern edge of the grid of boxes in order to compute

an average background temperature.

The reflectance of each box surface type was measured using the Surface Optics

Corporation SOC-400T infrared reflectometer and the reflectance was converted to
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emissivity via Kirchhoff’s Law. Figure 4.14 contains the emissivity curves for each

box.
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Figure 4.14: Emissivity curves for (a) aluminum box painted with Krylon Ultra Flat
Black #1602 spray paint, (b) aluminum box whose surface has been sandblasted,
and (c) polished aluminum box.

The emissivity of the asphalt was not measured coincident with the collect due to

atmospheric conditions, since scattered clouds covered approximately 80% of the

sky. An asphalt emissivity curve (shown in Figure 4.15) was taken from another

project and used in the simulations. The weather station on the roof of the Chester

F. Carlson Center for Imaging Science was used as the source of surface weather

data. Weather data was recorded starting three days prior to the start of the collect
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and continuing until the end of the collect. Three days was used because the as-

phalt was estimated to be approximately 6in thick, if the asphalt had been thicker,

a greater period of preceding weather observations would have been required.
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Figure 4.15: Asphalt emissivity curve.

Radiosonde data from Buffalo, NY was gathered to use in the MODTRAN/DIRSIG

downwelled radiance calculation. The radiosonde was launched approximately 60

miles away from the site and approximately 2.5 hours prior to the collect. The data

below the boundary layer was changed to better reflect the local Rochester weather

conditions at the time of collect by inserting the weather data from the rooftop

weather station and interpolating. The weather data from the rooftop station was

validated using weather data from the Rochester International Airport.
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4.7.2 Atmospheric compensation

The dataset was atmospherically corrected using an in-scene technique. Two pools

filled with water were placed on the roof of the Chester F. Carlson Center for Imag-

ing Science. One of the pools contained cold water and the other contained hot

water. To get the water warm, one of the pools was covered with a solar cover 36

hours prior to the collect. The other pool was filled with cold tap water approxi-

mately 30 minutes prior to the collect. The pools were separated by approximately

15 feet and were 6ft long, 4ft wide, and 1ft deep, so there was at least one pure

water pixel in each WASP image. A thermometer was placed in the pool to mea-

sure the water temperature. However, the thermometer measured the bulk water

temperature which can deviate significantly from the surface temperature, which is

what the sensor “sees”. To account for this, the water in each pool was stirred right

until the moment the sensor was overhead. When the sensor flew over, the person at

the pool moved away so as not to influence the radiance values and the temperature

recorded with each thermometer was recorded for each pass.

The in-scene atmospheric compensation technique used is similar to the Empirical

Line Method (ELM). Recall the governing equation equation for a pure pixel in the

thermal infrared

Lpix = [εLBB + (1− ε)Ld]τ + Lu (4.5)

Since the emissivity of water is very high (0.986) the reflected downwelled term is

negligible leaving

Lpool = LBBτ + Lu (4.6)

where τ is the slope term and Lu is the intercept. Using the hot and cold pool

data as calibration points, the atmospheric transmission and upwelled radiance was

determined by computing the slope and intercept of the line going through the

two points. The pixel radiance from the WASP imagery for both pools was the
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dependent variable and the ground leaving blackbody radiance from each pools was

the independent variable. The spectral ground-leaving radiance from the water in

each pool from 8 - 9.2µm was computed by applying the spectral response curve of

the WASP sensor, R’(λ), and integrating over the bandpass,

Lsensor =

∫ 9.2

8

LpoolR
′(λ) dx (4.7)

4.7.3 Modeling in MuSES

The asphalt surface was the most difficult object to model in MuSES. The surface

temperature of the asphalt was measured at the time of collect. The rooftop weather

station recorded the weather information during the collect as well as the weather

information three days prior the collect. RIT Facilities Management confirmed the

thickness of the asphalt and the gravel substrate to be approximately 4.5in and

10in, respectively. This information, along with extensive help from the experts

at ThermoAnalytics, helped to create and validate a 17-layer model of the parking

lot, illustrated in Figure 4.16. The multi-layer approached allowed the heat transfer

to be computed at finer intervals than if the parking lot had been modeled as one

large layer. When the asphalt was modeled as one solid layer, MuSES computed

its temperature to be cooler than what was measured. Dividing up the asphalt into

more layers provide put less mass on the surface node and helped it to heat up more

in the sun.
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Asphalt 

Gravel 

Soil 

Density: 2243 kg/m3 
Specific Heat: 1670 J/kg-K 
Conductivity: 2.0 W/m-K 

Density: 2050 kg/m3 
Specific Heat: 1840 J/kg-K 
Conductivity: 0.52 W/m-K 

Density: 1500 kg/m3 
Specific Heat: 1840 J/kg-K 
Conductivity: 1.0 W/m-K 

Figure 4.16: Schematic of 17-layer asphalt model in MuSES.

When MuSES was run with all available input data in this configuration, the tem-

perature of the surface of the asphalt was 29.8◦C. This was the same value as the

average of the 10 temperature samples taken from the parking lot. That is not to say

that one should always model an asphalt parking lot as a series of 17 layers. If the

material properties of the asphalt (e.g. specific heat, density, sonduction coefficient)

had been measured instead of estimated, the input parameters to the model would

have been more accurate. This could have decreased the need for so many layers to

increase the modeled surface temperature of the asphalt.

Each box, shown in Figure 4.17, was modeled using one layer that was 3mm thick.

The top surface had an emissivity assigned that was indicative of the surface treat-

ment applied (e.g. Polished aluminum). Since the temperature of the box remained

fixed, the density, specific heat, and conductivity were not needed.
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Figure 4.17: MuSES model of aluminum box.

The MuSES weather file contained three days worth of weather history but the

box was only out on the asphalt for approximately two hours in total. Therefore

two separate TDFs had to be created and linked together. The first file had only

the background asphalt object exposed to the environment and the weather file

contained data up to the time that the box was placed on the surface. The second

TDF had the box placed on top of the asphalt and its weather file contained the

weather data for the two hours during the collect period. Because the two TDFs

were linked together, the asphalt temperature in the second file was based off of the

weather history from the first file.

4.8 Error analysis

The parameter estimates used as inputs to the physics-based modeling processes

contain some degree of error. These individual errors propagate through the process

and combine to produce an error in the extracted target temperature. There is no

governing equation for the entire process, so the error analysis for the physics-based

portion is carried out using simulated data and Monte Carlo methods. The MuSES

simulations are the first step in the methodology, therefore the description of the

error analysis will begin there.

MuSES is not used to model the target temperature as it is fixed during each of

the simulations. Therefore the error contained in the MuSES input parameters only
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affects the background temperature estimate. The equation of partial differentials

that computes the error in the background temperature estimate is

sTb =

[(
∂Tb
∂Tair

sTair

)2

+

(
∂Tb
∂WS

sWS

)2

+

(
∂Tb
∂CC

sCC

)2

+

(
∂Tb
∂D

sD

)2

+

(
∂Tb
∂SH

sSH

)2

+

(
∂Tb
∂C

sC

)2
] 1

2
(4.8)

Table 4.4 describes the error sources corresponding to each abbreviation in Equa-

tion 4.8.

Table 4.4: Abbreviations from Equation 4.8
Abbreviation Corresponding error source

sTair Air temperature [◦C]
sWS Wind speed [m/s]
sCC Cloud cover [% of sky]
sD Density of material [kg/m3]
sSH Specific heat of material [J/kg - K]
sC Conductivity of material [W/m-K]

The parameters in Table 4.4 are varied, one at a time, while the others are held

fixed. For each variation, the background temperature is recorded to produce a

plot of the background temperature versus the parameter values. The minimum

and maximum values of the parameter that are likely to occur are determined and

used as the extreme points in the plot. The midpoint between the minimum and

maximum is also used. From these three points, one can determine whether or not

the relationship between the parameter and the modeled background temperature

is linear, or approximately linear (R2 ≥ 0.9), over that range. If the relationship

is linear then then the slope of the best-fit line of the points is the value of the

partial differential for that specific parameter in Equation 4.8. If the relationship

cannot be described as linear, or approximately linear, then more points between

the maximum and minimum need to be computed and the slope between each set



90 4.8. ERROR ANALYSIS

of points is used in a piece-wise fashion for the partial differentials. The values of

the s terms comes from the user’s best estimate of how much error is contained in

each parameter. For example, if the user was confident in their estimate of the air

temperature they might set sTair to 0.2◦C.

The next step in the error analysis is to use DIRSIG to compute the radiance

solution for each of the TDFs from MuSES. The equation of partial differentials

that computes the error in the average radiance value of the target-containing pixel,

sLtcp, is

sLtcp =

[(
∂Ltcp
∂x

sx

)2

+

(
∂Ltcp
∂y

sy

)2

+

(
∂Ltcp
∂z

sz

)2

+

(
∂Ltcp
∂locx

slocx

)2

+

(
∂Ltcp
∂locy

slocy

)2

+

(
∂Ltcp
∂Tb

sTb

)2

+

(
∂Ltcp
∂εb

sεb

)2

+

(
∂Ltcp
∂εt

sεt

)2

+

(
∂Ltcp
∂τ

sτ

)2

+

(
∂Ltcp
∂Ld

sLd

)2
] 1

2

(4.9)

Table 4.5 contains the explanation of the error source corresponding to each abbre-

viation in Equation 4.9.

Table 4.5: Abbreviations from Equation 4.9
Abbreviation Corresponding error source

sx, sy, sz Target size in x, y, and z direction [m]
slocx, slocy Target location in x and y direction [m]

sTb Background temperature [◦C]
sεb Background emissivity
sεt Target emissivity
sτ Atmospheric transmission
sLd Downwelled radiance [Wm−2sr−1]

The same methodology to determine the values of the partials used previously is

used in this step as well. The sixth term in the equation represents the error in
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the background temperature. That partial is computed by varying the background

temperature in DIRSIG and recording how it affects the average radiance value.

The value of sTb is computed from Equation 4.8. The emissivity curves are biased

by the same amount over all wavelengths. If the maximum emissivity value likely to

occur is 0.05 larger than the emissivity curve used in DIRSIG, 0.05 is added to each

emissivity value in the curve. This biasing method is also employed when comput-

ing the partials for the atmospheric transmission and the downwelled radiance. The

error from the upwelled radiance is not included in the analysis because the differ-

ence between two radiance quantities is computed in the next step. This subtraction

of the two governing equations gets rid of any error from the upwelled radiance term.

The difference between the average radiance from the target-containing pixels (Ltcp)

and the radiance from the pure background pixels (Lb) is computed in the next step

of the methodology.

∆Lavg = Ltcp − Lb (4.10)

Equation 4.10 is a simple governing equation, therefore Monte Carlo methods are

not employed in this part of the error analysis. The values of the partial derivatives

can be computed directly from Equation 4.10. The equation to compute the error

in ∆Lavg is

s∆Lavg =

[(
∂∆Lavg
∂Ltcp

sLtcp

)2

+

(
∂∆Lavg
∂Lb

sLb

)2
] 1

2

(4.11)

The value of the partial derivative in the first term is 1 and the value of the partial

derivative in the second term is -1, leaving the following equation to compute the

error in the delta radiance term

s∆Lavg =
[
s2
Ltcp + (−sLb)2

] 1
2 (4.12)

The value for the error in the background radiance is the calibration error of the
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sensor and sLtcp comes from Equation 4.9.

A regression model (in this example it is a second-order model) is used to determine

the difference between the target and background temperatures

∆T = β0 + β1∆Lavg + β2∆L2
avg (4.13)

and the imagery-derived background temperature is added to ∆T to arrive at the

target temperature. This can be expressed as

Tt = ∆T + Tb = β0 + β1∆Lavg + β2∆L2
avg + Tb (4.14)

Again, since there is an equation that describes the process, Monte Carlo methods

are not used in the error analysis for this step. The equation of partial derivatives

is

sTt =

[(
∂Tt
∂β0

sβ0

)2

+

(
∂Tt
∂β1

sβ1

)2

+

(
∂Tt
∂β2

sβ2

)2

+

(
∂Tt

∂∆Lavg
s∆Lavg

)2

+

(
∂Tt
∂Tb

sTb

)2
] 1

2
(4.15)

After computing the partials, Equation 4.15 is reduced to

sTt =
[
s2
β0 + (∆Lavgsβ1)2 + (∆L2

avgsβ2)2 + ((β1 + 2β2)s∆Lavg)
2
] 1

2 (4.16)

where sβ0, sβ1, and sβ2 are the standard error in the regression coefficients.
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4.9 Synthetic Experiment

The synthetic experiment simulated the airborne collect using imagery created en-

tirely in MuSES and DIRSIG. The primary reason for this study was to show how

temperature extraction errors improve with better atmospheric knowledge. Recall

that the downwelled radiance was computed using atmospheric information from a

radiosonde that was neither launched in the same place as the collect nor at the

same time. Also, imprecise knowledge of the cloud cover distribution was avail-

able. This almost certainly leads to errors in the downwelled radiance computation

which will have a large effect on the sandblasted and polished boxes because of their

low emissivities. A secondary function of this experiment was to look at target-

background combinations with larger temperature differences than were achieved

during the airborne collect. The largest temperature difference between target and

background in the airborne experiment was 5◦C, whereas objects such as operating

electrical transformers produce a much larger temperature difference. Even though

the hottest water used had a temperature of around 46◦C, the largest temperature

difference was 5◦C because the boxes were placed on the asphalt for 30 minutes prior

to the airplane flying overhead, which allowed for heat transfer to occur. The heat

transfer from the box to the asphalt and the environment resulted in the decreased

temperature difference between the target and background. Finally, in the airborne

collect the box emissivities fell at the extreme ends of the spectrum. This experi-

ment allowed for a more moderate emissivity value of 0.8 to be tested.

Forty truth cases were created using all combinations of the parameters in Table 4.6.

All of the truth cases used the asphalt emissivity curve from Figure 4.15 as the

emissivity of the background.
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Table 4.6: Synthetic truth image inputs. The first three target emissivity descrip-
tions match the emissivity curves found in Figures 4.14(a), 4.14(b), 4.14(c), respec-
tively.

Parameter Value

Target temperature [◦C]
82.6
62.6
32.6

Target emissivity

Krylon Ultra Flat Black
Sandblasted Aluminum

Polished Aluminum
0.8 Graybody

Position
Center of center pixel

Across boundary of four adjacent pixels

The position of the target when it was located across four pixels was set to be (1.87,

1.77) in DIRSIG. This means that the center of the target was translated 1.87m

in the x-direction and 1.77m in the y-direction. Heat transfer was modeled using

MuSES as described in Section 4.7.3. The downwelling radiance was computed us-

ing the Buffalo radiosonde data. Each TDF was imported into DIRSIG, where the

downwelling radiance was applied and the radiance images were produced. The ra-

diance from the target-containing pixels was recorded to be used later in the process

as an input to the regression equations derived from their respective LUTs.

One LUT was created per truth case. The input parameters to the LUT images

were the input parameters to the truth cases plus randomly assigned error. The

errors are summarized in Table 4.7.

Table 4.7: Error sources for the synthetic image study.
Parameter Error amount

Background temperature 4%
Background emissivity 2%

Target emissivity 3%
Position 1/4 pixel

Atmosphere none
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The truth values for the background temperature, background emissivity, and target

emissivity were biased by the error amount in Table 4.7. The true asphalt tempera-

ture was 29.9◦C and the average imagery-derived asphalt temperature was 28.6◦C.

This corresponded to the imager-derived asphalt temperature being 4% lower than

the true asphalt temperature. Therefore a 4% error for the background temperature

was used in the synthetic experiment. The derivations of the true asphalt tempera-

ture and the image-erived temperatures are described in more detail in the Results

chapter. The emissivity curve for the background was biased upward by 2% and the

emissivity curves for the target emissivities were biased by 3%. To add error to the

position, the center of the target was moved 1/4 of a GSD diagonally. Since the main

function of this study was determine the improvement that would occur with more

accurate knowledge of the atmosphere, no error was added to these values. This

represents the best case scenario where the atmosphere is characterized perfectly.

4.10 MuSES Utility Study

Heat transfer is present between all objects in the real world. The methodology de-

scribed in the beginning of this chapter incorporates heat transfer into the modeling

process. One could ask whether or not modeling the heat transfer actually results

in a more accurate temperature extraction in the end. If not, one entire step of

the process can be omitted. This study used synthetic imagery to determine the

importance of modeling heat transfer when using this methodology to determine the

temperature of a subpixel object.

Six surrogate truth cases were created and the parameters used are summarized

in Table 4.8. Each case used the same simple box geometry with the emissivity

curve of Krylon Ultra Flat Black. The same asphalt model and emissivity curve

used in previous studies was used again here.. The asphalt was modeled in MuSES

the same way as before, where the weather file and material properties dictated its

temperature. The boxes were fixed at their respective temperatures.
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Table 4.8: Input parameters for the six truth cases of the heat transfer utility study.

Case
Background Target Target Background Position
Temperature Temperature Emissivity Emissivity

1 29.8 ◦C 82.6 ◦C 0.93 0.95 Center
2 29.8 ◦C 62.6 ◦C 0.93 0.95 Center
3 29.8 ◦C 32.6 ◦C 0.93 0.95 Center
4 29.8 ◦C 82.6 ◦C 0.93 0.95 Across 4 pixels
5 29.8 ◦C 62.6 ◦C 0.93 0.95 Across 4 pixels
6 29.8 ◦C 32.6 ◦C 0.93 0.95 Across 4 pixels

The target temperatures for cases 1 and 4 were 60◦C above the ambient air tempera-

ture, cases 2 and 5 were 40◦C above ambient air temperature, and cases 3 and 6 were

10◦C above ambient air temperature. The background temperature was 29.8◦C, so

the target temperature in cases 1 and 4 was 52.8◦C above the asphalt temperature.

The target temperature for cases 2 and 5 was 32.8◦C above the asphalt temperature

and cases 3 and 6 were 2.8◦C above the asphalt temperature.

The truth cases were modeled in MuSES to produce a TDF. The TDF for each case

was then run through DIRSIG to produce a radiance image. The position labels

from Table 4.8 refer to the position of the target in DIRSIG. The center position

refers to the target being located in the geometric middle of the center pixel in the

image. When the target was across four pixels, it was shifted relative to the center

pixel such that a portion of the target was physically located within four adjacent

pixels. The atmosphere file containing clouds was used to compute the downwelling

radiance.

The input parameters to the LUTs used to extract the target temperature were

biased from the truth values (found in Table 4.8) by the amount shown in Table 4.9.
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Table 4.9: Error sources for heat transfer study.
Parameter Error amount

Background temperature 4%
Background emissivity 2%

Target emissivity 3%
Position 1/4 pixel

Atmosphere none

The data collected was used to test the methodology outlined in this chapter. A

study to determine the how large the temperature extraction error would be if the

heat transfer were not modeled was also conducted using this data. Two lookup

tables were created, one that had MuSES data built in and one that did not, and a

regression equation was built from each. The average pixel radiance value across the

target-containing pixels was used as the input to both equations and the temperature

extraction error was compared. If the temperature extraction errors produced by

the heat transfer LUT were the same as those produced by not modeling heat

transfer, that would indicate that modeling heat transfer could be removed from

the temperature extraction process.



Chapter 5

Results

5.1 Airborne collect results

5.1.1 Airborne data

The methodology described in Chapter 4 was applied to three of the images collected

during the airborne campaign. Two images were collected during the North-South

passes and were acquired at the beginning of the experiment. The third image was

captured during the East-West pass at the end of the mission. The images were

identified by their WASP image numbers and Table 5.1 shows the image ID with

the collection information.

Table 5.1: Image ID numbers with corresponding collection information from 5
August 2011.

ID # Pass direction Time collected (EDT)
71 North-South 2230
148 North-South 2251
185 East-West 2301

The images are shown in Figures 5.1, 5.2, and 5.3 with a companion image chip that

highlights the boxes.

98
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(a) Image 71 (b) Chip of image 71

Figure 5.1: Image 71 with corresponding image chip highlighting the experiment
boxes.

(a) Image 148 (b) Chip of image ‘48

Figure 5.2: Image 148 with corresponding image chip highlighting the experiment
boxes.
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(a) Image 185 (b) Chip of image 185

Figure 5.3: Image 185 with corresponding image chip highlighting the experiment
boxes.

The image chips from Figures 5.1(b), 5.2(b), and 5.3(b) illustrate the difficulty of

the task at hand, as it is difficult to even locate the boxes in the image. The

Krylon flat black painted boxes containing the warm water and the ambient air

temperature water were not found in any of the images. This was likely due to the

temperature and/or the emissivity of those particular boxes being similar to the

asphalt. Figure 5.4 shows the image chips with orange squares around each of the

boxes that were found in the scene.

(a) Chip 71 (b) Chip 148 (c) Chip 185

Figure 5.4: Image chips with the boxes from the experiment highlighted by orange
boxes. (Note: not all of the boxes were accounted for)
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Images of the calibration pools were also collected. One of these images is shown

Figure 5.5. The FOV of WASP was not large enough to contain both the pools and

the boxes in one image, so the images used for atmospheric compensation were taken

prior to the images of the boxes. For the North-South passes, the time difference

was approximately two minutes and for the East-West passes the box images were

taken immediately after the pool images.

(a) Pool Image (b) Image chip high-
lighting the pools

Figure 5.5: Image of the calibration pools on the roof of the Chester F. Carlson
Center for Imaging Science and its companion image chip.

5.1.2 Ground truth

After each pass of the plane, the temperature of the top of each box was mea-

sured with an Exergen Infrared Thermometer and recorded. Table 5.2 contains the

temperatures of the boxes in images 71, 148, and 185.
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Table 5.2: Box surface temperatures measured after each pass for three images.

Box description
Image 71 Image 148 Image 185

temperatures temperatures temperatures
[◦C] [◦C] [◦C]

Flat black painted (hot) 31.3 30.3 29.9
Sandblasted (hot) 30.6 30.1 29.6
Polished (hot) 27.3 28.2 28.5
Flat black painted (warm) 28.0 26.9 26.7
Sandblasted (warm) 27.4 28 27.6
Polished (warm) 27.0 26.8 27.3
Flat black painted (ambient) 27.6 27.4 26.6
Sandblasted (ambient) 27.1 26.6 26.9
Polished (ambient) 25.6 26.4 26.2

At the end of the mission, the temperature of the asphalt was sampled in ten different

locations. These measurements were taken approximately 30ft away from the site

of the collect to ensure that neither the experiment nor the experiment team had

influenced the surface temperatures. They were also taken in the thoroughfare of the

parking lot (as opposed to the parking spaces) to ensure that shading of the surface

by a car for an extended period of time or surface contaminants (e.g. oil) were not

present. The ten measurements were averaged to obtain the background asphalt

temperature. Table 5.3 contains the temperature measurements for the asphalt.
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Table 5.3: Asphalt temperature measurements.
Measurement # Temperature [◦C]

1 30.0
2 30.1
3 29.8
4 29.8
5 30.0
6 29.8
7 30.2
8 29.9
9 29.8
10 29.9

Average temperature 29.9

The final piece of ground truth information collected was the calibration pool tem-

peratures. A temperature measurement from each of the pools was collected im-

mediately after the plane passed overhead and a listing can be found in Table 5.4.

These measurements, and the associated blackbody radiance values for each, were

used to remove the atmospheric transmission and upwelled radiance terms from the

pixel radiance values in the images.

Table 5.4: Calibration pool temperatures.
Time Hot pool temperature [◦C] Cold pool temperature [◦C]
2228 33.5 22.5
2249 33.3 22.2
2301 32.9 22.1

5.1.3 Background temperature estimation

The method described in Section 2.12 was used to estimate the background tem-

perature. A region of interest, with approximately 200 pixels, was selected in the

parking lot away from the experimental site and the average asphalt radiance was

computed for each image. Using knowledge of the downwelled radiance and the

background emissivity, the ground-leaving radiance for the background was com-
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puted. An iterative process was used to back out the asphalt temperature from the

Planck equation. The background temperature for each image is given in Table 5.5.

Table 5.5: Extracted background temperature and the temperature error for each
of the images.

Image # Background temperature [◦C] Temperature error [◦C]
71 28.8 1.76
148 28.7 1.55
185 28.6 1.33

5.1.4 Target temperature extraction results

The weather data for Rochester from Weather Underground [32] indicated scattered

clouds covering approximately 80% of the sky at the time of the collect. The data

from the Rochester International Airport reported the presence of broken clouds,

meaning over 50% of the sky was covered. When MODTRAN incorporates clouds

into a model, it assumes a solid layer of cloud cover. It cannot directly model broken

cloud cover. Since both weather sources indicated the presence of broken clouds

covering more than half of the sky area, it was decided that the atmosphere would

be modeled with and without cloud cover. The cloudy atmosphere was modeled

as an altostratus cloud layer (ICLD = 2 in MODTRAN “tape5” file). Altostratus

was chosen because the altitude of the cloud base was above 2.4km. In both of the

atmospheric models, the corrected radiosonde data was imported into the “tape5”

file. The temperature extraction results from the cloudy atmosphere for the three

images are shown in Figures 5.6, 5.7, and 5.8.
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Figure 5.6: Temperature extraction results for the boxes in image 71 (captured at
2230).

The sandblasted and polished boxes were easy to locate within the images because

their emissivities were so much lower than that of the asphalt. The painted boxes

were challenging to find, so much so that the painted boxes filled with warm water

and water at the ambient air temperature could not be located in any of the im-

ages. Those particular boxes are labeled with an N/A in the Figures 5.6, 5.7, and 5.8.

The smallest temperature error in image 71 came from the painted box, which had

the highest emissivity. The polished boxes produced very large errors (greater than

200◦C). It is believed that such large temperature errors resulted from two issues.

The primary issue was the lack of quality atmospheric knowledge. The high emis-

sivity of the painted surface prevents the reflected radiance from the atmosphere

from making a large contribution to the ground-leaving radiance of the box, which

is why the temperature errors for the Krylon flat black painted boxes were small,
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even though the errors for the other boxes were large. Consider a scenario where

the target has a temperature of 29◦C and the sky has a temperature of -13◦C. For a

box painted with Krylon Ultra Flat Black paint, 96% of the ground-leaving radiance

is due to self-emission. This means that the atmosphere only contributes 4% of the

energy to the ground-leaving radiance. One can see how even a large error in at-

mospheric knowledge would not translate into a large temperature extraction error

due to the reflected component’s small contribution to the ground-leaving radiance.

Using the previous example, a 10% error in the downwelled radiance knowledge

translates to an error in pixel radiance of 0.06 W/(m2sr). This radiance error corre-

sponds to a blackbody temperature error of 0.35◦C. If the case of the polished box

is considered under the same assumptions, the reflected downwelled component con-

tributes 95% of the ground-leaving radiance from the box whereas the self-emitted

component is only a 5% contributor. With such a large effect on the ground-leaving

radiance, even a small error in the knowledge of the atmosphere can manifest as a

large error in temperature.

The secondary contributer to the large extraction errors of the sandblasted and pol-

ished boxes was the poor knowledge of the atmosphere resulting in delta radiance

values that were outside the range modeled by the regression equation. The tar-

get temperature range modeled by MuSES and DIRSIG was 20◦C to 40◦C so the

true box temperatures fell in the middle of the modeled range. The background

temperature of the asphalt used in the modeling process was approximately 29◦C,

therefore the largest temperature difference between the target and background that

was modeled was 11◦C. Any temperature error greater than 11◦C generated by the

regression model was a result of extrapolation and therefore the magnitude of the

error might may be far less accurate.
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Figure 5.7: Temperature extraction results for the boxes in image 148 (captured at
2251).

The results from Images 148 and 185 follow the same pattern as those from Image

71. With the exception of the first data point in each image (the Krylon flat black

painted box with the warmest water), all of the errors are very large. This means

that the extracted temperatures were a result of imprecise atmospheric knowledge

and spatial errors due to broken cloud formations or extrapolation and therefore the

magnitudes are not accurate.
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Figure 5.8: Temperature extraction results for the boxes in image 185 (captured at
2301).

The only temperature errors that were valid were the ones belonging to the high

emissivity box. The largest temperature error was 7◦C, which is two degrees larger

than the land temperature errors predicted from Szymanski et al. Szymanski looked

at mixed pixels including water, and did not include an emissivity error on the

background in their analysis. The results from this research did have error in the

background emissivity.

The results were recomputed with an atmosphere that did not have clouds. The

results are found in Figures 5.9, 5.10, and 5.11.
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Figure 5.9: Temperature extraction results for the boxes in image 71 (captured at
2230).

The most obvious feature to note is the dramatic decrease in the temperature ex-

traction errors in image 71 when the cloud-free atmosphere is used. This indicates

that the clear atmosphere may be a more appropriate model for the conditions that

the boxes were exposed to as compared to an atmosphere with a solid cloud layer.

Since the cloud cover was broken the night of the experiment, and the portion of

the sky the boxes reflected was so small, it is possible that the reflected radiance

from the boxes originated in a cloud-free portion of the sky.

With the exception of the polished box containing warm water, which had a tem-

perature error twice as large as the next largest error, the temperature errors of the

boxes were less than 13◦C. The polished box containing warm water was probably

an anomalous result (perhaps due to sensor artifacts) because the average pixel ra-

diance from that particular box was lower than the polished box filled with water
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at a lower temperature. Since the boxes had the same emissivity, the box with the

warmer water should have produced a higher radiance value. This could have been

a result from a number of factors including; an error in the ground truth tempera-

tures, an error in the atmospheric correction that significantly affected this target

radiance value. A more likely source of error is the positioning algorithm selecting

the wrong target-containing pixels for this box.
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Figure 5.10: Temperature extraction results for the boxes in image 148 (captured
at 2251).

The temperature errors from image 148 were generally larger than those from image

71, however, they were still much smaller than the errors from image 148 when

clouds were modeled in the atmosphere. The reflected radiance from the boxes was

a combination of sky and clouds, and the ratio of this combination almost certainly

changed as the experiment progressed. In image 148 the boxes might have reflected

a larger portion of cloud radiance than in image 71, so the clear atmosphere was
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not as appropriate of a model. The temperature errors from image 185 followed the

same trend as the other cloud-free atmosphere results. The temperature errors in

Figure 5.11 decreased significantly compared to those in Figure 5.8.
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Figure 5.11: Temperature extraction results for the boxes in image 185 (captured
at 2301).

The temperature extraction errors from the cloud-free atmospheres were smaller

than those from the atmosphere where a layer of altocirrus clouds were modeled.

Modifying the atmospheric model such that the altocirrus clouds were removed had

the most significant effect on the temperature extraction for the sandblasted and

polished boxes. These two surfaces had very low emissivities (0.2 and 0.02, re-

spectively) and reflected almost all of the downwelled radiance incident upon them,

thereby making them sensitive to errors in atmospheric knowledge during the model-

ing process. This is further illustrated by the polished boxes consistently producing

the largest temperature extraction errors and, with a few exceptions, the sandblasted
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boxes produced the second largest temperature extraction errors.

Individual extraction results are dominated by the error in the system. So, while

it is easy to discuss the general trends that are common to all of the analyzed im-

ages, it is difficult to talk about the errors for individual boxes because of all of the

uncertainty within the experiment. The atmosphere played a significant role in the

errors, especially with the low emissivity surfaces. The boxes painted with Krylon

Ultra Flat Black showed only a few degree improvement (which is significant but

small compared to the improvement from the sandblasted and polished boxes) in

temperature error between the temperatures extracted using a cloudy atmosphere

and the temperatures from a clear atmosphere. This makes sense because the high

emissivity of the painted surface prevents the reflected radiance from the atmosphere

from making a large contribution to the ground-leaving radiance of the box. Given

the polished and sandblasted boxes sensitivity to the atmosphere, it is easy to see

how there could be large extracted temperature fluctuations between images as the

atmospheric conditions changed from scene to scene.

Since the boxes only took up 38% of the GSD, the background radiance had a

significant effect on the total pixel radiance. Therefore, errors in the background

temperature estimation as well as the background emissivity would have a signif-

icant effect on the pixel radiances that were modeled. The error in the estimated

background temperature and emissivity parameters that was used in the modeling

process certainly contributed to the temperature extraction errors and also could be

a reason why the extraction errors changed with the scenes.

The errors for the painted boxes were in line with the temperature errors found in

the literature review. However, all of the methods found in the literature review

used multiple thermal bands to determine the temperature of a subpixel object.

The other methods did not include low emissivity targets so a comparison cannot

be made in that realm, but for the most part the temperature errors from the

sandblasted box were less than 10◦C. This result appears to be good given the lack
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of atmospheric knowledge and the low emissivity of the surface.

5.1.5 Error analysis

The error analysis was carried out as described in Section 3.8. First, the partial

derivatives for the MuSES input parameters were computed. Recall the terms in

Equation 3.6 were air temperature, wind speed, cloud coverage, density, specific

heat, and conductivity. Table 5.6 shows the parameter, the range of values used in

the analysis, and the partial derivative values.

Table 5.6: Range of values used and the error term value computed for each MuSES
input parameter. The error term values represent the partial derivatives multipled
by their respective parameter error estimate.

Parameter Value range Error term value
Air temperature 22.5◦C ± 3◦C 0.17◦C

Wind speed 2.1m/s ± 5m/s -0.54◦C
Cloud coverage 84% ± 10% -0.004◦C

Density 2250 ± 150kg/m3 0.09◦C
Specific heat 1500J/kg-K± 500J/kg-K 0.3◦C
Conductivity 1.5± 0.75W/m-K 1.17◦C

The conductivity had the largest error term value and therefore it has the largest

effect on the background temperature modeled in MuSES. The value used for the

conductivity of the asphalt was found in the CRC Handbook of Tables for Ap-

plied Engineering Science (Second Edition) [33]. The range of values was found by

looking through Google search results. Without directly measuring the conductivity

of the asphalt, the value used was only a best estimate and therefore subject to error.

The best estimates of the error terms (the “s” terms in Equations 3.6 and 3.7) for

the material properties were 100kg/m3 for the density, 0.5W/m-K for conductivity,

and 200J/kg-K for specific heat. The best estimates for errors in environmental

condition were 0.2◦C for the air temperature, 1m/s for the wind speed, and 10% for
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the cloud coverage.

The next step in performing the error analysis was to look at how the input DIRSIG

parameters affected the modeled pixel radiance. The DIRSIG input parameters,

their values, and the partial derivates computed are found in Table 5.7.

Table 5.7: Range of values used and the error term values computed for each DIRSIG
input parameter.The error term values represent the partial derivatives multipled
by their respective parameter error estimate.

Parameter Value range Error term value
Background temperature 28.7◦C ± 2◦C 0.14 [W/(m2sr)]
Background emissivity emissivity curve ± 0.02 0.05 [W/(m2sr)]

Target emissivity emissivity curve ± 0.03 0.02 [W/(m2sr)]
Size (X dimension) 0.2m ± 0.06m 0.04 [W/(m2sr)]
Size (Y dimension) 0.28m ± 0.06m 0.09 [W/(m2sr)]
Size (Z dimension) 0.08m ± 0.06m 0.03 [W/(m2sr)]

X location starting point + 1/4, 1/2 pixel 0.098 [W/(m2sr)]
Y location starting point + 1/4, 1/2 pixel 0.05 [W/(m2sr)]

Atmospheric transmission MODTRAN output ± 10% -0.004 [W/(m2sr)]

Downwelled radiance
make adb output ± 20% 0.018[W/(m2sr)] for painted

0.13[W/(m2sr)] for polished

The largest error term value from the background temperature. This means that a

change in the background emissivity in DIRSIG had the largest effect on the pixel ra-

diance value. Since over 60% of the pixel area was the background material, it makes

sense that an error in the background emissivity would make a larger contribution

to the error compared to the target emissivity. The error term for the downwelled

radiance was computed for the case with a box painted with Krylon and a polished

box, yielding a very different partial derivative for both. Since the box with Krylon

Ultra Flat black had a high emissivity, errors in the downwelled radiance term have

a smaller effect when compared to the box with the low emissivity polished sur-

face. The partial derivative value for the position terms was large because the pixel

radiance value changes drastically as the target leaves the projected area of the pixel.
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Ground truth information shows that the extracted background temperature error

was between 1.3◦C and 1.76◦C, so the values in Table 5.5 were used as the best

estimates of the error. The background and target emissivites were estimated to be

0.02 units off from the true value. The targets’ physical dimensions were measured

beforehand, so no error was included for the target size. The target position was

estimated to 0.1m, which was about a quarter of a GSD in each direction. The

atmospheric transmission error was estimated to contain a 5% error from the truth

and the downwelled radiance was estimated to contain a 15% error.

Finally, Equation 3.13 was used to compute the overall error in the target tempera-

ture extraction. The standard error of each regression coefficient for every box was

computed. The input delta radiance values to Equation 3.13 came from the real

image. The errors from each of the image are found in Table 5.8.

Table 5.8: Temperatures and their errors from the airborne experiment for the
atmosphere modeled without clouds.

Box Image 71 [◦C] Image 148 [◦C] Image 185 [◦C]
Krylon hot 35.9 ± 0.12 29.9 ± 0.45 35.59 ± 0.26

Sandblasted hot 30.3 ± 2.03 23.58 ± 2.55 29.32 ± 2.23
Polished hot 19.71 ± 13.2 20.44 ± 4.03 5.28 ± 12.2

Sandblasted warm 21.38 ± 2.35 13.2 ± 9.98 19.7 ± 1.99
Polished warm -8.41 ± 5.03 1.49 ± 8.5 13.7 ± 10.92

Sandblasted ambient 14.13 ± 6.2 11 ± 3.25 16.82 ± 3.05
Polished ambient 19.57 ± 13.35 9.57 ± 8.48 3.51 ± 11.56

The values of the errors in Table 5.8 are small compared to the difference between

the actual and extracted temperatures for the sandblasted and polished boxes. This

indicates that some of the estimates of the error terms are too optimistic. The main

driver of error in the low emissivity box cases is the downwelled radiance term.

The estimate of 15% might be too low although it is difficult to say exactly how

much error there actually is in that particular term. It should also be noted that

instrument error was not included in this analysis. The thermal infrared imager
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on WASP surely adds noise to the imagery it collects and therefore the radiance

values contain some amount of error due to the sensor itself. However, the noise

characteristic of the WASP thermal imager were not characterized for this research.

5.1.6 Lessons learned

As with any collection/ground truth effort, there were a number of lessons learned

from this airborne collect. If this experiment could be done over, the following

changes would be made:

Calibration targets

One aspect of the experimental design that made the data analysis difficult

was the calibration method. Imagery of the calibration pools used showed

that there were only 1-2 pure water pixels. This made it difficult to accurately

determine the radiance of the water pixels due to sensor degradations due

to optical performance. Larger calibration pools would solve that problem.

Another issue had to do with mixing the water. Two volunteers stirred the

water up until the moment they judged the plane to be nearby. Then, as the

plane flew over and imaged, the volunteers stepped away from the pool. This

allowed the water to settle and form a skin whose temperature was not the

same as the bulk temperature that was measured. A better way would be to

install a mixing system in the pools so that the water was constantly churning,

even as the plane flew overhead. Finally, a solution that addresses both of

the issues with the pools would be to purchase some large, flat, temperature

controlled panels.

Time of year

The experiment was conducted during the warmest part of the year in Rochester.

Therefore the temperature of the asphalt was high, even at night, resulting in a

reduction in the temperature contrast between the targets and the background

that could be achieved with the method employed. This not only created a

harder temperature extraction problem, it did not allow for the experiment to
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emulate a situation where there is a large temperature contrast between target

and background (e.g. an operating transformer on a concrete background).

Boxes

Perhaps the largest disappointment of the experiment was the inability to

heat the surface of the boxes to more than 34◦C. The water from the tap

was very hot, but the amount of water that could fit in the boxes was small.

Once the boxes were placed on the asphalt, heat transfer quickly reduced the

temperature of the surface of each box. The experiment would have benefitted

from designing an internal heating element for the boxes so that they could not

only achieve higher temperatures than the tap water would allow, but would

remain at those temperatures throughout the experiment. Another change

would be to incorporate a box with an intermediate emissivity. The majority

of natural and manmade objects have emissivities that fall between 0.8 and

1.0, but two thirds of the boxes had emissivities less than 0.2. Although an

intermediate emissivity was modeled in the synthetic experiment, it would

have been nice to have had that in the real experiment as well.

Atmospheric data

The atmospheric data from the Buffalo radiosonde was a large contributor to

the temperature extraction error, especially in the case of the low emissivity

boxes. It would be advantageous to launch a radiosonde from the collection

area at or near the time of the collect. At the very least, performing the

experiment closer to the time the Buffalo radiosonde is launched might help

mitigate atmospheric errors.

Along with a list of things to change in the future, it is important to note

that there were a few things that made the experimental analysis easier. One

was the use of reflective duct insulation as fiducial markers to mark the top

of each row and column in the grid of boxes. In some of the images it was

difficult to determine the location of a box. Using the fiducials and knowledge

of the spacing between the boxes, the missing box was located. Performing
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the experiment at night ended up being a good idea because the campus was

quiet and the experiment was not disturbed while in progress due to pedestrian

traffic.

5.2 Synthetic imagery study results

This main purpose of this study was to look at the possible reduction of temperature

extraction errors with better knowledge of the atmosphere. This study used a best

case scenario, where the atmosphere was modeled without the inclusion of error. It

also looked at larger target-background temperature differences than those achieved

in the airborne collect, as well as a more moderate target emissivity.

The set of boxes were modeled under an atmosphere with and without a cloud

layer included. The study positioned the boxes within the center of the pixel in the

middle of the study area, as well as across the boundary of four adjacent pixels.

Every combination of those parameters led to four analysis sets whose results are

graphically summarized in Figures 5.12, 5.13, 5.14, and 5.15. Figures 5.12 and 5.13

show the temperature extraction errors for the cloud-free atmosphere.
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Figure 5.12: Synthetic experiment temperature extraction results for the clear at-
mosphere and boxes in the center of the center pixel.

The temperature extraction errors for the target representing the high emissivity

painted box were very similar to those found in the airborne experiment. This

makes sense because the temperature extraction errors from the high emissivity

surface can tolerate errors in atmospheric knowledge. The temperature errors from

the box with the 0.8 graybody emissivity were similar in magnitude to those from

the painted box, however, they did not have a counterpart in the airborne collect

so comparisons could not be made. Not surprisingly, the boxes with the most

improvement over the airborne collect were those with the sandblasted and polished

surfaces. The errors from the polished surfaces were again the largest overall, but

in all cases are smaller than those from the airborne collect. This shows that with

precise atmospheric knowledge, one could expect errors around 12◦C or less for a

box with an emissivity of approximately 0.02. Recall that while the atmosphere

was perfectly modeled, errors for the target and background emissivity, background
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temperature and target position were included. The errors would also decrease with

better knowledge of these input parameters, until the only error left would come

from the regression model itself.

1.68 

‐1.2 

‐4.95 

‐12.71 

1.07 

3.1 

‐3.84 

‐10.45 

0.66 

‐1 

‐5.17 

‐11.9 

-14 

-12 

-10 

-8 

-6 

-4 

-2 

0 

2 

4 

K
ry

lo
n 

ho
t 

0.
8 

ho
t 

Sa
nd

bl
as

te
d 

ho
t 

Po
lis

he
d 

ho
t 

K
ry

lo
n 

w
ar

m
 

0.
8 

w
ar

m
 

Sa
nd

bl
as

te
d 

w
ar

m
 

Po
lis

he
d 

w
ar

m
 

K
ry

lo
n 

am
bi

en
t 

0.
8 

am
bi

en
t 

Sa
nd

bl
as

te
d 

am
bi

en
t 

Po
lis

he
d 

am
bi

en
t 

T
em

pe
ra

tu
re

 E
xt

ra
ct

io
n 

E
rr

or
 [

de
g 

C
] 

Figure 5.13: Synthetic experiment temperature extraction results for the clear at-
mosphere and boxes offset from the center pixel.

The magnitude of the temperature errors were similar for the two positions. This

indicates that as long as the target-containing pixels are correctly identified, the

temperature extraction errors are not sensitive to positional errors. The temper-

ature extraction errors also generally had the same magnitude regardless of the

temperature difference between the target and the background. This indicates that

this method may work just as well for large delta temperatures as it does for small

temperature contrast situations.
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Figure 5.14: Synthetic experiment temperature extraction results for the cloudy
atmosphere and boxes in the center of the center pixel.

The results from the atmosphere with clouds yielded very similar results to the pre-

vious case. The magnitude of the temperature extraction errors were consistent with

what was seen in the synthetic case with no clouds. The analysis did not include

atmospheric error so the magnitude of the temperature extraction errors were not

expected to fluctuate between the two atmospheric cases. The cloudy atmosphere

simply contributed more downwelled radiance than the cloud-free atmosphere. How-

ever, the temperature errors for the cloudy cases might be optimistic because the

downwelled term, which contained no error in the synthetic experiment, is an im-

portant term in cloudy weather. The larger downwelled contribution will reduce

the temperature contrast between materials as well, therefore instrument errors will

also become important. Instrument error was not modeled in the synthetic case nor

was it treated in the airborne experiment. The temperature extraction errors were

also consistent between the two positions (centered and offset).
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Figure 5.15: Synthetic experiment temperature extraction results for the cloudy
atmosphere and boxes offset from the center pixel.

In short, this exercise showed that improved atmospheric knowledge also improves

the temperature error for low emissivity surfaces. It also showed that this method is

not sensitive to large temperature difference between the target and the background

and if the target-containing pixels are correctly identified, it will produce consistent

results regardless of the target location relative to a pixel or a group of pixels.

5.3 Heat transfer utility study results

Section 4.10 described a study to determine whether or not modeling heat transfer

decreased temperature extraction error. This section provides the analysis and con-

clusion of that study.

Figure 5.16 depicts the temperature extraction error as a function of the difference
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between target and background temperature. The blue bars represent the error

when heat transfer was not modeled in the process and the green bars represent the

temperature error when heat transfer was taken into account via MuSES. All of the

other input parameters were the same between the two data sets. For this case, the

target was positioned in the center of the pixel in the middle of the study area.
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Figure 5.16: Temperature extraction error as a function of the difference between
target and background temperature for a target placed in the center of central image
pixel.

Incorporating heat transfer into the modeling process decreased the temperature

error across the board. The improvement was most significant where the difference

between the target temperature and the background temperature was the largest.

This makes sense because a larger temperature difference between the two surfaces

causes a larger amount of heat transfer to occur. More heat transfer causes there to

be a larger temperature gradient across the surface of the background material in
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the vicinity of the target. Therefore, it is not valid to assume that the temperature

of the background that was derived using pixels away from the target is the same as

the target temperature in the vicinity of the target where heat transfer occurs. A

MuSES visualization of a Krylon-painted box Figure 5.17 is provided to illustrate the

difference temperature gradient across the background resulting from a box whose

temperature is 53.6◦C larger than the asphalt and a box whose temperature is 3.6◦C

larger than the asphalt temperature.

(a) TT = 82.6◦C (b) TT = 32.6◦C

Figure 5.17: MuSES visualizations of Krylon-painted boxes with surface temper-
atures of 82.6◦C (a) and 32.6◦C (b) on asphalt with a temperature of 29◦C. The
images use the same color map, so the colors map to equivalent temperatures.

The temperature of the background in the area highlighted by the white outline in

Figure 5.17(a) is 38.6◦C, while the temperature of the same area in Figure 5.17(b)

is 30.8◦C. Modeling heat transfer becomes less important as the temperature differ-

ence between target and background decreases. Figure 5.16 shows that there is an

improvement in the temperature extraction error of approximately 0.5◦C when the

difference between the background and target temperature is small.

This study was repeated for the case where the target was located within four
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adjacent pixels. Figure 5.18 shows the temperature extraction error as a function of

the difference between the target and background temperature.
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Figure 5.18: Temperature extraction error as a function of the difference between
target and background temperature for a target located within four adjacent pixels.

The results from this case show the same trend as when the target was placed in

the center of the pixel in the middle of the study area. The magnitude of the

temperature extraction errors are larger than they were in Figure 5.16, however, the

temperature extraction errors for the centered and offset cases are similar to the

extraction errors for the centered and offset Krylon Ultra Flat Black painted boxes

from the synthetic experiment.



Chapter 6

Conclusion

This research investigated a method of using physics-based modeling as a means to

estimate the temperature of a subpixel object from a single-band thermal infrared

image. Boxes with different emissivities ranging from 0.02 - 0.91 were arranged on

an asphalt background and single-band thermal imagery was collected to test the

methodology. The GSD of the sensor was approximately 0.4m and the targets filled

38% of the area of the projected pixels. The average temperature extraction error

for the Krylon Ultra Flat Black painted boxes was 3.3◦C. The average temperature

extraction errors for the sandblasted and polished boxes (excluding the anomalous

data point from image 71) were 8.3◦C and 15.35◦C, respectively. The error analysis

showed that errors in the knowledge of conductivity and background temperature

had the largest effect on the magnitude of the temperature error. Finally, for the low

emissivity cases, errors in the knowledge of the downwelled radiance had a large ef-

fect on the temperature extraction errors. The airborne collect also produced many

lessons learned.

To show how the temperature extraction errors could be improved with perfect at-

mospheric knowledge, a follow-on synthetic experiment was done. The temperature

extraction errors decreased across the board with the Krylon Ultra flat boxes having

an average temperature error of 1.56◦C, the sandblasted boxes having an average

126
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temperature error of 5.1◦C, and the polished boxes having an average temperature

error of 9.93◦C. The synthetic experiment also indicated that the methodology was

insensitive to positional errors of the target as long as the target-containing pixels

are correctly identified.

Finally, a study to determine the utility of modeling heat transfer in the process

was performed. It was determined that modeling heat transfer reduces temperature

extraction errors and the importance of modeling heat transfer increases as the tem-

perature difference between the target and the background increases.

Table 6.1 provides a summary of this research and four previous works on the sub-

pixel temperature extraction problem discussed in Chapter 4. The four methods

were selected for comparison because they presented extraction errors and involved

the use of solid targets. The extraction errors listed for this research are from the

airborne experiment.



128

T
ab

le
6.1:

S
u
m

m
ary

of
su

b
p
ix

el
tem

p
eratu

re
ex

traction
m

eth
o
d
s.

A
u
th

o
r

#
b
a
n

d
s

S
e
n
so

r
T

a
rg

e
ts

H
e
a
t

E
x
tra

ctio
n

e
rro

r
u
se

d
G

S
D

tra
n
sfe

r

T
h
is

research
1

0.4m
S
in

gle
ob

ject
Y

es
3.3
◦C

(ε
T

=
0.91)

ε
T

:
0.2

-
1.0

8.3
◦C

(ε
T

=
0.2)

S
zy

m
an

sk
i

et
al.

5
(A

S
T

E
R

)
N

ot
stated

W
ater/soil

N
o

13K
(w

ater),
27K

(lan
d
)

[A
S
T

E
R

]
15

(M
O

D
IS

)
sh

ore
lin

es
1.5K

(w
ater),

3.9K
(lan

d
)

[M
O

D
IS

]

K
u
stas

et
al.

1
th

erm
al

25m
L

an
d

N
o

±
1.5
◦C

u
n
certain

ty
N

D
V

I
im

age

Y
an

g
et

al
1

tem
p

eratu
re

90m
V

egetation
,

soil,
N

o
1.8K

(soil)
3

V
N

IR
u
rb

an
,

w
ater

4K
(u

rb
an

)
S
en

tlin
ger

et
al.

2
100m

W
ater

N
o

0.96
◦C

(ex
p

ected
)



129

None of the other papers tested low emissivity targets so there are no other points

of comparison for the εT = 0.2 or 0.02 box from this research. The 3.3◦C error from

the Krylon Ultra Flat Black painted box is less than the temperature extraction

errors of the non-water targets from the other methods. The emissivities from these

targets are more in line with the emissivity of the painted box, so the comparison is

fair. However, the error from the painted box in the synthetic experiment are similar

to the temperature errors of the water found in the other papers and the average

error from the sandblasted boxes is only a few degrees larger than the extraction

errors from the other papers. It should also be noted that Szymanski’s analysis was

performed solely using synthetic data.

In conclusion, the methodology used in this research is a viable method for deter-

mining the absolute temperature of a high emissivity object that is unresolved by

a single-band thermal imager. With improved atmospheric knowledge, this method

could also be applied to low emissivity objects. The limiting factor in generating low

temperature errors is the quality of knowledge of the input parameters to the mod-

eling process. With improved parameter knowledge comes improved temperature

extraction errors.
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Appendix A

Heat Transfer Study

This study was conducted to determine the importance of modeling heat transfer

in the subpixel temperature extraction methodology. An indoor transformer on a

concrete floor was used in this experiment. The transformer had a temperature of

36.3 ◦C at its base and a temperature of 47.6 ◦C at the top. Contact temperature

measurements of the floor were taken every 0.15 meters starting at the base of

the transformer and moving out to a distance of just over 2 meters (7 feet). The

temperature measurements were plotted versus distance and the result is found in

Figure A.1.
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Figure A.1: Plot of measurements of ground temperature taken as a function of
distance from an electrical transformer.

The plot in Figure A.1 shows an increase in ground temperature as the distance

from the transformer decreases. There was a 3 degree difference from the base of

the transformer to just over 2 meters away from the transformer. While ignoring this

temperature gradient might not be the largest source of error in the methodology,

it could introduce appreciable error.



Appendix B

Novel contributions to the field

Previous methods applied to the subpixel temperature problem have used multiple

bands and perhaps the most notable contribution of this research was that it only

used one thermal band to solve the problem. Not only that, but the single-band

solution produced results that are comparable with the multi-band techniques. This

research also employed a physics-based modeling approach that used MuSES, MOD-

TRAN, and DIRSIG to model the heat transfer, atmosphere, and sensor-reaching

radiance, respectively. Previous methods have been based on spatial downscaling or

spectral mixture analysis. Finally, this research investigated subpixel temperature

extraction with extremely low emissivity objects, which is something that has not

been published to date.
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Appendix C

Suggestions for future work

This research focused on targets with uniform surface temperatures. However,

MuSES is capable of computing a temperature gradient across the surface of an

object, so the next step should be to leverage that capability and extend this method-

ology to targets without uniform surface temperatures. It is also suggested that a

new field experiment be conducted that incorporates the lessons learned from this

project. More time to plan and more money for better supplies are highly encour-

aged. It would also be useful to incorporate a time-based, per facet sun shadow

option to MuSES for cloud coverage computations.
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