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Abstract

Developing intelligent agents that can perceive and understand the rich visual world

around us has been a long-standing goal in the field of artificial intelligence. In the

last few years, significant progress has been made towards this goal and deep learning

has been attributed to recent incredible advances in general visual and language under-

standing. Convolutional neural networks have been used to learn image representations

while recurrent neural networks have demonstrated the ability to generate text from

visual stimuli. In this thesis, we develop methods and techniques using hybrid convolu-

tional and recurrent neural network architectures that connect visual data and natural

language utterances.

Towards appreciating these methods, this work is divided into two broad groups.

Firstly, we introduce a general purpose attention mechanism modeled using a continuous

function for video understanding. The use of an attention based hierarchical approach

along with automatic boundary detection advances state-of-the-art video captioning re-

sults. We also develop techniques for summarizing and annotating long videos. In the

second part, we introduce architectures along with training techniques to produce a

common connection space where natural language sentences are efficiently and accu-

rately connected with visual modalities. In this connection space, similar concepts lie

close, while dissimilar concepts lie far apart, irrespective‘ of their modality. We discuss
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four modality transformations: visual to text, text to visual, visual to visual and text

to text. We introduce a novel attention mechanism to align multi-modal embeddings

which are learned through a multi-modal metric loss function. The common vector space

is shown to enable bidirectional generation of images and text. The learned common

vector space is evaluated on multiple image-text datasets for cross-modal retrieval and

zero-shot retrieval. The models are shown to advance the state-of-the-art on tasks that

require joint processing of images and natural language.
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Chapter 1

Introduction

It is easy for humans to accomplish a wide variety of tasks that involve complex scene

understanding and visual recognition, tasks that involve communication in natural lan-

guage and tasks that combine translation between the two modalities. For instance, a

quick glance at an image is sufficient for humans to notice the immense amount of details

about the visual scene and communicate that information using natural language. The

creation and availability of large scale image and video datasets has seen tremendous

growth with the machine learning revolution. Recent developments in convolutional and

recurrent neural networks have led to unprecedented vision and language understanding.

Steady advances in image classification [2, 3, 4, 5], object detection [6, 7, 8], semantic

segmentation [9, 10, 11], and localized image description [12] led to some very elegant

and powerful image captioning [13, 14, 15, 16] and video [17, 18, 19] captioning frame-

works that have resulted in numerous deep networks capable of providing apt textual

description of images and videos.

Applications in the consumer, medical, security, and military fields have seen tremen-

dous growth in the past few years due to recent discoveries in deep learning. Hundreds

of videos per minute are uploaded to YouTube, while the use of surveillance, automo-

bile and body cameras are projected to increase dramatically. A few years ago one

would have downloaded a repair manual to replace a broken tail light on a car, but

20



CHAPTER 1. INTRODUCTION 21

today, it is much more common to watch an instructional video. It is impossible for

a human to effectively and efficiently utilize the voluminous amount of data without

automated search, retrieval, summarization, and indexing methods. The efficacy of au-

tomated methods is contingent on their ability to understand the underlying content

in the video. Towards this goal, there has been much research on video understanding.

Tasks such as activity classification, video captioning, retrieval and object tracking have

helped generate improved video analytics.

Early work on video captioning relied on extracting semantic content such as sub-

ject, verb, object, and associating corresponding visual elements [20, 21]. For instance,

Thomason et al. [20] form a Factor Graph Model to obtain the probability for the

semantic content and use a search based optimization to get the best combination to

fit in a sentence template. Earlier works were also limited to activity or context spe-

cific videos with a small vocabulary of objects and activities. With availability of large

video-sentence pair datasets with rich language information, recent studies [17, 13] have

demonstrated the use of neural networks to directly model language conditioned on

video.

Chapter 2 furthers the field of video understanding by introducing semantic video

information in the captioning task. A robust captioning framework is introduced which

can deal with both simple and complex videos. The main contributions in this chapter

are four fold. Firstly, introduction of length agnostic Gaussian attention since existing

soft attention models have an intrinsic limitation that all input buffers need to be of

the same duration. This is because the attention vector is associated with a learnable,

but fixed dimension weight matrix. For videos, this requires reducing longer videos or

padding shorter videos. The proposed parametric Gaussian attention model removes

this limitation by applying a continuous, rather than a discrete weight distribution.

Secondly, using temporal features of a video to adaptively determine hierarchical tran-

sition points and allow a variable number of transitions from a granular (frame) level to

a segment (clip) level. This forms an intelligent hierarchy for encoding a video that is
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referred as the multistream hierarchical boundary model. Thirdly, proposing a temporal

attention steering mechanism that uses frame level visual concepts to guide attention

based on current video properties (activities, events, and detection of objects). Most

existing attention models are guided by temporal features of the training data. Lastly,

a real-time analysis of video captioning over varying video quality and frame rates is

presented. A family of captioning frameworks are contrasted such that applications can

make appropriate quality vs. speed trade-offs. The video fidelity and timing experiments

suggest video captioning models are now suitable for automated surveillance systems in

applications such as retail stores, amusement parks, power plants, and military instal-

lations.

Ease of use, instant sharing, and high image quality have resulted in abundant

amounts video capture not only on social media outlets like Facebook and Youtube,

but also personal devices including cell phones and computers. Several solutions are

available to manage, organize, and search still images. Applying similar techniques to

video works well for short snippets, but breaks down for videos over a few minutes

long. In Chapter 3, the field of video captioning is advanced by leveraging several recent

discoveries in the video summarization, video annotation, and text summarization fields,

for summarizing very long videos.

The proposed method uniquely identifies interesting segments from long videos us-

ing image quality and consumer preference. Key frames are extracted from interesting

segments whereby deep visual-captioning techniques generate visual and textual sum-

maries. Captions from interesting segments are fed into extractive methods to generate

paragraph summaries from the entire video. The paragraph summary is suitable for

search and organization of videos, and the individual segment captions are suitable for

efficient seeking to proper temporal offset in long videos. Because boundary cuts of

interesting segments follow cinematography rules, the concatenation of segments forms

a shorter summary of the long video. The method provides knobs to increase and/or

decrease both the video and textual summary length to suit the application. While the
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methods are evaluated on egocentric videos and TV episodes, similar techniques can also

be used in commercial and government applications such as sports event summarization

or surveillance, security, and reconnaissance.

An ambitious goal for machine learning and signal processing research is being able to

represent different modalities of data that have the same meaning with a common latent

representation. For example, words like “beach” and “ocean”, a sentence describing a

beach scene, a paragraph depicting waves crashing on a beach, and image and video

representations of a beach all refer to a common concept. Concepts that are similar

lie close together in this space while dissimilar concepts lie far apart. A sufficiently

powerful model should be able to store similar concepts in a similar vector representation

or produce any of these realizations from the same latent vector. One such application

of image-text alignment has fueled the growth of new capabilities such as improved

description of visual stimulus [22], advanced image and video search [23], and video

summarization [24, 25]. Successfully mapping of visual and textual modalities in and

out of this latent space would significantly impact the broad task of information retrieval.

Recent success in image captioning [13, 26, 14, 27] has shown that deep networks

are capable of providing apt textual descriptions of visual data, thereby enabling a

one-way path between modalities from image or video to text. In parallel, advances in

conditioned image generation [28, 29, 30, 31] provide photo-realistic and diverse images

from a text based prior. A common occurrence in the aforementioned domains is the

presence of a latent vector representation that facilitates modality transition.

The task of generating an image has been made possible by Generative Adversarial

Networks (GANs) [32] in which a generator is pitted against a discriminator which tries

to classify the images as real or fake. However, such models are associated with complex

learning mechanisms and demand large datasets. The adversarial loss used in GAN

training is not indicative of the image quality and hence the generated images do not look

visually appealing for challenging datasets like MS-COCO. In Chapter 4, we combine the

networks used in such domains by merging the latent representations obtained during
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transition. We demonstrate the efficacy of our model in within-domain and cross-domain

transformations. The contributions in this chapter are three fold. Firstly, a latent

representation based model is formulated that merges inputs across multiple modalities.

Secondly, an n-gram based cost function is proposed that generalizes better to a text

prior. Lastly, a sentence paraphrasing model capable of synthesizing similar sentences

is trained and used to generate multiple sentences for conditioning image generation

on generalized text. To evaluate the models, an inception score [33], proposed object

detector based metric, and human evaluations are used. Results show that adding

paraphrased sentences improves images quality across all three metrics. Along with

quantitative evaluation, qualitative evaluation through text and image arithmetic in

latent space is introduced. The results demonstrate mathematical properties exhibited

by latent representations for certain objects.

In addition to the task of image and text generation, we also extend the common vec-

tor space model for cross-modal retrieval in Chapter 5. The contributions in this chapter

are two fold. Firstly, we introduce a novel attention mechanism to align multi-modal

embeddings which are learned through a multi-modal metric loss function. Secondly,

we evaluate the learned common vector space on multiple image-text datasets for cross-

modal retrieval and zero-shot retrieval. We extend the methodology to five different

modalities- image, sentence, audio, video and three-dimension model and demonstrate

multi-modal retrieval. We obtain state-of-the-art Mean Average Precision (mAP) scores

for cross-modal and zero-shot retrieval to demonstrate the robustness of the trained com-

mon vector space.

The learnings from Chapters 2 and 3 helps in developing a system to attain vision-

to-text transformations. Chapters 4 and 5 extends the ability for bidirectional trans-

formations between the visual and text modalities. Using learning from these chapters,

the research goals of this thesis are to understand the underlying content in video and

represent different modalities of data that have the same meaning with a common latent

representation.
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Finally, in Chapter 6, we summarize the aforementioned works, identify the remain-

ing challenges and discuss the path forward.

Motivations − The goal of connecting vision and language modalities can be motivated

on a long-term scale of building intelligent machines, which would enable interaction

between humans and computers in a natural and intuitive fashion. Developing such

artificially intelligent agents require us to make large amounts of data, about our world

available to computers. This data includes two main sources of knowledge- the physical

world that is captured through sensors and includes scenes, objects and interactions;

and the digital world of the Internet that contains vast amount of semantic informa-

tion primarily in the form of images and text. Both these data sources complement

each other. Therefore, vision and language are the two primary channels of knowledge

through which information in the world can be accessed. It is very important that

techniques are developed to relate information across these two channels rather than

processing them independently.

The ambition to connect the vision and language modalities can also be motivated

with short-term and practical application oriented arguments. Natural language offers

appealing practical properties by representing nouns (objects, scenes, people), adjectives

(attributes), verbs (actions) and nested constructs that assert relationships. Areas of

computer vision such as classification of scene, attribute, action or objects are generalized

by the task of natural language prediction from a visual input. The task of language

prediction inherits all challenges faced by individual visual recognition tasks. Moreover,

the end users of most computer vision systems are humans who are already familiar with

natural language. Thus, using natural language as a bridge for learning vision problems

enables natural and easy interactions between computers and humans. For instance,

image search over the web using a query “person running in a park” would be more

instinctive for a human compared to searching using intermediate stages for categories-

“person”, “run” and “park”. The algorithms should be able to directly consume natural

language as understood by humans, thus utilizing the rich encoding present in natural
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language. Another direct application of a captioning system is describing or answering

queries about a scene or movie to a visually impaired person.

Outline of Contributions − In this dissertation, we solve multi-modal vision and

natural language tasks using a common latent representation through which models and

algorithms communicate. For example, a captioning model should be able to take an

image or video as input and describe the contents in natural language. Additionally,

a model should be able to process an input natural language description and generate

or identify the visual counterparts that depict the description. Overall, the goal is to

connect the two modalities of vision and language through a common vector space such

that translations between them is possible. In summary, in this dissertation we adopt

the end-to-end learning paradigm and design neural network architectures for the tasks

of image and video captioning, bi-directional image and text generation and cross-modal

retrieval.



Chapter 2

Video Captioning

Before the advent of deep learning, automatic annotation of image and videos with

natural language seemed years away. Subsequent research using attention mechanisms

over spatial [27, 34], temporal [35, 36, 37] and attribute [38] domains localized focus

to specific spatiotemporal locations to push the field further. While these attention

mechanisms are one of the primary drivers for recent progress, our ability to understand

how well temporal attention works on video is limited given that most datasets are

comprised of short videos. For example, the average video duration of the MSVD [39]

YouTube clips is 10.2 seconds and M-VAD [40] movie descriptions clips is 5.8 seconds.

Tran et al. [41] introduced VGG-like 3D convolutional nets for video feature extrac-

tion. Rather than learn a multiple C3D vectors, Pu et al. [42] introduced attention over

intermediate convolution layers. Features from lower layers focus on fine-grained infor-

mation while features at top of the CNN focus on global information. Rather than seek

correlations between convolutional layers, our model extracts frame-wise visual concepts

across the length of the video. This elegantly enables the model to correlate specific

concepts such as woman, man, and skateboarding, with region-specific locations across

the video.

As attention weights are learned parameters, and the number of parameters needs

to be fixed at train time, attention models are constrained such that all samples have

27
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equivalent dimensions. To learn and reproduce handwriting, Graves [43] introduced

attention to arbitrary regions of the output by predicting parameters of a mixture model.

To enable the attention mechanism to be independent of video duration, we present a

Gaussian attention model which learns a continuous function and samples this function

temporally into discrete regions.

The hierarchical abstraction afforded by deep neural nets enables the learning of ac-

tivation maps of high and low spatial detail. Pan et al. [36] introduced a neural encoder

for video captioning using a recurrent hierarchical partitioning structure to create a

pyramid of abstract representations. However, the temporal transition between frames

and clips is a fixed hyperparameter. We introduce an intelligent boundary learning

scheme that helps to form an adaptive hierarchy for encoding a video. Our steered hi-

erarchical Gaussian attention model uses an intuitive video2vec latent encoding. When

applied to variable length videos in an adaptive hierarchical fashion, we can demonstrate

state-of-the-art captioning results on the MSR-VTT [44], MSVD [39] and M-VAD [40]

video captioning datasets.

This chapter is organized as follows: Section 2.1 reviews the relevant literature, Sec-

tion 2.2 introduced the proposed Gaussian attention, the multistream hierarchy bound-

ary model and attention steering approaches in detail, Section 2.3 overviews the complete

video captioning framework and Section 2.4 discusses the experiments and the results.

2.1 Related Work

Success of deep learning in the still image domain has influenced research in the video

understanding domain [45, 46]. Early work on video captioning relied on extracting

semantic content such as subject, verb, object, and associating it with the visual elements

[20, 21]. For instance, [20] used a Factor Graph Model to obtain the probability for the

semantic content and then use a search based optimization to combine a subject, verb

and object to fit a sentence template. Earlier works were limited to activity or context



CHAPTER 2. VIDEO CAPTIONING 29

specific videos with a small vocabulary of objects and activities. With availability of

large video-sentence pair datasets with rich language information, recent studies [17, 13]

have demonstrated use of neural networks to directly model language conditioned on

video. Deep neural network architectures for video classification are now prevalent

[47, 48].

Initial works that introduced Recurrent Neural Networks (RNNs) for video caption-

ing used a mean pooled feature as the video representation [17]. An alternate approach

uses an encoder-decoder [18] framework that encodes f frames, one at a time to the

first layer of a two layer Long-Short-Term Memory (LSTM), where f can be of variable

length. S2VT [19] encodes the entire video, then decodes one word at a time.

Attention mechanisms were initially proposed in [49] and used in video captioning

context by [35]. They allow the focus of relevant temporal segments of a video con-

ditioned on the text-generating recurrent network. Spatial attention over parts of an

image was shown by [27]. They used the outputs of the last convolution layer to guide

the word generation to look into specific regions of an image. They also presented a

hard-attention mechanism equivalent to reinforcement learning with the reward for se-

lecting the image region proportional to the target sentence. Semantic attention over

word attributes was shown to enhance image captioning by [38]. Similarly, [50] and [51]

included video attributes or tags to help generate improved captions. Dong et al. [50]

used a tagging embedding to enrich the LSTM input and re-rank generated sentences

by their relevance to a video. Rich object and motion video features have also been

used in video captioning [52]. The attribute or tag selection is not trained along with

the language model and it becomes challenging to obtain rich attributes or “concepts”

for videos that can also categorize actions along with objects.

More recently, video captioning was extended to paragraph generation using inde-

pendent recurrent networks at the word and sentence level [37]. Hierarchical recurrent

networks have also been used to encode the video in an embedding before generating

words [36]. However, the temporal transition to form the hierarchies are fixed. They
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also applied the attention over multiple stages (local, regional and global) which in-

creases the number of learnable parameters. All described methods were dependent on

availability of large scale datasets with video-sentence paired data.

Knowledge transfer from independent language and image data for image captioning

was demonstrated by [53]. Our work is loosely inspired by this study because we want to

use sentence independent visual features to improve the generated captions. Our work is

additionally inspired by the soft attention model for video captioning presented in [35].

We augment it by parameterizing the attention mechanism with a Gaussian distribution

over the video length and then further guide the attention using independent temporal

“concepts” of the video inspired by the word attributes from [38]. Gaussian attention

filters are discussed in [54] but the application is limited to activity classification and

their equally spaced attention filters limit the use of attention for word generation. Our

model is length agnostic since each Gaussian learns normalized mean and sigma values

from the distribution.

2.1.1 Attention Models

A simple way to encode video features is by averaging pixels or features across all frames

in the video. Most commonly, features are the output of a frame passed into an ImageNet

pre-trained CNN. Soft Attention (SA) uses a weighted combination of these frame-level

features, where the weights are influenced by the word decoder. Soft attention was first

used in the context of video captioning in [35]. They computed a frame relevance score

e
(t)
i for each frame i of video v1, v2, ..., vn at decoder time step t.

e
(t)
i = w>tanh(Waht−1 + Uavi + ba) (2.1)

Where, ht−1 is the hidden state at the previous time step of the decoder, vi is the

frame feature vector representation of the ith frame, and w, Wa, Ua, ba are learned

parameters. This can be interpreted as an alignment between the encoder and decoder

sequence. It allows the video encoder to selectively emphasize relevant parts of the
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video. As the frame relevance score is computed using fixed dimension weight matrices,

it restricts the exact number of frames in the video. Moreover, given that the average

length of videos is a few seconds in most datasets, it seems counter intuitive to have

strong localized attention in such a short duration. As the attention is at a frame level,

alignment of the most relevant video segment with the decoder sequence would yield

more appropriate relevance scores.

2.2 Video Captioning

Figure 2.1: Overview of the Steered Gaussian Attention Model for video captioning. The
attention filter is learned by hierarchical boundary model (center), temporal features
(left), and a video summary (right).

This section describes the main components of the video captioning model- Gaussian

attention, multi-stream hierarchical boundary model, attention steering and Video2Vec

representation.
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2.2.1 Gaussian Attention

We define the Gaussian Attention (GA) to remove restrictions with the generic soft

attention mechanism. The relevance score that weighs the input sequence is modeled

with a Gaussian distribution. At each time step, the decoder observes a filtered/weighted

encoder sequence. GA weighs the input sequence based on the temporal location and

the shape of the distribution modeled by the mean and standard deviation, respectively.

We adapt the function to compute a continuous relevance score et across the entire input

sequence X = (x1, x2, ..., xF ) at decoder time step t as:

et =
N∑
k=1

πkN (X|µtk,Σt
k) (2.2)

Figure 2.2: Illustration of the parameterized Gaussian attention model for steering the
temporal alignment between the video and word sequence. The caption is generated
using a recurrent neural network. For a video, the mean and standard deviation of the
distribution is computed based on the outputs of the previous time steps (dotted lines).
The curves depict change in the attention over the video based on the word generated
in the caption generator.

where, each GA N (X|µtk,Σt
k) is a Gaussian distribution with its unique mean µtk and
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covariance matrix Σt
k at time t, N is the number of Gaussians and πk is the mixing

coefficient. The mixing coefficients are normalized to sum to one. The input features

X ∈ RD×F×M , where D is the number of input modalities, F is the length of the

each sequence, and M is the dimension of each feature. For example, if the two input

modalities of spatial domain and temporal domain are used, we can learn a unique set of

Gaussians for each modality by setting D = 2. By computing the mean and covariance of

sufficient number of Gaussians, superposition can approximate any continuous function.

Hence with correct parameters, a GA model can achieve the same function as soft

attention. We choose to model independent Gaussians, and replace Σt
k with a scalar

standard deviation, σtk at each time t.

Computing the parameters allows the filter to temporally adapt to decoder decisions.

With loss backpropagated at each time step, the mean value of the Gaussian learns to

control focus on relevant locations of the sequence. Similarly, the standard deviation

can learn to extract information from a longer or shorter segment. Thus, the GA

formulation makes it adaptive both in terms of location and range. Resource utilization

can be optimized as the decoder need not necessarily compute attention over the entire

input sequence. The mean and standard deviation are computed as:

µt = ℘(Wµht−1 + UµX + bµ) (2.3)

σt = |Wσht−1 + UσX + bσ| (2.4)

where, Wµ, Wσ, Uµ, Uσ, bµ, bσ are learned weights. We use the activation ℘(s) =

|s|/(|s|+c) for the mean values to scale to range [0,1] as the input sequence is normal-

ized temporally, where c is a hyper-parameter. The normalization allows the model

to compute attention over sequences of varying length. It also reduces the number of

learnable weights from Rh×h to Rh×N , where h is hidden dimension size of decoder and

N � h. The activation for the standard deviation σ is different since we do not need to
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scale these values other than constraining them to be positive. Similar to soft attention,

the attention weights αti at time t for input X are obtained by normalizing the relevance

scores. The input to the decoder is a weighted sum of the input X using the attention

at time t.

αti =
exp(eti)∑F
j=1 exp(e

t
j)

(2.5)

Φt(X) =

F∑
i=1

αtixi (2.6)

Modeling the attention filter with a parametric distribution allows the decoder to

view inputs with varying duration and hence it is better at exploiting the temporal

structure of an input sequence. The parametric attention has the capability to sense the

complete encoder sequence if required. This is important in a translation like task where

the generated word may hold relevance throughout the video. For example, after the

word man in Figure 2.2, the model learns to expand the attention to allow the caption

generator to view the entire input as the associated visual feature of man appears in

the entire video.

2.2.2 Multistream Hierarchical Boundary Model

In hierarchical models, the output of local features from the first layer are input to the

second layer in a fixed stride style over short video chunks [36]. This is demonstrated

by the local and hierarchical features as the bottom two layers in Figure 2.3. The fixed

stride may mix up several shots with no related features. [55] proposed a boundary

detection unit to learn individual segments, resetting the prior RNN state after each

segment. This method has a drawback in cases of videos with no natural boundaries- in

such cases it could not leverage the intrinsic temporal dependencies in the video stream.

To deal with clips with different structures, we propose a Multistream Hierarchical

Boundary (MHB) model which can take full advantage of both the hierarchical and
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boundary architectures. The MHB model consists of multiple stages, with the encoder

stage transforming video frames to a vector representation and the caption decoder stage

transforming those vectors into arbitrary length sentences.

Figure 2.3: Overview of the Multistream Hierarchical Boundary Model for video cap-
tioning. The clip-level features adapt with each video and are learned non-equally spaced
and the hierarchy features are equally spaced features.

Referring to Figure 2.3, the encoding stage takes in a given video stream, whereby

the first layer takes in local features (x1, x2, ..., xn), and outputs two sequence vectors:

1) equal spaced (w1, w2, ..., wp); and 2) clip level (z1, z2, ..., zq). The equal spaced output

layer gets p outputs from first layer with p = n/k (n is number of input features and

k is designed stride value). The clip level output layer utilizes information on shot

boundaries guided by a learned vector based on the cosine distance:

zi = yi.(∆(i, j).Wyd + byd) (2.7)

where Wyd and byd are learned weights and bias, yi is output at each time step of first

layer. As illustrated in Figure 2.3, the video is encoded through a combination of equally
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spaced and clip level feature representations. The fusion of local (frame) level, hierarchy

(equally spaced) and clip (detected boundaries) level is input to the caption decoder.

At each time step, the model adapts the boundary weights to extract information from

the relevant segments of the video thus being extremely efficient in encoding complex

video sequences. We incorporate Gaussian attention at the equally spaced and clip level

hierarchies.

Shot Boundary Detection− Features extracted from CNN models have proven to be

useful in cut-transition boundary detection between two shots in a video stream [56].

Given αi and αj are two CNN feature vectors of two consecutive frames, the cosine

distance ∆(i, j) between them can be calculated as follows:

∆(i, j) = cos(αi, αj) =
αi.αj

‖(αi).‖(αj)
(2.8)

where, ∆(i, j) ∈ [0, 1]. Higher values indicate higher probability of a boundary cut. For

example, one could experimentally determine a threshold ζ where a boundary exists

when ∆(i, j) > ζ. Unlike Euclidean distance, the cosine distance needs no additional

normalization steps. Xu et al. [56] determined this distance is effective in the cut-

transition detection task. Our results concur and we employ it to detect the boundary

to facilitate the soft hierarchy layer.

Figure 2.4 demonstrates this concept in an example video. The cosine similiarities of

compared frames are tracked until the threshold is passed, signifying a change in scene.

The threshold is determined as a hyper-paramter.

2.2.3 Attention Steering

Traditional attention models are associated with a set of weight matrices that are learned

during training. During test time, the weight matrices guide the attention and hence

limit the attention mechanisms by prior temporal statistics. We introduce temporal

attention steering that guides the attention based on the visual features of a test video
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Figure 2.4: Example boundary attention vector where the “peaks” indicate video bound-
aries in [0− 1] normalized video.

(Attention Steering module on left side of Figure 2.1). The temporal features across

the video are normalized over all frames. The resulting matrix is a temporal map that

translates feature relevance to frame relevance. At each LSTM time step, the model

computes an updated frame relevance vector. For example, if the network computes

that “apple” is an important feature for the next word prediction, the relevance factor

of the feature “apple” will be higher. The temporal feature map in Figure 2.5 would then

translate the relevance factor of “apple” to the center/end of the video. This provides

a way to steer the attention without increasing the number of inputs to the system.

We investigate the use of word label embeddings of objects present in video frames

as temporal visual features. We use an ImageNet classifier trained on 4k classes [57]

represented using a GloVe [58] word embedding. This embedding was built on 400,000

vocabulary entries pre-trained on a 6 Billion word corpus from Wikipedia and Gigaword.

Representing a large number of objects is important for “in-the-wild” videos. A bottom-

up grouping strategy [57] is applied to the categories to deal with the problems of over-

specific classes. In reality, a sentence is described by both the objects and the whole

scene as the context. Distinguishing individual objects from others in a scene, especially

when there are multiple objects of different categories, can be highly challenging. Hence,
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EdgeBox is used [59] to obtain proposal bounding box regions within each frame of a

video. For the top 95% of all bounding boxes, we compute GloVe word embedding of the

ImageNet 4K CNN classes. The GloVe word embeddings of bounding box class labels

are mean pooled to obtain a frame-level representation. We discover that the mean

pooled class label embedding is rich in semantic information and is closer to the words

in the ground truth sentence. Moreover, use of word embedding reduces the feature

dimension from 4K to 300. This design choice reduces number of parameters to be

learned substantially. As a complementary or alternative approach to temporal word

embeddings, one could use frame CNN features directly.

Figure 2.5: Attention steering using normalized temporal feature relevance. Frame level
features are weighted based on the relevance map and assists in guiding attention to
video regions. Wt and Wt−1 are words at times t and t− 1, ht−1 is RNN hidden state.

Video2Vec Representation− In addition to the steering mechanism, an embedded

vector representation of the entire video is input into the captioning model (right input

in Figure 2.1). To learn powerful action and motion representations, we use a recent

activity classification dataset- ActivityNet [60], on human activity understanding that

covers a wide range of complex daily activities. It is comprised of 849 video hours in
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over 200 activity classes. As these videos were collected from online video sharing sites

they are excellent to transfer learned features for MSVD and MSR-VTT datasets which

are also based on Youtube videos. The labeled videos are used to train a standard

video-based activity classifier. We utilize two independent models with RGB (3- color

channels) and Optical Flow (OF) inputs. Features before the loss layer are used as

Video2Vec-Activity representation. We fine-tune the last fully-connected layer during

caption generation.

2.3 Video Captioning Framework

Hierarchy with Gaussian Attention− The proposed MHB technique efficiently cap-

tures temporal dependencies in videos. Hence, we integrate it with our GA model and

term it as Hierarchy with Gaussian Attention (HGA). The hierarchy of recurrent layers

adds more non-linearity to the GA model. The hidden state of LSTM in layer l − 1 at

the last time step is the input to layer l. This ensures easy back-propagation of loss

compared with a simple layer stacking by reducing the number of steps the loss back-

propagates. The first layer learns local temporal dynamics within short clips and the

second layer learns the difference between these short clip sequences. The output at the

last time step of the second layer is a vector representation for the entire video.

The video captioning framework has three main components – Attention Steering,

Video2Vec encoder and Hierarchical Gaussian attention based sentence generator as

shown in Figure 2.1 (left, right and center). The sentence generation engine takes input

from all three to generate word sequences. Recurrent Neural Networks (RNN) are a

natural choice for generating sequences such as natural language sentences. However,

RNNs suffer from vanishing and exploding gradient problems when learning long se-

quences. To solve this, we use the LSTM variant of RNNs to learn sentence generation

as it is known to learn sequences with both short and long temporal dependencies [13].

The model is trained using stochastic gradient descent by learning parameters θ
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for the sentence w1, w2..., wτ . The word-based loss for a video is losscaption. The log-

likelihood is optimized by minimizing the loss for video V with word embeddings Vc and

Video2Vec embedding Sv.

θ∗ = max
θ

τ+1∑
t=0

log(wt|V, Sv, Vc, wt−1; θ) (2.9)

where w0 and wτ+1 are special tokens for start and end of sentence. During testing, the

model is input with the token for beginning of sentence and it generates words until the

end of sentence token is generated.

Word Feature Loss – Inspired by the work in [61] on multi-modal embedding between

text and visual inputs, we compute the cosine similarity between the mean pooled video

level word embedding (Vc) and Gaussian attention weighted video vector (ΦV ). This

similarity measure is added to the caption generation loss for the entire video using

(2.8), replacing αi and αj with Vc, and ΦV .

2.4 Results and Discussion

2.4.1 Training Details

Each video frame is passed through the 152-layer ResNet CNN model [3] pre-trained

on the ImageNet dataset [62], where the [1× 2048] vector from the last pooling layer

(pool5 ) is used as the visual feature vector. In our HGA model, each batch of 12 frames

input into the first hierarchical layer yield a single input to the second hierarchy layer.

We preprocess all words in captions with the PTBTokenizer in the Stanford CoreNLP

tools [63]. This toolkit converts all text to lower case, removes punctuation, and tok-

enizes the sentences. We use captions only from the training and validation set to gen-

erate the vocabulary. Words start as one-hot encoding. For MSR-VTT video categories,

we use 300-dimension GloVe embedding [58] to obtain word vector representations.

The architecture is implemented in TensorFlow [64]. During training, ADAM op-

timization [65] is used to minimize the negative log likelihood loss. The learning rate
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is 2 × 10−4 and we use decay parameters (β1 = 0.9, β2 = 0.999). The dimension of

the LSTM hidden vectors is 1024 for HGA and 384 for the sentence generation layer.

We employ a Dropout [66] probability of 0.5 on the output of all LSTM layers. The

mini-batch size is 100 videos and all models are trained for 40 epochs. Hyperparameters

are evaluated on the validation set.

Beam Search − The LSTM generates a single word at each time step. Instead of a

greedy search for the most probable word, we employ beam search at test time to yield

a wider variety of sentences. A beam width of k produces a list of k top words at time

step t for each of k partial sentences. The top k most probable sentences from these k2

candidates are pushed forward to the next time step and the remainder are dropped.

Empirically, a beam width of 10 with MSVD and 20 with MSR-VTT performs best. We

suspect the large vocabulary size for MSR-VTT required higher beam width. This is in

agreement with [50].

2.4.2 Datasets

We train and evaluate our models on the Microsoft Video Description Dataset (MSVD)

[39], the newly released Microsoft Research - Video to Text (MSR-VTT) [44] and the

movie description datset M-VAD [40]. Standard train, validation and test splits were

used for all datasets. Table 4.1 summarizes the high-level properties of each dataset.

Table 2.1: Video-sentence pair dataset statistics.

MSVD MSR-VTT M-VAD

#sentences 80,827 200,000 54,997
#sent. per video ∼42 20 ∼1-2

vocab. size 9,729 24,282 16,307
avg. length 10.2s 14.8s 5.8s

#train video 1,200 6,513 36,921
#val. video 100 497 4,651
#test video 670 2,990 4,951
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2.4.3 Evaluation Metrics

Quantitative evaluation was performed using the Microsoft COCO caption evaluation

tool [67] to make our results directly comparable with other studies. This tool computes

standard captioning metrics: BLEU [68], METEOR [69] CIDEr [70] and ROUGE [71]

to score a predicted sentence against all ground truth sentences.

BLEU is a metric for precision of word n-grams between predicted and ground truth

sentences. ROUGE takes into account sentence level structure similarity naturally and

identifies the longest co-occurring sequence in n-grams automatically. METEOR was

designed to fix some of the problems found in the more popular BLEU metric, and also

produce good correlation with human judgment at the sentence or segment level. It has

several features not found in other metrics, such as stemming and synonymy matching,

along with the standard exact word matching. CIDEr computes the average cosine

similarity between n-grams found in the generated caption and those found in reference

sentences, weighting them using TF-IDF. METEOR is more semantically preferred than

BLEU and ROUGE.

Typically, the generated sentence correlates well with a human judgment when the

metrics are high as they measure the overall sentence meaning and fluency. However,

the reliability of these metrics are ultimately subject to the mutual agreement between

the visual input and the ground truth sentences. A model that learns from nonsensical

sentences may accurately recognize patterns and achieve high scores, but will not be

useful in practice. We report all scores as percentages.

2.4.4 Performance on MSVD

Table 2.3 reports current captioning results (top third) vs. variations on the number of

Gaussians (middle third) vs. variations on MHB models (bottom third) on the MSVD

dataset. These will be discussed next.
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Gaussian Attention on MSVD

With respect to Table 2.3, middle third, we evaluate our Gaussian Attention module.

Our baseline model (Baseline GA-5) is a Gaussian attention with five Gaussians. The

addition of hierarchical modeling (+HGA) improves all scores. Overall, the HGA model

learns bigger-picture motion features that compliment the more locally-focused Gaussian

attention.

As recommended in [37], we test a variant with BLEU-4 score included in the caption

loss (BLEU reg). The BLEU score is computed on the validation set and regularized

with the loss after each mini-batch. Though it significantly improves BLEU-4 score,

other scores are not much affected and we notice that sentence fluency degrades as well.

The addition of Video2Vec-Activity (+RGB,OF) further improves METEOR scores.

These features give us extra motion understanding, as well as an understanding of the

action concepts in Activitynet. The highest METEOR score that we achieve using GA

is 33.1% which matches the state-of-the-art.

The advantage of learning multiple Gaussians is that more complex functions can

be represented. This also allows, for example, multimodal distributions or distributions

with a more discriminative shape than two parameters will allow. We evaluate the

quality of the captions as the number of learned Gaussians is increased. Results are

reported in Table 2.2. More Gaussians increase METEOR and BLEU scores across the

board. We would have increased the number of Gaussians even further but ran into

exploding gradients beyond five Gaussians.

Table 2.2: Performance evaluation with number of Gaussian filters for attention on the
MSVD test set.

# Gaussians METEOR B-1 B-2 B-3 B-4

1 30.7 76.3 62.3 50.3 39.0

3 31.2 77.6 64.1 53.0 42.1

5 31.5 80.4 66.6 54.5 42.8

Figure 2.6 shows words from generated sentences along with a single temporal Gaus-
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Figure 2.6: Gaussian attention visualization for sample videos from MSVD. Distribution
focuses on relevant video segment based on key words (bold) in the sentence. For the
word “adding”, relevant activity is in the starting of video, hence the mean of the
distribution is close to 0. X-axis ranges from 0− 1 normalized temporal video location
and Y-axis is normalized attention weight αti.

sian attention distributions generated on sample test MSVD videos. The distribution

shows the adaptable nature of Gaussian attention. Even though the videos are short, at

certain times the model needs to attend to different parts of the video. We anticipate

that with longer and more complex videos, a higher number of Gaussians would be

required.

Multistream Hierarchal Boundaries Model Experiments

We turn our focus to evaluating the Multistream Hierarchal Boundaries (MHB) Model.

The bottom of Table 2.3 shows that our results on MSVD achieve the state-of-the-

art METEOR score. MHB is a complex architecture combining many ideas, so an

ablation study is necessary to evaluate the contribution of each idea. We compare the

baseline architecture (MHB) with variants that remove individual features. MHB w/o
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Table 2.3: MSVD caption evaluation results on the held out test set. All scores are
reported in percentage.

Method METEOR BLEU-4 CIDEr ROUGE-L

S2VT [19] 29.8 - - -

SA [35] 29.6 41.9 51.67 -

p-RNN [37] 32.6 49.9 65.8 -

HRNE Att [36] 33.1 43.8 - -

Baseline GA-5 31.5 42.8 65.8 67.9

GA-5+BLEU reg 31.3 43.8 64.9 68.4

GA-5+HGA 32.8 43.9 74.7 69.3

GA-5+HGA+RGB,OF 33.1 43.0 71.1 68.8

MHB w/o GA 30.2 39.8 62.0 65.4

MHB w/o Bdr 32.5 42.3 68.6 68.2

MHB w/ LSTM 32.9 42.3 70.4 68.6

MHB 33.2 43.0 71.1 68.7

GA removes Gaussian Attention from the boundary layer. This means that the only

attention in the model is the fixed-length soft attention in the equally-spaced layer. MHB

w/o Bdr removes the Boundary layer entirely, leaving only the equally-spaced layer.

MHB w/ LSTM replaces the Recurrent Highway Network cells with traditional LSTM

cells. Omitting the Boundary Layer or Recurrent Highway Network cells incur small

reductions in performance across all common captioning metrics. Omitting the Gaussian

Attention alone causes the biggest reduction in performance. This is interesting because

the Omitting the Boundary layer entirely also causes Gaussian Attention to be omitted,

but is less damaging. This suggests that the Boundary Layer is only worthwhile if a

flexible attention mechanism is applied to it.

2.4.5 Performance on MSR-VTT

Caption evaluation scores for our models on the MSR-VTT dataset are reported in

Tables 2.4. All our models are trained end-to-end. A single layer GA performs bet-

ter than the mean pooled video frame input features. The HGA model adds hierarchy

features to a single layer GA model and hence is better at learning temporal depen-
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dencies. The significance of Gaussian attention is shown by comparison of HGA with

and without attention. This has better performance than a weighted average through

an attention mechanism. To study the importance of temporal steering (STE) and

Video2Vec-Activity (RGB and OF) features, we also input these as features to the cap-

tioning model. All of these inputs have positive impacts on the evaluation metrics. The

addition of activity features show clear improvement over the baseline HGA. The OF

features yield slightly improved scores over RGB. This indicates that motion/activity

features from the ActivityNet dataset generalize well to other datasets.

Across all features, we observe that the scores did not change significantly when

trained without word features loss (as in Section 2.3). However, it helped the model to

converge faster. While generating the vocabulary from the training captions, we note

that out of total 24,282 words, 10,155 words appear just once and 3,211 words twice.

From the vocabulary, 4,716 words were not part of the GloVe 400K dictionary. Such

issues add to challenges of the language model. Similar trends appear in other datasets

as well.

Table 2.4: MSR-VTT results on the held out test set. We compare with recent entries
in the MSR Video to Language Challenge.

Method METEOR BLEU-4 CIDEr ROUGE-L

Dong et al. [50] 26.9 39.3 45.9 58.3

Multimodal (only visual input) [72] 27.0 38.3 41.8 59.7

Shetty and Laaksonen [52] 27.7 41.1 46.4 59.6

Mean pool 25.4 34.1 35.8 57.7

Ours

MHB 27.3 37.8 42.6 58.8
Only GA 1-layer 25.6 34.6 37.4 57.4
HGA (w/o att) 26.6 36.0 38.9 58.4
HGA 27.4 38.8 43.4 59.1
+ STE 27.6 37.9 43.4 59.2
+RGB 27.6 38.6 42.8 58.9
+OF 27.7 39.0 43.8 59.6
+RGB, OF 27.7 39.2 43.5 59.2
+RGB, OF, CAT 28.2 40.5 45.3 60.4

Fusion based models − Although the METEOR score does not improve with a
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combination of RGB and optical flow features, all other metrics show improvement. It

also indicates that either of the features are sufficient to capture the activity information.

We also use the GloVe embedded video category label (CAT) available for all videos. The

combined model is trained by concatenating the features before input to the LSTM. We

note that the categories are the ground truth labels that are part of the original dataset

and hence are better than any features generalized from an another dataset.

Gaussian Attention in Different HGA Layers Experiments were run on the

HGA model to compare soft (SA) and Gaussian attentions (GA). The HGA-only model

can be interpreted as a three layer LSTM with the first two hierarchical layers as the

video encoder and the last layer as the sentence generator or word decoder. We replace

soft attention with GA at multiple layer combinations. Results are reported in Table

2.5. Adding GA at more layers seem to help focus on relevant inputs and features.

Attention on the middle HGA layers can be viewed as the weighted sum of the encoded

outputs of video clips input to the first layer. Attention is most important at the word

decoder (layer 3) as it not only finds relevant segments in the video but also relevant

HGA encoded features based on generated words.

Table 2.5: Comparing Gaussian attention at different layers for MSR-VTT test set.
Adding GA show clear improvement over SA and attention is most important at the
word generation layer. B-1 to B-4 are n-gram BLEU scores.

Layer replacing SA with GA METEOR B-1 B-2 B-3 B-4

None 26.7 77.7 62.6 48.4 36.1

3 27.3 78.9 63.6 49.8 38.1

3,2 27.4 79.3 64.5 50.8 38.8

3,2,1 (HGA) 27.4 79.7 64.8 51.1 38.8

2.4.6 Performance on Movie Description Dataset

We present results of the HGA model on the M-VAD movie description dataset. This is

a very challenging dataset as the videos are not specific activities but are movie scenes

with complex sentences. We obtain a METEOR score of 6.9%, which is an improvement
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over the HRNE (6.8%) [36] and S2VT (6.7%) [19] models. The BLEU scores are 17.3%,

6.0%, 2.7%, 1.0% for 1,2,3,4 − grams, respectively. MHB results in a METEOR score of

6.6%. This model is disadvantaged due to poor alignment of the ground truth captions

with their respective video frames, which sometimes results in confusing cut-transition

boundaries.

Figure 2.7: Example videos and corresponding captions from the MSVD (left) and
MSRVTT (right) datasets. For each video, three random frames are shown. Baseline
is GA model with five Gaussian filters. HGA is our model and GT is a sample ground
truth caption.

2.4.7 Timing Comparison

For a video captioning tool to be useful in the field—say, for a security system, the cap-

tioner needs to be able to both produce high-quality captions and be compute friendly.

In this section we conduct a set of experiments to benchmark the testing time and scores

in selected models with various setups. Our machine specifications: Intel(R) Xeon(R)

CPU E5-2650 v3 @ 2.30GHz, RAM 128GB, GPU Tesla M40 with 24GB memory. We

supply batches of 100 videos into our network and time how long it takes to produce

captions from the entire 100-video batch. We vary the number of frames per video

and measure the effect on processing time and quality. The network is retrained to be
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optimized for a specific number of frames.

Table 2.6: Run(test) time for various models by varying number of frames per video for
MSVD dataset.

Model Running time (sec.)

# frames per video 10 30 50 100 120

SA 3.46 3.85 4.56 5.21 5.47

GA 3.97 4.69 5.3 6.86 7.43

HRNE - - 46.98 48.70 49.45

MHB - - 50.81 53.6 54.65

HGA - - 48.61 50.12 51.4

Our speed comparison in Table 2.6 reflects that our straightforward GA model

achieves comparable speed against SA models [35]. Both of these models can com-

pute batches of captions multiple times a minute. Our more complex MHB and HGA

architectures can supply a batch of captions slightly faster than once a minute. We vary

the number of frames per video between 10 and 120. Since the average video in MSVD

is 10.2 seconds, this translates to between 4% and 49% of the video. It has a negligible

effect on total runtime.

Table 2.7 shows the effect of this reduction in frames on caption quality. The num-

ber of frames appears to have little affect on the final scores for all of the architectures

evaluated. When taken together with Table 2.6, we start to get a picture of the prac-

ticality of these deep learning captioning systems in the field. The SA system of [35]

and our GA system can produce high quality captions for 100 video feeds multiple times

per minute. Our more complex MHB and HGA offer a bump in caption quality, but at

slower speeds. These video feeds can operate at a duty cycle of 4% without a significant

drop in captioning quality, providing an opportunity for significant power savings for

the camera systems.
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Table 2.7: Meteor score for various models by varying number of frames per video for
MSVD dataset.

Model # frames per video

10 30 50 100 120

SA 31.1 31.2 30.9 31.3 31.5

GA 31.2 31.2 31.3 30.9 31.5

HRNE - - 32 31.8 32.4

MHB - - 32.7 32.4 32.6

HGA - - 32.5 32.7 32.8

2.4.8 Compression Comparison

A surveillance system would likely face bandwidth challenges in trying to transmit 100

high-quality videos to a single PC. It would be convenient if these videos could undergo

aggressive lossy compression and still be effectively captioned. We transcode video from

the test set with ffpmeg [73], changing only the Constant Rate Factor (CRF). This is

a quantization parameter where 0 induces no loss and 51 induces the most aggressive

quantization possible. In our case, CRF=16 was the original setting. Increasing the CRF

by 8 roughly equates to halving the bit rate. The number of frames in each experiment

was chosen based on the best performing architecture in Table 2.7. We show in Table

2.8 that all of the architectures under evaluation can survive an increase of CRF of 20

(roughly dividing the original video’s bit rate by 10) with minimal impact on quality.

Table 2.8: Meteor score for various models by varying video fidelity for MSVD dataset.

Model CRF

16 (orig.) 24 36 48 64

SA 31.5 31.3 30.7 26.2 25.3

GA 31.5 31.4 30.9 25.6 24.0

HRNE 32.4 32.2 31.2 26.2 24.5

MHB 32.7 32.1 31.1 26.5 25.2

HGA 32.8 32.3 31.3 26.5 24.6
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Summarizing Long Videos

While computer vision techniques have significantly helped in organizing and searching

still image data, these methods do not scale directly to general purpose videos, and are

often computationally inefficient. Videos that are tens of minutes to several hours long

remain a major technical challenge. To mitigate such problems, we propose techniques

that leverage recent advances in video summarization [74, 75, 76, 24, 25], video annota-

tion [77, 35, 78], and text summarization [79, 80], to summarize hour long videos to a

substantially short visual and textual summary.

The novel contributions in this chapter include: 1) The ability to split a video into

superframe segments, ranking each segment by image quality, cinematography rules, and

consumer preference; 2) Advancing the field of video annotation by combining recent

deep learning discoveries in image classification, recurrent neural networks, and transfer

learning; 3) Adopting textual summarization methods to produce human readable sum-

maries of video; and 4) providing knobs such that both the video and textual summary

can be of variable length.

This chapter is organized as follows: Section 3.1 lists the related work, Section 3.2

describes the proposed methodology including the superframe segmentation framework

and key frame selection and Section 3.3 discusses the results.

51
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3.1 Related Work

Video summarization research has been largely driven by parallel advancements in video

processing methods, intelligent selection of video frames, and start-of-the-art text sum-

marization tools. [81] generates story driven summaries from long unedited egocentric

videos. They start with a static-transit procedure to extract subshots from a longer ego-

centric video and extract entities that appear in each subshot to maximize a order of k

selected subshots while preserving influence over time and individual important events.

In contrast, [76] works with any kind of video (static, egocentric or moving), generates

superframe cuts based on motion and further estimates interestingness of each super-

frame based on attention, aesthetic quality, landmark, person and objects. [82] uses

video titles to find most important video segments. [24] explores a nonparametric su-

pervised learning approach for summarization and transfers summary structure to novel

input videos. Determinantal Point Processes which balances importance and diversity

over a video using a distribution over the ground set has also often been used in video

summary methods [83, 84, 24].

Using key frames to identify important or interesting regions of video has proven to

be a valuable first step in video summarization. For example, [75] used temporal motion

to define a visual attention score. Similarly, [74] utilized spatial saliency at the frame

level. [76] introduced cinematographic rules which pull segment boundaries to locations

with minimum motion. [85] favored frames with higher contrast and sharpness, [86]

favored more colorful frames, [87] studied people and object content, while [88] studied

the role facial content plays in image preference. [87] further tracked objects across a

long video to discover story content.

Large supervised datasets along with advances in recurrent deep networks have en-

abled realistic description of still images with natural language text [13, 14, 26, 89]. The

extension of this to video can be done by pooling over frames [77] or utilizing a fixed

number of frames [35]. [35] uses a temporal attention mechanism to understand the

global temporal structure of video, in addition they also use appearance and action fea-
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tures through a 3-D Convolutional Neural Network (CNN) which encode local temporal

structure. Most recently, [78] described a technique, S2VT, to learn a representation

of a variable sequence of frames which are decoded into natural text. Recently, [37]

demonstrated a hierarchical recurrent neural network to generate paragraph summaries

from relatively long videos. These videos were still limited to a few minutes long. We

use a variation of the S2VT captioning approach in our work.

Automatic text summarization systems are designed to take a single article, a cluster

of news articles, or an email thread as input, and produce a concise and fluent summary

of the most important information. Seminal summarization research by Luhn [90] and

Edmundson [91] have spawned newer methods such as LexRank [92], SumBasic , and KL-

Sum [93]. A good review of these techniques can be found in [94, 79]. The latest research

on single document summarization has utilized both dependency based discourse tree

trimming [95] as well as compression and anaphoricity constraints [80].

Given descriptive captions at key frame locations, we explore extractive methods for

summarization. Extractive methods analyze a collection of input text to be summarized,

typically sentences. These sentences are selected to be included in the summary using

various measurements of sentence importance or centrality. Early seminal summariza-

tion research by Luhn [90] used word frequency metrics to rank sentences for inclusion

in summaries, while Edmundson [91] expanded this approach to include heuristics based

on word position in a sentence, sentence position in a document, and the presence of

nearby key phrases. More recent extensions of the word frequency models, including

SumBasic [96] and KL-Sum [93], typically incorporate more sophisticated methods of

combining measures of word frequency at the sentence level and using these composite

measures to rank candidate sentences. Other approaches, such as LexRank [92] and

TextRank [97] focus on centroid-based methods of sentence selection, in which random

walks on graphs of words and sentences are used to measure the centrality of those

sentences to the text being summarized. A good review of these techniques and others

can be found in [94][79]. The latest research on single document summarization has
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utilized both dependency based discourse tree trimming [95] as well as compression and

anaphoricity constraints [80].

3.2 Summarizing Long Videos

Videos of several hours long are frame averaged, then passed into a superframe seg-

mentation algorithm. Each superframe segment is evaluated based in certain measures

like- boundary motion, superframe motion, contrast, saturation, sharpness, and facial

content. The top interesting superframe segments are then passed into an annotation

module. The annotation module receives temporal segments, centered on each of the

top superframe segments, and generates captions. After simple parsing, captions are

then passed into the summarization tool, which outputs a single summary paragraph

per video. The input consists of a single several hour long video. The output consists

of a condensed video and a natural language summary paragraph.

Figure 3.1: Overview of video summarization. Interesting regions identify key super-
frame segments. Each key segment is annotated. All annotations are fed into a text
summarization module.

The proposed method uniquely identifies interesting segments from long videos us-
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ing image quality and consumer preference. Key frames are extracted from interesting

segments whereby deep visual-captioning techniques generate visual and textual sum-

maries. Captions from interesting segments are fed into extractive methods to generate

paragraph summaries from the entire video. The paragraph summary is suitable for

search and organization of videos, and the individual segment captions are suitable for

efficient seeking to proper temporal offset in long videos. Because boundary cuts of

interesting segments follow cinematography rules, the concatenation of segments forms

a shorter summary of the long video. The method provides knobs to increase and/or

decrease both the video and textual summary length to suit the application. While we

evaluate our methods on egocentric videos and TV episodes, similar techniques can also

be used in commercial and government applications such as sports event summarization

or surveillance, security, and reconnaissance.

Our proposed approach consists of four main components:

1. Identification of interesting segments from the full video;

2. Key frame extraction from these interesting segments;

3. Annotations for these key frames are generated using a deep video-captioning

network; and

4. The annotations are summarized to generate a paragraph description of the se-

quence of events in the video.

3.2.1 Superframe Segmentation Framework

Most work on extracting key segments from video has been done on extracting aesthet-

ically pleasing, informative, or interesting regions. Realizing these key segments will

ultimately be stitched, we additionally observe cinematographic rules which prefer seg-

ment boundaries with minimum motion. Following Gygli et al. [76], each of these key

segments are termed superframe cuts.

As videos used in this research are several hours long, every ten frames are first



CHAPTER 3. SUMMARIZING LONG VIDEOS 56

Figure 3.2: (top) The black trace shows frame-to-frame motion, the blue bars show
evenly spaced boundaries, and red bars show the final selected superframe boundary
cuts. (bottom) The corresponding superframes impact scores as bar graphs, overall
interestingness score as a black line, and red pentagrams indicate selected superframes.

averaged. The resulting low pass filtered and shortened video is split into s fixed length

segments. Optical flow motion estimates are generated, then using cinematographic

rules from Gygli et al. [76], the segment boundaries gravitate towards areas of local

minimum motion. Figure 3.2 (top) shows eleven superframe cuts from a typical video.

The black trace shows the frame to frame motion, the blue bars show the initial evenly

spaced segmentation boundaries, and the red bars show the final selected boundary cuts.

Generating Superframe Cut Fitness Scores

Given s superframe cuts, we need to decide which are worthy of inclusion in the

final summary, and which will be edited out. Worthiness will be determined by a non-

linear combination of scores measuring a superframe cut’s fitness regarding Boundary,
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Attention, Contrast, Sharpness, Saturation, and Facial impact. Each of these will be

described next.

Boundary Score

A Boundary score, B is computed for each superframe region, where the score is

inversely proportional to the motion at each boundary neighborhood. Similar to [98], we

stack the optical flow between consecutive frames in the x- and y- directions. Motion is

computed asM(t) (see key frame selection section below), then givenM(t), B = 1/M(t).

Attention Score

Each of these superframe regions are evaluated for aesthetic and interesting prop-

erties. Similar to [75][74], an Attention score, based on temporal saliency is first used.

The Attention score, A is a combination of the superframe motion, m and variance, v,

where m and v correspond to the mean and variance of all non-boundary frames motion

in a superframe cut. The final Attention score A = α ∗m+ (1− α) ∗ v, with α = 0.7.

The measures of Contrast, Sharpness, Colorfulness, and Facial impact are computed

for all frames in each superframe cut and then averaged to report four values for each

superframe cut.

Contrast Score

Similar to [85], a Contrast score is computed. To calculate the Contrast score,

C, each frame in a superframe cut is converted to luminance, low pass filtered, and

resampled to 64 × width, where 64 is the new height and width is selected to preserve

the aspect ratio of the frame. The Contrast score, C, is the standard deviation of

luminance pixels.

Sharpness Score

Similar to [85], a Sharpness score is computed. To calculate a Sharpness score, E,

the frames are converted to luminance, then divided up into 10× 10 equally spaced

regions. Using the center 7× 7 regions, the standard deviation of luminance pixels is

calculated three times centered on each region, where each of the three times a random

shift is added, and the median of the three standard deviation values is reported for each
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of the 49 regions. The Sharpness score, E is the maximum of the 49 standard deviation

values.

Colorfulness Score

Similar to [86], a Colorfulness score, S is computed. The frames are converted to

HSV space, low pass filtered, resampled to 64× width, where 64 is the new height and

width is selected to preserve the aspect ratio of the frame, then the mean saturation

value from the frame is reported.

Facial Impact Score

Ptucha et al. [88] reported on the importance of facial content in imagery, and

described a method for generating aesthetically pleasing crops of images containing

facial information. Similar to Gygli et al. [76], but following the rules from [88], we

compute a Face impact score, F which favors larger and more centrally located faces.

Each face is assigned an impact score and the sum of all face scores is reported as a Face

impact score, F .

To convert from pixels to a universal unit of measure, the size of a face, FS is

normalized to the size of the image using:

FS =
faceWidth2

(imageWidth× imageHeight)
(3.1)

where faceWidth is the width of the face bounding box in pixels, or 2 × intraocular

distance if bounding boxes are not square. Finally, following [88], the face size attribute,

FSA is normalized to 0:1, centered on 0.5 for a typical face:

FSA = −72.4 ∗ FS3 + 27.2 ∗ FS2 − 0.26 ∗ FS + 0.5. (3.2)

For the face location, faces centered left-right and just above top-bottom center line

are favored. The face centrality attribute, FCA is measured with respect to the 2D
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Figure 3.3: Impact scores for superframe cuts in the three test videos. Different colors
represent contribution of features- Boundary, Attention, Contrast, Sharpness, Satura-
tion and Face impact. X-axis is the superframe cut number and Y-axis is the normalized
impact score. Solid black is Iscore, red pentagrams show selected superframe cuts with
ω = 50%. (Figure best viewed at 200%).
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Gaussian:

FCA =
1

2πσxσy
e

δ2x
σ2x

+
δ2y

σ2y
x (3.3)

where:

σx = 2× imageWidth/3;

σy = imageHeight/2;

δx = abs(faceCentroidX − imageWidth/2);

δy = abs(faceCentroidY − 3× imageHeight/5);

faceCentroidX is the centroid column of the face region; and faceCentroidY is the

centroid row of the face region.

For high impact, faces need to have both high FSA and FCA. The face impact score

for the entire image, F is
∑
FSA× FCA for all detected faces in the image.

Fusing Scores Empirical testing has shown that Attention (A), Contrast (C), and

Sharpness (E) are essential elements to the usefulness and fidelity of a superframe region.

After normalization, the product of these three scores are used to form a baseline score

for each superframe region. Boundary motion (B), Saturation (S), and Face impact (F )

increase this baseline score by η(B + F ) + γ(S), where η = 0.35 and γ = 0.2. The final

measure of superframe cut interestingness score is computed as:

Iscore = A · C · E + η(B + F ) + γ(S) (3.4)

Figure 3.2 (bottom) shows the corresponding superframe segments from Figure 3.2

(top), but with the individualized fitness scores and the overall Iscore in solid black.

After Iscore is calculated for an entire video, the top superframe cuts (red pentagrams in

Figure 3.2 (bottom)) are selected by only using superframe cuts which comprise ω% of

the total energy. These selected superframe cuts define the region in the original video

which are used for visual and annotation summaries. Video summary duration can be

altered by changing ω.
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3.2.2 Key Frame Selection

For each selected superframe cut, we use optical flow displacement fields between con-

secutive frames to identify key frames [99]. A hierarchical time constraint ensures that

fast movement activities are not omitted. The first step in identifying key frames is the

calculation of optical flow for the entire superframe cut and estimate the magnitude of

motion as a function of time. We use an OpenCV implementation [100] of optical flow to

estimate motion. The function is calculated by aggregating the optical flow in the hori-

zontal and vertical direction over all the pixels in each frame to calculate a magnitude

of motion:

M(t) =
∑
i

∑
j

| OFx(i, j, t) | + | OFy(i, j, t) | (3.5)

where OFx(i, j, t) is the x component of optical flow at pixel i, j between frames t and

t−1, and similarly for y component. As optical flow tracks all points over time, the sum

is an estimation of the amount of motion between frames. The gradient of this function

is the change of motion between consecutive frames and hence the local minimas and

maximas represent important activities between sequences of actions. For capturing fast

moving activities, a temporal constraint between two selected frames is applied during

selection [101]. Frames are dynamically selected depending on the content of the video.

Hence, complex activities or events would have more key frames, whereas simpler ones

may have less.

3.2.3 Video Clip Captioning

Video clip captioning is achieved by modifying S2VT [78] with new frame features and

introduction of key frame selection. Each key frame is passed through the 152-layer

ResNet CNN model [3] pre-trained on ImageNet data, where the [1× 2048] vector from

the last pooling layer is used as a frame feature. These key frame feature vectors are

passed sequentially into a Long Short Term Memory (LSTM) network [102], a recurrent
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Figure 3.4: S2VT: A two layer LSTM model to learn video representation in the encoder
and word representation in the decoder.

neural network approach used in the speech recognition, language translation, as well

as visual annotation. The S2VT framework first encodes f frames, one frame at a

time to the first layer of a two layer LSTM, where f is of variable length. This latent

representation is then decoded into a natural language sentence one word at a time,

feeding the output of one time step into the second layer of the LSTM in the subsequent

time step.

During training, a video sequence and corresponding text annotation pairs are input

to the network. During testing, f key frames around a superframe video segment are

encoded into the trained neural network. Once all frames are processed, a begin of

sentence keyword is fed into the network, triggering word generation until and end of

sentence keyword is produced. The two layer LSTM is fixed to 80 time steps by zero

padding shorter sequences and clipping longer sequences. This includes both the input

frames for each clip as well as its associated caption.

3.2.4 Text Summarization

The sumy 0.4.1 python framework along with NLTK libraries were used to evaluate

Luhn’s algorithm, Edmundson’s heuristic method, Latent Semantic Analysis (LSA),



CHAPTER 3. SUMMARIZING LONG VIDEOS 63

LexRank, TextRank, SumBasic and KL-Sum text summarization techniques. Before

passing video clip captions into the text summarizers, duplicate captions were filtered

out. The temporal order of each caption was preserved, and the summary length was

fixed to 24 sentences for this study, but can be changed to any length greater than the

number of input captions.

In order to evaluate the summaries produced in this way, we turned to ROUGE [71],

a set of objective metrics of summarization quality that can be calculated automatically,

making them ideal for development and comparison of summaries generated by multi-

ple summarization models. These metrics rely on methods of measuring word overlap

between the output of a summarization system and one or more human generated ref-

erence summaries. Although simple, the ROUGE metrics correlate very highly with

human evaluations. Here we use ROUGE-2, which measures the number of bigrams

(i.e., two-word sequences) appearing in the summarization output that also appear in

the reference summaries. ROUGE-2 is one of the more commonly used variation of the

ROUGE metric in the text summarization research community and is the variant of

ROUGE-N with the highest correlation with human evaluation. Using Lin’s [71] nota-

tion, ROUGE-2 is formulated as follows: where Refs is the set of reference summaries,

Count(bigram) is the count of a bigram, and Countmatch(bigram) is the number of

matching bigrams in the summarization output:

ROUGE2 =

∑
S∈Refs

∑
bigram∈S Countmatch(bigram)∑

S∈Refs
∑

bigram∈S Count(bigram)
(3.6)

3.3 Results and Discussion

3.3.1 Datasets

We demonstrate summarization on the VideoSet [103] dataset. This dataset is comprised

of eleven long (45 minutes to over 5 hours) videos in three categories: Disney, egocentric,

and TV episodes. Eight videos are used for training and three (DY01, GR03, TV04)
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for testing. The captioning model was pre-trained on the training split of the MSVD

dataset [39] as the training data form VideoSet is not deemed sufficient.

3.3.2 Captioning Results

Table 3.1 compares ROUGE-2 scores from the ground truth captions and summaries pro-

vided with the VideoSet dataset using several text summarization methods. The ground

truth annotations for each five/five/ten second segments for the egocentric/Disney/TV

videos, respectively, were compared to a single ground truth summary for each video.

These results can be considered as the upper bound of the summarization methods,

which suggest that the LexRank, LSA, and SumBasic methods are generally performing

best.

Table 3.1: ROUGE-2 scores (higher is better) for VideoSet dataset. (lu= Luhn,
ed=Edmundson, lsa=LSA, tr = text-rank, lr = LexRank, sb = SumBasic)

Video lu ed lsa tr lr sb kl
DY01 0.32 0.26 0.42 0.20 0.29 0.36 0.18
GR03 0.21 0.20 0.22 0.15 0.16 0.23 0.16
TV04 0.35 0.14 0.38 0.22 0.18 0.16 0.11

After training, text summarization was applied to the three VideoSet test videos:

DY01 a 5.5 hour video recorded by a Walt Disney World tourist; GR03 a 3 hour video

depicting everyday activities; and TV04 a 45 minute episode of the TV show Numb3rs.

Table 3.2 indicates strong benefits to using our key superframe segments. The TV04

was the shortest video and the summary contained numerous unique reference to names

which cannot be learned from the training set. The summary of this video had numerous

character and character usage errors, most likely due to the lack of training data to learn

faces and appearances.

3.3.3 Human Evaluations

We created a task in which ten human judges rated our machine generated text sum-

maries for overall summary semantics, sentence syntax, and sentence semantics on a 1
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Table 3.2: ROUGE-2 scores for machine generated vs. ground truth on VideoSet test
videos. (LSA/LexRank/SumBasic methods)

Test Video All Clips Key Clips
DY01 0.25 / 0.17 / 0.21 0.31 / 0.30 / 0.31
GR03 0.15 / 0.07 / 0.14 0.15 / 0.11 / 0.15
TV04 0.02 / 0.02 / 0.02 0.01 / 0.01 / 0.01

Table 3.3: Example of a machine generated summary for DY01 video using LSA.
(<en unk> indicates that the model generated a word representation not found in the
trained dictionary.)

I used my phone while waiting for the tram to depart. I looked through the
attendant and i rode the tram. My friends and i waited for the tram to
depart. My friends and i stood around the tour guide. My friends and i
posed for a group picture. My friends and i talked about our day while walk-
ing around the park. My friends and i waited in the <en unk> <en unk>
talking to the theater. My friends and i listened to the tour guide. I talked
on my phone while walking around the park. My friends and i talked while
moving along the line. I stood with a group of my friends talking. My
friends and i walked through a dark room. My friends and i talked about
our food while walking around the park. My friend and i talked about the
camera while walking around the park. My friends and i talked about our
camera while waiting around the park. My friends and i walked with our
group leader through the park while talking. I stood in a dark place and
talked to my friends. I walked through a dark room talking with my friends.
I watched a mascot entertain i waiting. I grabbed some food while moving
along the line. My friends and i sat at the table and had dinner. My friends
and i waited at the table and had dinner. I watched a mascot entertain an-
other group. My friends and i sat at the table and talked.

(very poor) - 5 (very good) Likert-type scale. The questions asked to the human judges

were-

• After reading the summary, would you be able to describe the video to another

person.

• Rate the quality of the syntax/grammar of the summary sentences (missing words,

word order, incorrect words, unknown words, punctuation, upper/lower case, du-

plicate words/sentences).
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• Rate the quality of the semantics/clarity/understanding of the summary sentences.

Table 3.4: Human evaluation scores on machine generated video summaries using LSA.

DY01 GR03 TV04

Summary Semantics 3.65 2.35 1.40

Sentence Syntax 3.55 2.40 1.65

Sentence Semantics 3.80 2.35 1.45

Average 3.67 2.37 1.50

For overall summary and sentence syntax, the LSA and LexRank methods were

preferred. For sentence semantics, all methods performed comparably. Judges rated the

TV04 summaries much lower than DY01 and GR03. Since the TV04 video was a TV

episode, the summaries lacked context due to absence of character names. Moreover,

compared to daily activity videos, TV episodes have very specific domain that may

require large amounts of training data.

3.3.4 Evaluating Superframe Cut Selection

We use the SumMe Dataset [76] to evaluate the effectiveness of our features in superframe

cut selection. The SumMe Dataset consists of 25 videos, ranging from one to seven

minutes (950 to 9721 frames). An ablation analysis across the six features of Boundary,

Attention, Contrast, Sharpness, Saturation, and Face impact was performed across all 25

videos. A five frame averaging filter was used, and then every 10th frame was extracted

and resampled so frame width=480 pixels. The mean value for each feature in each

superframe cut along with the mean ground truth relevance score was passed into the

ablation analysis. A mean squared error from a linear regression model was used as a

fitness criterion.

Both the mean rank and top-k ranked columns of Table 3.5 show all features have

significant usefulness in superframe cut selection. Although the Contrast and Saturation

features have the lowest rank, the top-3 column shows the balanced nature of all the

features. While the Boundary feature was an average performer, the human annotators
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Table 3.5: Feature evaluation on SumMe dataset. Mean rank position (lower is better);
number of times feature was selected 1st; 1st or 2nd; and 1st, 2nd, or 3rd.

Feature Mean rank top-1 top-2 top-3

Contrast 2.72 +/- 2.19 7 8 12

Saturation 2.80 +/- 2.16 6 8 10

Boundary 2.92 +/- 1.75 1 6 12

Face impact 2.92 +/- 1.89 1 9 11

Sharpness 3.12 +/- 2.01 3 6 11

Attention 3.24 +/- 2.01 3 7 9

rated each frame independently, not taking into account cinematographic rules. While

the Face impact was found to be one of the most important factors in [88], only 12

out of 25 videos contained faces in this dataset. The low performance of Attention is

surprising, and follow-on research finds the frame averaging is critical towards achieving

high importance of the Attention score. For the SumMe dataset, the six features had an

overall RMSE of 0.0271 as compared to the ground truth, showing this suite of features

are excellent indicators of frame relevance.

3.3.5 Evaluating Key Frame Selection

We use the Keyframe-Sydney (KFSYD) Dataset [104] to evaluate the motion magnitude

based key frame election. This dataset consists of ten videos, each with three indepen-

dent sets of ground truth frame summaries. Table 3.6 reports the ratio of selected key

frames that match with ground truth. A frame is considered a match if it is within

n-neighborhood of a ground truth frame. top-k refers to matching k -highest probability

frames with ground truth. Results reported in the table are averaged over all videos

and all ground truth summaries.
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Table 3.6: Evaluation scores for key frame selection. High ratio is better.

top-k 15-neighbor 25-neighbor

top-8 0.50 0.66

top-16 0.54 0.69

top-24 0.60 0.72

top-32 0.60 0.72



Chapter 4

Generative Models

An ambitious goal for machine learning and signal processing research is to be able to

represent different modalities of data that have the same meaning with a common latent

representation. A sufficiently powerful model should be able to store similar concepts in

a similar vector representation or produce any of these realizations from the same latent

vector. Successfully mapping visual and textual modality in and out of this latent space

would significantly impact the broad task of information retrieval.

Recent success in image captioning [13, 26, 14, 27] has shown that deep networks

are capable of providing apt textual descriptions of visual data. In parallel, advances in

conditioned image generation [28, 29, 30, 31] provide photo-realistic and diverse images

from a text based prior. A common occurrence in the aforementioned domains is the

presence of a latent vector representation that facilitates modality transition. In this

study, we combine the networks used in these domains by merging the latent represen-

tations obtained during transition. The proposed model is called Multi-Modal Vector

Representation (MMVR). We demonstrate the efficacy of our model in within-domain

and cross-domain transformations.

The rest of this chapter is organized as follows: Section 4.1 reviews related work asso-

ciated with models using latent representation and introduces the relevant pre-requisites

for the entire framework. Section 4.2 describes the architecture and methodology in de-

69
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tail. Section 4.3 discussed the experiments along with results.

4.1 Related Work

The notion of a latent space where similar points are close to each other is a key principle

of metric learning. The representations obtained from this formulation generalize well

when the test data has unseen labels. Models based on metric learning have been

used extensively in the domain of face verification [105], image retrieval [23], person-re-

identification [106] and zero-shot learning [107].

4.1.1 Multi-Modal Learning using Vector Representation

Ngiam et al. [108] used an autoencoder model to learn cross-modal representations

and showed results with audio and video datasets. Srivastava et al. [109] used deep

Boltzmann machines for multi-modal learning on images and tags. Their formulation

could generate tags from images or images from tags. Sohn et al. [110] introduced a novel

informative theoretical objective that was shown to improve deep multi-modal learning

for language and vision. Joint language and image learning based on image category

was shown in [111]. They used joint training for zero-shot image recognition and image

retrieval. Sohn et al. [112] introduced multi-class N-tuple loss and showed superior

results on image clustering, image retrieval and face re-identification. Eisenschtat et al.

[113] introduced a 2-layer bidirectional network with batch-normalization and dropout

techniques to map vectors coming from two data sources by optimizing correlation loss.

Wang et al. [114] learned joint embeddings of images and text using a two branch

neural network by enforcing margin constraints on training objectives. Recently, Wu et

al. [115] leveraged this concept to associate data from different modalities. Our work

shares similarities with [115]. However, we focus on generating visual/textual data.
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4.1.2 Conditional Image Generation

Generative Adversarial Networks (GANs) [32] are a sub-class of generative models based

on an adversarial game. Training a GAN involves two models: a generator that maps

a random distribution to the data distribution; and a discriminator that estimates the

probability of a sample being fake or real. A GAN produces sharp images but the

generated images are not always photo-realistic. To improve upon photo-realistic quality,

class category [31, 116, 117], caption [28, 29] or a paragraph [118] has been used to

condition image generation. Reed et al. [29] encoded text into a vector to condition

images, however direct encoding reduces the diversity of generated images. Introducing

an additional prior on the latent code, Plug and Play Generative Networks (PPGN)

[28] drew a wide range of image types and introduced a conditioning framework that

tells the generator what to draw. Our work is complementary to such captioning and

generative models as we define a common latent space that allows transitioning within

and from modalities.

4.1.3 Sequence-to-Sequence Models

Sequence-to-sequence [18] models encode the inputs one at a time, then decodes one word

at a time, using a recurrent neural network architecture. These models have been used in

applications such as sentence vector representations [119, 120], visual question answering

[121, 122] as well as video captioning [19, 123] that encodes the entire video, then

decodes one word at a time. Paraphrasing sentences [124, 125] is another application

of sequence-to-sequence models. Our work leverages the paraphrasing application to

generate synthetic captions from a single caption to improve the quality of the generated

images.

4.1.4 Image Captioning

Recent advances in recurrent neural networks have enabled generation of a natural

language description of still images [13, 14, 26, 89]. The extension of this to video can
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be done by pooling over frames [77] or utilizing a fixed number of frames [35]. Our

model uses an image captioner to add a caption based prior on image generation.

4.2 Proposed Framework

We introduce Multi-Modal Vector Representation (MMVR) to create a unified repre-

sentation for visual and text modality in latent space. The architecture is inspired by

the PPGN [28] model that consists of an image generator and a conditioning model to

guide the generator. Given an image or sentence, MMVR performs iterative sampling to

generate data in either modality while conditioning on an input. Figure 4.1 provides an

overview of the MMVR architecture. The model can be divided into two interdependent

modules: an image generator and an image captioner.

Figure 4.1: Overview of the Multi-Modal Vector Representation model. It consists of
two pre-trained modules – an image generator (G) that inputs a latent representation h
and generates an image x̂; and an image captioner that inputs an image x̂ and generates
a caption ŷ. To update the latent vector h, cross-entropy between the generated caption
ŷ and a ground truth caption y is used while the weights for the generator and CNN are
fixed.
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The forward pass is initiated by passing a random latent vector h into the image

generator which generates an image x̂. The image captioner uses the generated image

to create a caption. Word-level cross entropy is used to determine the error between

the generated caption and a ground truth caption. This error is used to iteratively

update h, while keeping all other components fixed. With each iteration, the generated

caption approaches the target caption, and the generated image x̂ serves as a proxy for

the target caption. The gradient associated with the cross-entropy error is specified in

(4.1).

(4.1)grad(C) =
∂L(Cpred, Cgt)

∂ht

Where, grad(C) is the gradient of cross-entropy with respect to latent vector ht, Cpred is

the predicted caption and Cgt is a ground truth caption. L is the word level cross-entropy

between the two captions.

The grad(C) component of the update rule ensures that the generated images have

relevant context. However, to improve the realistic nature of the images, a reconstruction

error is included in the update rule. This is computed as the difference between h and

ĥ, where ĥ is the fully-connected layer representation of the generated image. This

component is referred to as a denoising autoencoder in [28]. h is a 4096-dimensional

vector in our experiments to match the output dimension of the fully-connected layer of

the CNN. Finally, to add diversity in generated images, a noise term N is also included.

The resulting update rule is a weighted sum of four terms and is described in (4.2).

(4.2)ht+1 = ht + γ1grad(C) + γ2R(ht, ĥt) +N (0, γ3)

Where, R(ht, ĥt) is the reconstruction error which is computed as difference between ht

and ĥt, N is Gaussian noise with standard deviation γ3 and ht+1 is the latent vector

after the update. γ1 and γ2 are weights associated with the gradient of cross entropy

and the DAE, respectively. We set γ1, γ2 and γ3 hyper-parameters as 1.0, 10−3 and

10−17, respectively. We need noise to make it a proper sampling procedure, but found

that infinitesimally small noise produces better and more diverse images, which is to
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be expected given that the DAE in this variant was trained without noise. We also

observed that if faster mixing or more stable samples are desired, then the γ1 and γ2

terms can be scaled up or down together.

The update rule is based upon previous works on latent space interpolation [116, 28,

31]. Our model updates the latent vector h iteratively, which is the input to the image

generator, based on (4.2). It also encourages h and ĥ to be similar, thereby creating

a common latent representation capable of generating both images and sentences. We

now discuss the main limitations with using a simple cross-entropy term grad(C) as

described in (4.1), and propose two approaches to address these.

4.2.1 n-gram Metric Conditioning

An intrinsic limitation with the model described in Section 4.2 is that the generated

caption is compared with a single caption. This causes limitations in cases when the

order of words in the generated caption is different or when the captions are different

only due to an inserted or a deleted word. The cross-entropy establishes word level

correspondences between generated and ground truth captions. For example, consider a

case when the generator is conditioned on “a red car”, whereas the captioner generates

“the car is red”. Both the captions are semantically very similar but lack one-to-one

correspondence between the words. This may result in unwanted updates of the latent

vector h due to high word level cross-entropy. We address this by introducing a n-gram

metric in the latent vector update. The metric is responsive to cases when generated

and reference captions are semantically similar.

Equation (4.3) describes the update rule when the n-gram metric is used in conjunc-

tion with cross-entropy. We compute word level differences and scale it with the n-gram

metric between the generated and reference captions.

(4.3)ht+1 = ht + γ1
F(Cpred, Cgt)

n
grad(C) + γ2R(ht, ĥt) +N (0, γ3)

Where F is the n-gram metric. In our experiments, we use the BLEU [68] scores as
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n-gram metric. As before, our latent vector h is obtained through an iterative process.

The resulting representation is capable of synthesizing either of the two modalities.

4.2.2 Conditioning on Multiple Captions

Another way to overcome one-to-one word correspondences between a predicted and

reference sentence is to use semantically similar sentences. Moreover, conditioning image

generation on a single caption may lead to generation of images that lack details. We

condition the generator on multiple captions to synthesize an image. Multiple captions

would increase syntactic variability for the generator to condition on, hence improving

the overall image quality.

Figure 4.2: Conditioning the image generation through multiple captions by aggregating
the gradients from individual caption cross-entropy. Solid black lines show the direction
of forward pass during sentence generation and dashed red lines show direction of error
back-propagation during latent vector update.

The forward pass is performed in a same way as Section 4.2. The predicted caption

is compared against multiple ground truth captions to obtain the individual gradients.

The aggregated gradients are used to update the latent vector h. The caption gradient

component of the h update rule is replaced by the summation of gradients from multiple

captions as shown in (4.4).

gradavg =
1

NC

NC∑
i=1

grad(Ci) (4.4)
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Where, NC is the total number of reference captions and gradavg is the aggregated

gradient for all captions. For multiple captions, MMVR uses an image captioning block

as shown in Figure 4.2.

4.2.3 MMVR Architecture

Image Generator

The image generator we use is based upon DeePSiM [126] which comprises of three

networks:

• an AlexNet [2] CNN encoder. It yields a 4096-dimensional vector.

• an inverted-AlexNet [127] based generator that up-samples the 4096-dimensional

vector to an image of size 256×256.

• a discriminator that takes a 256×256 dimensional image and classifies it as real or

fake.

Given an input image, the generator is trained to invert the features extracted from

a pre-trained AlexNet and reconstruct the input image. The training routine associated

with DeepSiM occurs in two steps. First, the CNN based encoder is trained on the

ImageNet dataset. The pre-trained CNN is used as a feature extractor to compute

the prior h for the generator. During the second training phase, the generator and

discriminator are trained using the weighted sum of three losses:

1. The adversarial loss computed using discriminator to determine if image x̂ is real

or fake.

2. The pixel-wise loss between image x and image x̂.

3. The reconstruction loss computed using the pre-trained CNN to compare features

associated with image x and x̂.
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Note that the generator and the discriminator are trained simultaneously but the

discriminator is discarded after training and is not part of the MMVR. A limitation of

this generator is that it can only generate single object categories. A typical caption

would be a description involving multiple object categories. In order to address this

issue and improve conditioning on captions, we fine-tune the generator on MS-COCO.

Thus, the fine-tuned generator is capable of rendering multiple objects in a image, a

characteristic missing in the model trained on ImageNet.

Image Captioner

We use a Long-term Recurrent Convolutional Network (LRCN) [13] which was trained

on 82,783 images and 414,113 captions from the MS-COCO dataset [128]. The image

captioner is used to steer the search for the 4096-dimensional vector required by the

generator to render a representative image for the caption.

Sentence Paraphraser

For the paraphrasing model, we represent the paraphrase sentence pairs as (Sm, Sn).

Let sm denote the word embedding for sentence Sm; and sn denote the word embedding

for sentence Sn. Sm ∈ {s1...sM}, Sn ∈ {s1...sN} where M and N are the length of the

paraphrase sentences. As shown in Figure 4.3, the input sentence y generates sentence

y1, y1 generates y2, and so on. In our model, we use an RNN encoder with LSTM

cells since it is easy to be implemented and performs well on this model. Specifically,

the words in Sx are converted into token IDs and then embedded using GloVe [58]. To

encode a sentence, the embedded words are iteratively processed by the LSTM cell [18].

Figure 4.3 shows an overview of the paraphrasing model.

There are numerous datasets with multiple captions for images or videos. For ex-

ample, MSR-VTT dataset [44] is comprised of 10,000 videos with 20 sentences each

describing the videos. The 20 sentences are paraphrases since all the sentences are de-

scribing the same visual input. We form pairs of these sentences to create input-target
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samples. Likewise, MSVD [39], MS-COCO [128], and Flickr-30k [129] are used. Ta-

ble 4.1 lists the statistics of datasets used. In total, we created around 10M training

samples.

Figure 4.3: The sequence-to-sequence model for generating sentence paraphrases. Both
the encoder and decoder process individual elements of their respective sequences in a re-
current manner. The solid black lines show direction of the forward pass and dashed blue
lines show the carry-forward of previous element during sequence decoding. <BOS> and
<EOS> are special tokens for begin-of-sentence and end-of-sentence, respectively.

Table 4.1: Sentence pairs statistics in captioning datasets.

MSVD MSRVTT MSCOCO Flickr

#sentences 80K 200K 123K 158K
#sentences/sample ∼42 20 5 5
# sentences pairs 3.2 M 3.8 M 2.4 M 600 K

4.2.4 MMVR Inference

The bi-directional nature of MMVR allows the model to take as input an image or a

sentence. The input is then used to condition data generation in either modality. This

section describes the transitions between visual and text modalities using the MMVR.

Visual-to-Text – To obtain sentences describing an image, we do a forward pass

through the image captioner as described in Figure 4.1. This is the simplest transition
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in our model as a pre-trained image-captioner is an independent sub-module of our

model.

Text-to-Text – Paraphrasing sentences is achieved through the sequence-to-sequence

model present in MMVR. The sequence-to-sequence model as shown in Figure 4.3 was

pre-trained on a large corpus of similar sentences for the purpose of paraphrasing.

Text-to-Visual – As described earlier in section 4.2, the image captioner guides the

generator during image generation. To this end, we start with a random 4096 dimen-

sional vector h to render an image. The resulting image is captioned using LRCN. The

output caption is compared with the ground truth caption and the difference between

them is used to modify our h. The process is terminated after 200 iterations and the

image rendered by the generator is treated as a representative image for the caption.

Visual-to-Visual – We translate an image into a visually different but semantically

similar image. Starting with an image, we generate a caption. Using the sentence para-

phraser, we generate a paraphrased caption from the input caption. We then perform the

process described in text-to-visual mode to generate an alternate image representation.

We employ paraphrased captions to increase diversity in generated images.

4.3 Results and Discussions

We report results for all four modal transformations using MMVR. For clarity, we group

the respective transformations into image and text generation sections.

4.3.1 Image Generation

We evaluate image generation task for both the input modalities – visual and text.

The qualitative comparisons are aided by quantitative metrics and human evaluations.

We show correlations between the inception score [33] that is popular for evaluating

generated images, with human evaluations. We also propose a new metric based on

object detection that captures the quality of unique objects present in a generated image.
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A pre-trained YOLO object detector model [130] is used for this purpose. The model is

trained on 80 object categories commonly present in the MS-COCO dataset. We show

some examples in Figure 4.4 with synthesized images. Each synthesized image is passed

through the object detector model that yields bounding boxes and their corresponding

confidences. Formally, detection score =
∑

d
Ad
AT
pd, which reports the weighted sum of

all detections (d) greater than a 0.1 confidence threshold (pd), where the weight is the

ratio of the detected bounding box area (Ad) and the full image area (AT ). Having an

area weight is critical since some object detector models may predict a large number of

very small bounding boxes. Finally, the reported score is the average over the entire

test set comprising of 1000 generated images.

Figure 4.4: Examples of the YOLO object detection on generated images. The bounding
boxes and corresponding labels are detections with confidence greater than 0.5 threshold.

Human Evaluations – We conduct human evaluations to validate image generation

from PPGN [28] and variants of MMVR. We collected 50 image-caption pairs and asked

80 humans (not including any of the authors) to judge the performance. Each participant

was shown eight random images from all methods in random order totaling to 40 samples

per person. Each evaluator was asked to rate on a 1 (bad) − 5 (good) Likert-type scale.

On average, each method received more than 600 ratings. The questions asked to the

human judges were:

• Can you identify any one object in the images?

• How well does the sentence align with the image?
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Visual-to-Visual

The visual-to-visual task can be achieved via two different paths using MMVR. Firstly,

we encode the image using CNN into FC-6 features and directly input to the image

generator. Figure 4.5 (left) show some examples and the results indicate the semantic

content in the encoded FC6 features- in terms of spatial location, scale, color, shape,

viewing angle, is maintained. For example, while generating the bird image, the color

of the bird and its beak, viewing angle, and location were all retained even though the

representation does not have any spatial context. Other examples also indicate similar

trends. Feeding the FC-6 features directly input to the image generator serves as the

Baseline method in Table 4.2.

Secondly, MMVR can perform image-to-image transition in a two step process–

synthesizing a caption from an input image and using the caption to condition the

image generator. We observed that the generated images show more variability through

cross modality conditioning. For example, the bird image generated through the caption

has a independent context from the input image.

Figure 4.5: Examples of the visual-to-visual (left) and text-to-visual (right) modes of
MMVR. The inputs can be the visual or text modalities.



CHAPTER 4. GENERATIVE MODELS 82

Text-to-Visual

An important property of common latent space is cross-modal transformations. Thus,

cross-modal experiments aid in proving that the representations of individual modalities

are well aligned in the common space. We show examples of text-to-visual generation

in Figure 4.5 (right). It can be observed that MMVR synthesizes reasonable images

for captions. As noted in [28], one of the major challenges while conditioning on text

include the cross-entropy computation from a sentence with many words. The captions

could be 10-15 words long including stop-words which have limited significance on the

image content. Moreover, gradients for all words are aggregated and back-propagated,

hence significant words may loose importance. This may result in poor image quality.

The inclusion of n-gram scaling to the update function and conditioning on multiple

ground truth sentences help address such limitations. We observed the captioner gen-

erating good captions even for unrealistic images. These could be “fooling” images [30]

which are unrecognizable to humans but deep neural networks recognize them with high

confidence.

Table 4.2: Evaluation of the generated image quality using the inception, detection and
human scores on the test set.

Method Inception Detection Human

Baseline 5.77± 0.96 0.762 2.95
PPGN [28] 6.71± 0.45 0.717 2.34

MMVR (B-1) 7.22± 0.81 0.713 2.31
MMVR (Nc = 5) 8.30± 0.78 1.004 2.71

Table 4.2 compares the text-to-visual technique against the baseline (direct FC-6)

and some variations. The inception scores indicate the improvement in generated im-

ages when BLEU-1 (B-1) and the multiple caption conditioning (Nc = 5) are used.

The detection scores for multiple captions are significantly better than other variants.

However, BLEU-1 is slightly lower than the baseline result. Our baseline methods got

higher human evaluation scores. We believe the reason for this trend is lack of detail

in objects generated by multiple captions. The baseline model generates images with
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single objects, hence the image are visually appealing.

Conditional Image Generation on Multiple Sentences – To understand the

effect of conditioning image generation on multiple sentences, we run experiments by

varying the number of sentences. Synthetic sentences were generated using our sentence

paraphraser. Figure 4.6 shows the input caption and the generated images with 1, 3

and 5 captions. Image quality enhances with increase in number of sentences. The

food example also show gains in understanding the concept of quantity (four) through

text. Similar trends on image quality are observed through the inception and detection

score metrics as reported in Table 4.3. The detection score helps prove that multiple

sentences assist in generating multiple objects in the image that are recognized by the

object detector.

Figure 4.6: Examples of the text-to-image generation as conditioned on varying number
of input captions. We observe more detailed images being synthesized with increase in
number of captions.

We perform a few ablation experiments to further analyze the text-to-visual mode

of the MMVR.
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Table 4.3: Evaluation of the generated image quality by conditioning on varying number
of paraphrased sentences (NC).

NC Inception Detection Human

1 7.22± 0.81 0.713 2.31
3 8.04± 0.57 0.915 2.73
5 8.30± 0.78 1.004 2.71

Was the n-gram scaling useful ? – We show examples with and without the n-gram

scaling of the gradient term in (3) in Figure 4.7. It is very difficult to judge the two

techniques visually. We use only a single caption to condition the image generator to

have a fair comparison in this case. The BLEU-1 score was used as the word level error

multiplier and it scales the gradients accordingly. The inception scores in Table 4.2 show

slight improvement for BLEU-1 against the PPGN.

Which degree n-gram is better for scaling ? – We compare different BLEU

scaling in (3) by varying the n-gram metric. Results are reported in Table 4.4. One

reason the BLEU-1 performs better than the higher n-gram techniques might be the

simple removal of one-to-one word correspondences between the predicted and ground

truth captions is sufficient. Higher BLEU metrics require n-gram matching which puts

hard constraints on the generated caption. This may cause the significance on important

words to be dampened in the overall update.

Table 4.4: Comparison of image quality with different BLEU metrics for scaling the
latent vector update function.

Scaling n-gram Metric Inception Score

BLEU-1 7.22± 0.81
BLEU-2 7.12± 0.66
BLEU-3 7.05± 0.73
BLEU-4 6.83± 0.74



CHAPTER 4. GENERATIVE MODELS 85

Figure 4.7: Examples comparing the text-to-image for PPGN and the BLEU-1 scaled
cross-entropy. Even though slight improvements could be observed with the n-gram
scaling, judging the image quality visually is challenging.

Do stop words have significance ? – A caption might have more stop words (“a”,

“an”, “the”, “to”, etc.) than actual informative words that describe image content. We

ran experiments by masking the gradient for the stop words. This did not improve the

image quality. We attribute this to the lack of sentence structure after masking stop

words. The captioner was trained to generate complete English language sentences. It

always generates a complete text description, even though the ground truth caption

may be a collection of only relevant words. Hence, for all other experiments we take

the running average of the number of words in the caption so all words contribute equally.

Does fine-tuning the image generator help ? – The generator was unable to

address common words that occur in a caption (man, woman, person, numbers, etc.)

since ImageNet does not contain such categories. Moreover, some dominant categories
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in MS-COCO dataset like giraffe, stop sign and person are not present in the Ima-

geNet dataset. We visualize the generator results after fine-tuning it on the MS-COCO

data. By fine-tuning, the generator is able to semantically capture such categories. Ad-

ditionally, we observed that multiple objects could also be generated since the original

ImageNet model mostly comprised of single object images. An example caption and gen-

erated images are shown in Figure 4.8. It could also be interpreted that the generator

model correlates better with the captioner since the caption cross-entropy is computed

on MS-COCO trained captioner.

Figure 4.8: Examples that show text-to-image improvements after fine-tuning the gener-
ator on MS-COCO dataset. Object categories such as giraffe and stop sign that are not
part of ImageNet dataset show some enhancement in details. We also observed slight
improvements in understanding of size, shape and quantity aspects.

4.3.2 Text Generation

Similar to image generation, both input modalities can independently yield text as

output. Since we use LRCN [13], the evaluation of the visual-to-text mode is performed
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on the test partition of the MS-COCO dataset. We show examples on the left side of

Figure 4.9.

Figure 4.9: Examples of the visual-to-text (left) and text-to-text (right) modes of the
MMVR. The inputs can be the visual or text modalities.

We show the usefulness of MMVR in language translation tasks. Given a reference

sentence, the objective is to produce a semantically related sentence. We show examples

of paraphrasing on the right side of Figure 4.9. Furthermore, to test the robustness of the

sentence paraphraser, we run experiments by varying noise levels in the latent space. To

evaluate the quality of generated captions, we use BLEU [68], METEOR [69], CIDEr [70]

and ROUGE [71] natural language metrics. Since every sample from MS-COCO dataset

consists of five captions, we use one of the captions as the input to the paraphraser and

the remaining four captions for evaluation. The input caption is fed in the encoder to

obtain a vector representation. This representation is corrupted using random uniform

noise before being input to the decoder. The results are reported in Table 4.5, where

the scale is the noise multiplier. A scale of 0.0 is equivalent to feeding the latent vector

without any noise and could be considered as the upper-limit of the paraphraser. We

observe that the model is robust to noise up to 1 standard deviation but the performance

degrades significantly beyond that. This also indicates that the sentences do not form
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very dense clusters in the latent space.

Table 4.5: Evaluation of Text-to-Text paraphrasing model with variation of noise in
the latent vector space. The noise scale is the multiplier for the standard deviation
of the feature space to generate random uniform noise. Noise with scale 0.0 could be
considered as the upper-limit of the paraphraser.

Standard Deviation 0.0 0.1 0.5 1.0 2.0 3.0

BLEU-1 0.71 0.71 0.7 0.68 0.56 0.3
BLEU-2 0.53 0.53 0.52 0.5 0.38 0.15
BLEU-3 0.38 0.38 0.38 0.35 0.24 0.07
BLEU-4 0.27 0.27 0.27 0.24 0.16 0.04

METEOR 0.24 0.24 0.24 0.23 0.18 0.09
ROUGE 0.52 0.52 0.52 0.5 0.42 0.24
CIDEr 1.03 1.03 1.02 0.92 0.59 0.15

Vector Arithmetic in Latent Space – Lastly, we evaluate the text-to-text model by

performing arithmetic operations in the latent space. Vector arithmetic for language has

been shown with words [58] but is still in a nascent stage for complete sentences. The

input sentences are fed in the encoder to obtain vector representations. A composite

vector is obtained after performing simple mathematical operations on the vector and

is fed to the decoder to generate a sentence description. Examples are shown in Figure

4.10. The first three samples demonstrate simple additive properties. Samples 4 and

5 validate more complicated operations and show relationships between objects and

actions in the latent space.

Figure 4.10: Examples of arithmetic operations in the latent space for the text-to-text
model.



Chapter 5

Cross Modal Retrieval

In Chapter 4, we developed methods for bi-directional translation between visual and

text modalities. We focused on the generative aspect and discussed the associated chal-

lenges. In this chapter, we show the use of common vector representations of different

modalities and apply it for cross-modal retrieval. Despite great progress, the generic

connection of various written and visual modalities remains challenging. The relation-

ship between multimedia and vectors is further explored in this chapter. The ultimate

goal is to discover a common latent representation for different types of sources, as shown

in Figure 5.1. In other words, given an input data in any of the following forms: image,

audio, video, word, sentence, paragraph, three dimensional model; the framework would

encode the input into a semantic vector and decode it to any type of multimedia.

Figure 5.1: Overview of the bidirectional image-text retrieval model.

89
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Figure 5.2 gives an overview of our methodology across several modalities. Latent

representations of each modality are mapped to a Common Vector Space (CVS) using

individual encoding networks. Similar to the International Color Consortium’s device

independent profile connection space for color management [131, 132] which maps all

inputs to a common reference color specification, a source independent vector connection

space requires each new modality to define a single transformation into this reference

space. Given M modalities, this architecture only requires M transformations for encod-

ing into CVS. Further, as new modalities are introduced to this common vector space,

transformations for existing modalities remain unchanged. Not only is this a significant

time savings in the generation of new models, it enables intuitive interaction of data

across diverse domains.

Figure 5.2: The Common Vector Space (CVS) model. Inputs from multiple modalities
are mapped to a common latent representation using a series of embedding layers. The
red, blue and yellow boxes indicate individual modality encoders, embedding functions
and the proposed aligned attention, respectively. The outputs of the attention layer are
treated as the common vector representation.

In this chapter, we introduce a novel attention mechanism to align multi-modal
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embeddings which are learned through a multi-modal metric loss function. We evaluate

the learned common vector space on multiple image-text datasets- Pascal Sentences,

NUS-WIDE-10k, XMediaNet, Flowers and CUB. We extend our method to five different

modalities and demonstrate cross-modal retrieval on the XMedia dataset. We obtain

state-of-the-art cross-modal and zero-shot retrieval across all datasets.

Given adequate sample points, and using appropriate metric learning curriculums,

models generalize well to unforeseen data. Methods based on metric learning have

been used for face verification [105], image retrieval [23], person-reidentification [106]

and zero-shot learning [107]. Inspired by these methods as well as prior approaches

extending metric learning to multiple categories [112] and multiple modalities [115], we

extend metric learning to both arbitrary number of categories and modalities.

Attention models have been shown to be useful for temporal decoding in language

translation [35], image captioning [27], and visual question and answering [133]. This

concept allows the decoder to selectively emphasize individual features in the encoder

stream. Another form of attention was presented recently for machine translation that

does not rely on recurrence or convolutions [134]. We formulate a new concept of

attention that aligns latent representations from different modalities. Unlike attention

in recurrent models, this concept is applicable to a much broader class of use cases,

while boosting model performance significantly.

The main contributions of this chapter include:

• We formulate an efficient vector space model using neural embeddings that act as

a bridge between multiple modalities which is easily expandable to new modalities.

• Introduce a novel aligned-attention layer that encourages similar concepts across

modalities to have highly correlated latent vectors.

• To the best of our knowledge, we are the first to extend the concept of a common

latent representation to several (five) modalities.

• Demonstrate state-of-the-art cross-modal retrieval results on Pascal Sentences,
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NUS-WIDE-10k & XMediaNet datasets and state-of-the-art zero-shot retrieval

results on CUB & Oxford Birds datasets.

5.1 Related Work

Deep learning has enabled dramatic advancement in image, video and text understand-

ing. For example, image classification [2, 135, 136, 22], object detection [6, 137], seman-

tic segmentation [9, 138], image captioning [13, 27], and localized image description [12]

tasks have witnessed tremendous progress in the last few years.

Similarly, our understanding of latent representations of concepts and multi-modal

architectures has experienced significant growth. For example, Srivastava et al. [109]

used deep Boltzmann machines for multi-modal learning on images and tags. Their

formulation could generate tags from images or images from tags. Sohn et al. [110]

introduced an informative theoretical objective that was shown to improve deep multi-

modal learning for language and vision. Joint language and image learning based on

image category was shown in [111]. They show the use of the joint training for zero-shot

image recognition and image retrieval. Ngiam et al. [108] used an auto-encoder model

to learn cross-modal representations and showed results with audio and video datasets.

Sohn et al. [112] introduced multi-class N-tuple loss and showed superior results on

image clustering, image retrieval and face re-identification. Song et al. [139] introduced

lifted structured loss, which expanded the N-tuple loss concept such that each positive

pair compares distances against all negative pairs.

There have been numerous works on building a joint embedding space between im-

ages and captions. Feng et al. [140] used correspondence autoencoders to find cor-

relations between images and text. Qi et al. [141] used a combination of triplet and

contrastive losses to better align objects of the same category from inputs of different

modalities. Wang et al. [114] learned joint embeddings of images and text by enforc-

ing margin constraints on training objectives. Recent works by [141, 142, 143] leverage
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pre-trained architectures for multi-modal retrieval. Qi and Peng [144] performed bidirec-

tional translation process using reinforcement learning to achieve cross-modal retrieval

between image and text. The effectiveness of a cross-modal retrieval architecture can

be seen by performing zero shot learning as reported by [145, 111].

Often samples have multiple overlapping categories which poses unique challenges

for network architecture and loss functions. Vendrov et al. [146] used margin based

ranking loss with order violation penalty as the distance metric to bring similar image

and captions closer in the embedding space. Eisenschtat et al. [113] introduced a

bidirectional network to map vectors coming from two data sources by optimizing a

correlation loss. Lee et al. [147] proposed an attention mechanism to compute overall

similarity of an image and caption as an aggregate over image regions and individual

word outputs of an RNN. Huang et al. [148] proposed to use a gated fusion unit to

combine the local and global context of an image into a single vector representation.

This vector was then matched with the sentence embeddings to bring similar captions

closer. In this work, we focus on categorical datasets like [149, 1, 111, 150] where each

sample of a modality contains no more than a single category. Additionally, we deploy

a novel attention mechanism to align representations from different modalities which

learns in a pair-wise fashion.

5.2 Our Model

This section describes the main components of the Common Vector Space (CVS) model.

5.2.1 Embedding Space

Figure 5.2 describes the high-level architecture. Each modality has a unique encoding

stage (i.e. image2vec, sent2vec, ...) producing a vector representation, hi, hs, ha, hv, h3d

for image, sentence, audio, video and 3D models, respectively. Each of these vector rep-

resentations are passed through two embedding functions, the first containing modality-
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specific weights, and the second containing shared weights. After passing through the

second embedding function, concepts from different modalities are mapped into the

CVS. To add a new modality, such as keywords or depth maps, all remaining weights

are unchanged, and a set of modality specific encoder and embedding function are in-

troduced.

During training, two input samples are selected at random. The two samples are

propagated through the encoder, modality specific embedding layers and the shared

embedding layers. While iterating through input pairs, all the layers are learned for

their respective inputs. The loss for this pair is used to update the shared and the

respective embedding layers. We use a multi-modal metric loss for the input pair. Since

every sample is labeled as one of multiple categories, the class labels are used to form

positive and negative training pairs. With weights learned, we perform standard cross-

modal retrieval and zero-shot retrieval during inference.

Loss Function − One of the important aspects of representing multiple modalities

in a shared CVS is to form positive (similar class or concept) and negative (dissimilar

class or concept) cross-modal pairs. The inclusion of positive and negative pairings

during training ultimately ensures the model can discriminate the data during inference.

Positive pairing is done through combinations of samples of the same concept/category.

Negative pairs are formed between samples of differing concept/category. Creating

relevant positive and negative pairs plays a critical role while learning a multi-modal

embedding. For simplicity, we define the loss formulation with just two modalities-

image and text, and create positive pairs in three pair formats- between image and

image, between text and text and between image and text. Given a set of aligned

image-text pairs as training data, the goal is then to learn an image-text compatibility

distance d(fi, fs) to be used at test time. The distance d(fi, fs) is defined between two

embedding vectors, fi and fs as ||fi − fs||22.

Many recent approaches have explored metric learning functions for mapping the

input modalities into a common space. Triplet loss [105] minimizes the distance between
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positive samples as compared to negative samples in the CVS. Triplet loss introduces the

concept of an anchor point from which positive and negative samples can be compared.

We propose to extend the triplet loss formulation to multiple modalities by forming pairs

within and across respective modalities. The weighted multi-modal triplet objective is

minimized by (5.1).

Lm =
∑
i,s

(
γ1
∑

max(0, α1 + d(fai , f
+
i )− d(fai , f

−
i ))

+γ2
∑

max(0, α2 + d(fas , f
+
s )− d(fas , f

−
s ))

+γ3
∑

max(0, α3 + d(fai , f
+
s )− d(fai , f

−
s ))
) (5.1)

where, (fai , f
+
i ) indicates an embedding pair of the same modality of matching categories

with respect to an anchor, whereas (fai , f
−
s ) indicates an embedding pair of different

modality of mismatching categories with respect to an anchor. γ1, γ2 and γ3 are the

weights for within and across modality loss terms. α1, α2 and α3 are the respective

distance margins which ensure the distance between positive and anchor points are

closer than the distance between negative and anchor points by at least a margin.

Architecture

The general architecture is shown in Figure 5.3. It includes five different branches (only

image and sentence shown for brevity), each corresponding to a modality. All branches

convert the input modality into a vector representation using an encoder function that

works as a feature extractor. For example, a pre-trained CNN is used as an encoder

for images. The encoder is followed by embedding functions that are unique to each

modality. We use a series of three fully connected layers with tanh activations for this

embedding (1024−512−512). The individual embedding functions are followed by an

aligned attention layer that has shared weights for the input modality pair. The output

of the attention later is the CVS representation for all input modalities.
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Figure 5.3: Introduced architecture for learning multi-modal embeddings. Only two
modalities- image and text are shown for simplicity. Features are extracted from raw
inputs using respective encoders (CNN for image and sent2vec for text). Individual
embedding functions and shared aligned attention layers are learned during training
using positive and negative pairs.

5.2.2 Aligned Attention Layer

A common method for localizing relevant features uses attention models. Soft attention

uses a weighted combination of all input features, where the weights are influenced by

a recurrent sequence decoder. Soft attention has been used in the context of image and

video captioning. Specifically, it computes a feature relevance score e
(t)
i for each of the

ith features in v1, v2, ..., vn at each decoder time step t.

e
(t)
i = w>tanh(Waht−1 + Uavi + ba) (5.2)

where, ht−1 is the hidden state at the previous time step of the decoder, vi is the ith

feature vector representation, and w, Wa, Ua, ba are learned parameters. This can

be interpreted as an alignment between the encoder and decoder sequences. It allows

the encoder to selectively emphasize relevant features based on decoder feedback. The

attention vector is normalized using a softmax function as:

αti =
exp(eti)∑F
j=1 exp(e

t
j)

(5.3)

The resulting feature is a weighted combination of F input features.



CHAPTER 5. CROSS MODAL RETRIEVAL 97

Φt(V ) =
F∑
i=1

αtivi (5.4)

Figure 5.4: Architecture of the aligned attention layer. S is Softmax activation and N
is normalization.

Such an additive form of attention is not directly applicable to single embedding

vectors. In the case of CVS representations of image and sentence inputs, we have gi

and gs as the respective embeddings. For any positive input pair, the embeddings should

have very high alignment.

eis = w>tanh(Wigi +Wsgs +Wisgi · gs + b) (5.5)

where, gi · gs indicates element-wise product, which is an indicator of alignment similar

to autocorrelation in signal processing. Also, note that eis = esi. Similar to (5.3), the

resulting vectors are normalized to obtain the attention vectors αis.

αis = Softmax(eis) (5.6)

We further employ residual connections around each of the embeddings followed by

batch-normalization.

ĝi = αis · gi + gi (5.7)

ĝs = αis · gs + gs (5.8)
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Overall, this can be seen as a multiplicative form of attention since the alignment is

obtained using a product of the embedding vectors. The final outputs are l2 normalized

and treated as the final CVS representation. Once in CVS, similar/dissimilar concepts

map close/far and it is difficult to tell from which modality a concept was originated.

The proposed attention mechanism is applied to input pairs (two modalities) and

is easily extended to additional modalities by including the corresponding weights and

the multiplicative terms in (5.5). For example, adding a third audio modality would

yield three pair wise attention terms- eis, eia and esa, where i, s and a stand for image,

sentence and audio. In the resulting three attention equations, the weights corresponding

to the first two terms in (5.5), Wi, Ws and Wa are shared. In our experiments, we have

extended the attention up to five modalities in a similar fashion.

5.3 Results and Discussion

5.3.1 Datasets

We evaluate our method on multiple datasets which are briefly described in this section.

The train/test splits used for all datasets are adopted from previous works.

Pascal Sentence dataset [151] is a collection of image-text pairs in 20 different cate-

gories. It contains a total of 1,000 images and each image has five independent sentences.

Following [140], we use 800 image/text pairs for training and remaining for testing.

NUS-WIDE-10k is a subset of the NUS-WIDE [149]. Following [149], 10 categories

are selected to obtain 1,000 image/text pairs per category. We use 8,000 samples for

training (800 per category) and the remaining 2,000 for testing (200 per category).

XMediaNet dataset [152] is a large scale dataset with image-text pairs in 200 different

categories. There are 32,000 train and 8,000 test samples for each modality.

Caltech-UCSD Birds (CUB) contains 11,788 bird images from 200 different cate-

gories. Each image has ten different sentence descriptions as collected by [111]. Following

[111], the data is split into 150 categories into train and validation and the remaining
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50 categories for test.

Oxford Flowers-102 (Flowers) dataset contains 8,189 flower images from 102 dif-

ferent categories. Similar to CUB, each image has 10 different sentence descriptions

collected by [111]. The images in Flowers are split into 82 training + validation and 20

test classes based on [111].

XMedia dataset [150, 1] is used to demonstrate the applicability of the model for

multiple input modalities. The XMedia dataset has five modalities- image, text, audio,

video and 3D models. Each sample is labeled in one of twenty categories. XMedia

dataset statistics are tabulated in Table 5.1. Readers are referred to [1] for details of

individual modality encoders.

Table 5.1: XMedia dataset [1] statistics.

Modality #Train #Test Feature dim. (Method)

Image 4000 1000 4096 (CNN)

Text 4000 1000 3000 (BoW)

Video 969 174 4096 (C3D-CNN)

Audio 800 200 29 (MFCC)

3D Model 400 100 4700 (Light Field)

5.3.2 Implementation Details

We use TensorFlow [153] to train and test the CVS models. All experiments are trained

for 50 epochs and use a batch size of 128. The margin hyper-parameters (α1, α2, α3)

for the metric loss are 1.0, whereas, the weights (γ1, γ2, γ3) are (0.25, 0.25, 0.5). Adam

optimizer is used during training. The learning rate is 1 × 10−3 and we use decay

parameters (β1 = 0.9, β2 = 0.999) as reported in [65]. The common vector space is

512-dimension. For the experiments with the category loss, we use a combination of the

metric loss and the category loss as the total loss for common representation learning,

L = Lm + Lc.

Feature extraction − For sentence encoder of Pascal Sentences, CUB, and Flowers

datasets, we use the pre-trained skip-thoughts model [119] that yields a 4800-dimension
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vector for each sentence. The images are encoded using a ResNet-152 model [136]

pre-trained on ImageNet dataset giving a 2048-dimension vector for each image. For

the XMedia and XMediaNet datasets, we use the pre-extracted features as provided

by [150, 1] and [152], respectively. Similarly, for NUS-WIDE-10k dataset, we use the

pre-computed image and sentence features as provided by [149].

Inference − During cross-modal testing of image and sentence retrieval, each image is

evaluated against all other sentences. This forms a similarity matrix which is used to

retrieve closest sentence samples to an image and vice-versa. While evaluating multi-

modal retrieval, the same strategy is utilized for all modality pairs.

5.3.3 Evaluation Metrics

We refer to image-to-text and text-to-image as cross-modal whereas experiments with

five different modalities are referred to as multi-modal. We report the mean Average

Precision (mAP ) scores as described in [140] on all datasets. The Average Precision

(AP) is computed for every query on the first R top-ranked retrieved data samples:

AP =
1

M

R∑
r=1

p(r) · rel(r) (5.9)

where, M is the number of relevant data samples in the retrieved results, p(r) is precision

at r, and rel(r) is a binary indicator of relevance of a given rank (one if relevant and

zero otherwise). The retrieved data is considered as relevant if it has the same semantic

label as the query. mAP is obtained by averaging AP of all queries. As per other works,

we report mAP@50 (R = 50) for all experiments.

5.3.4 Experiments

Cross-Modal Retrieval

Cross-modal retrieval results are reported in Table 5.2. We show recent reported scores

on the Pascal Sentences, NUS-WIDE-10k and XMediaNet datasets. For both text-to-
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image and image-to-text retrieval, our method shows clear improvements. Our results

are obtained with the CVS model with attention, shared layers and combination of

metric and category losses. On the Pascal, NUS-WIDE, and XMediaNet datasets, our

method reports a mean average precision on image-to-text and text-to-image retrieval

improvement over the next best previous works by [3%, 1%, 7%] and [7%, 8%, 8%] re-

spectively. The presence of jointly learned weights in the attention and shared layers

makes the representation symmetric across different modalities for unseen test sam-

ples. We observe most improvements in text-to-image, probably due to the maturity of

captioning research. A major challenge with the NUS-WIDE-10k dataset is that each

image has only one text sample per image. The Pascal Sentences dataset has multiple

ground truth captions per image which makes the common vector space more robust for

retrieval. Some sample retrieval visualizations are shown in Figure 5.9.

Zero-Shot Retrieval

To test the robustness and generalizing ability of our CVS model, we evaluate perfor-

mance on data categories that are not part of the training set (zero-shot retrieval). This

presents a more challenging retrieval setting for the CVS model. To allow for a direct

comparison with previous reported results, we follow the evaluation strategy from [111]

to compute the average precision. The average prevision @50 for image-to-text retrieval

is the ratio of the top-50 scoring images whose class matches that of the text query,

averaged over the test classes.

Zero-shot retrieval results on the CUB and Flowers datasets are reported in Table

5.3. The results with our CVS model show consistent improvement as compared with

previously reported state-of-the-art results. On the CUB and Flowers datasets, we report

the mAP improvements of 7% and 4% above the next best reported results respectively.

The combination of the two modalities through the aligned attention assist in forming

a robust CVS that performs well on unseen categories. The attention helps capture

the semantic differences among the classes which is very challenging since both of these
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Table 5.2: Mean average precision for cross-modal retrieval (image-to-text and text-to-
image) on Pascal Sentences, NUS-WIDE-10k and XMediaNet datasets. AA is Aligned
Attention.

Dataset Method Img2Txt Txt2Img

Pascal Sent.

UNCSM[141] 0.304 0.282
Deep-SM[142] 0.446 0.478
ACMR[143] 0.535 0.543
DCKT [154] 0.582 0.587
MCSM [155] 0.598 0.598
CBT [144] 0.602 0.583
Baseline CVS 0.589 0.563
Baseline + AA 0.639 0.650

NUS-WIDE

UNCSM[141] 0.312 0.354
Corr Full AE[140] 0.331 0.379
CSGH [156] 0.542 0.569
ACMR[143] 0.544 0.538
DCKT [154] 0.556 0.584
Baseline CVS 0.439 0.485
Baseline + AA 0.566 0.669

XMediaNet
CBT[144] 0.516 0.464
CM-GAN[157] 0.521 0.466
Baseline CVS 0.536 0.495
Baseline + AA 0.598 0.546

datasets are fine-grained in nature.

We noted the alignment of the embedding of the two input modalities makes the task

of learning a common embedding easier. As an example, Figure 5.5 shows the loss curves

with and without our aligned attention layer for the Flowers and CUB datasets. All

the hyper-parameters are identical for both experiments within each dataset. The loss

curves clearly show faster and improved learning with inclusion of the aligned attention

layer.

Multi-Modal Retrieval

To demonstrate the suitability of CVS to multiple modalities, Table 5.4 reports the mean

average precision scores on the XMedia dataset which has five modalities. We evaluate
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Table 5.3: Mean average precision for zero-shot retrieval on CUB and Oxford Flowers
datasets. Baseline CVS model is trained with only multi-modal metric loss, AA is
Aligned Attention. The best models reported include classification loss.

Dataset Method mAP@50

CUB (Birds)

DA-SJE [111] 0.368
DS-SJE [111] 0.500
Hubert [158] 0.476
Cosine [159] 0.500
Dorfer [145] 0.522
Baseline CVS 0.538
Baseline + AA 0.589

Flowers

DA-SJE [111] 0.459
DS-SJE [111] 0.596
Cosine [159] 0.602
Dorfer [145] 0.640
Baseline CVS 0.604
Baseline + AA 0.679

(a) Oxford Flowers dataset. (b) CUB (Birds) dataset.

Figure 5.5: Loss curves for models with and without the aligned attention layer.

the retrieval of every modality against all the other modalities. For the XMedia dataset,

the number of samples across modalities is highly imbalanced (Table 5.1) and the encoder

features dimension of the audio modality is very low which makes it hard to converge

with other inputs. We believe that having a balanced dataset, improved features and

modality specific curriculum learning would be helpful for such problems.
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Table 5.4: Mean average precision for multi-modal retrieval on XMedia dataset (I -
image, T- text, A - audio, V - video, 3D - three dimension). Q is query and R is
retrieval modality.

, trim=lQ
R

I T A V 3D

I − 0.908 0.708 0.801 0.731

T 0.950 − 0.743 0.828 0.769

A 0.416 0.477 − 0.341 0.420

V 0.490 0.481 0.366 − 0.434

3D 0.580 0.545 0.457 0.558 −

Ablation Experiments

Table 5.5 examines the effectiveness of the aligned attention layer, skip-connection (in

attention layer), and classification loss on the NUS-WIDE-10k dataset. Our baseline

is firstly modified with the addition of aligned attention layer. Including the attention

shows improvement in cross-modal retrieval results.

We then ran experiments to analyze the importance of the aligned attention layer

as described in (5.7) and (5.8). The improvement in attention models is attributed to

the ease of training of the embedding layers. As initially reported in [136] and further

demonstrated in Figure 5.5, the residual connections make the deep network easy to

optimize.

Lastly, since all samples in the NUS-WIDE-10k dataset have a ground truth category,

we also introduce a classification term to the loss function. This is done by training a

three layer fully-connected network (512−256−c), where c is the number of classes. The

input to this classifier network is the CVS embedding of each sample and the output is

a softmax classification loss. The results show significant improvements in the retrieval

scores.



CHAPTER 5. CROSS MODAL RETRIEVAL 105

Table 5.5: Mean average precision scores for cross-modal retrieval for different experi-
ment settings on NUS-WIDE-10k dataset. AA is Aligned Attention.

Experiment Settings NUS-WIDE-10k

AA Loss Img2Txt Text2Img

Metric 0.439 0.585

X Metric 0.500 0.617

X Metric + Class 0.566 0.669

Attention Visualization

Figure 5.6 shows the attention vectors for image and text samples from the test set

of the NUS-WIDE-10k dataset. Each plot shows the class averaged attention vector

αit across the embedding dimensions. We can observe peaks at different dimension

for different categories. Categories such as clouds, grass and sky have multiple peaks

distributed across the embedding dimensions. This could be attributed to the large

amount of variability in these classes and presence of other other categories in these

images. For example, highly overlapping categories sky and cloud have very similar

curves of the respective attention vectors. Some of the other classes exhibit single peaks

in the attention vectors indicating that the image and text samples are relatively easy

to distinguish. Such an analysis would be very helpful in designing parameters such as

embedding size of a retrieval system with a mixture of easy and hard categories.

Embedding Visualization

In order to further investigate the learned common representations, we visualize the

distributions across all the modalities on the XMedia dataset. Figure 5.7 shows a t-SNE

plot of CVS representation for five modalities- image, sentence, audio, video and 3D.

The plot shows 1000 test samples from 20 categories. The visualization not only depicts

the alignment of the five modalities but also depicts how individual categories form

their own clusters. Likewise, Figure 5.8 shows the t-SNE visualization of samples from

the unseen test categories from the CUB dataset. We observe natural clusters between
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Figure 5.6: Mean attention vector (αis) visualization of test samples of the ten categories
in the NUS-WIDE-10k dataset.

image and sentence samples with similar semantics.

To further evaluate the quality of class clusters, we compute the Normalized Mutual

Information (NMI) metric. NMI is defined by the ratio of mutual information and the

average entropy of clusters and the entropy of labels [160]. In Table 5.6, we report the

NMI metric for embeddings in CVS for the test samples in different datasets. CVS

embeddings for all test samples are extracted. Scores are computed for individual image

and text embeddings and compared with scores obtained using embeddings from both

modalities jointly. Similar scores for the joint embeddings indicate that category clusters

are preserved for both modalities in CVS. High scores for the two zero-shot learning

datasets show the robustness of the CVS in clustering unseen categories.
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Figure 5.7: t-SNE visualization of learned CVS for XMedia dataset. Individual colors
indicate different modalities and numbers denote categories. (Best viewed at 400%
zoom.)

Table 5.6: NMI scores for different datasets to evaluate the quality of clusters in CVS.
1 indicates scores for unseen test categories of zero-shot learning datasets.

Dataset Img. CVS Sent. CVS Joint CVS

Pascal Sent. 0.677 0.682 0.646

NUS-WIDE-10k 0.297 0.452 0.351

CUB1 0.741 0.660 0.659

Flowers1 0.600 0.628 0.609

Extensions of the CVS Model

We additionally evaluate the effectiveness of the aligned attention mechanism by eval-

uating the common representations learned from a retrieval model for the task of sen-
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Figure 5.8: t-SNE visualization of image and sentence samples of unseen test categories
from CUB dataset. (Best viewed at 1600% zoom.)

tence localization. The images from the test set of the Pascal Sentence dataset are

passed through a pre-trained region proposal network [161]. The top scoring regions are

aligned with a sentence to localize the sentence within the image. Sample results are

shown in Figure 5.10.
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Figure 5.9: Examples of cross-modal retrieval on the Pascal Sentences dataset. Top two
rows are image-to-text retrieval and bottom two rows are text-to-image retrieval. We
show Top-5 retrieved samples.

Figure 5.10: Sample results for sentence localization using the CVS model from the test
set of Pascal Sentences dataset. The red box is the region aligning closest with the
sentence embedding.



Chapter 6

Conclusions

In this work, models for connecting vision with natural language are developed. The

problems addressed in this research are towards addressing better understanding of

vision and language and their inter-dependencies. Specifically, neural network architec-

tures that process and align the two modalities and train their parameters end-to-end

on datasets of image and video captions are introduced.

In Chapter 2, a general purpose Steered Gaussian Attention Model for video under-

standing is introduced. Rather than using fixed training priors, video attributes are used

as features along the length of the video to smartly steer attention mechanisms. When

these temporal video features are bundled with a video summary vector, a semantically

rich latent representation continuously feeds the captioning engine. A Gaussian para-

metric descriptor adds a degree of freedom to the input videos. The use of multistream

hierarchical approach along with automatic boundary detection and parametric soft at-

tention delivers state-of-the-art results on popular video captioning datasets. Through

video fidelity and timing experiments, it was demonstrated that the video captioning

models are robust enough to handle the power and bandwidth requirements of realistic

automated surveillance systems.

In Chapter 3, a novel method for both long video summarization and annotation

is introduced. Frame to frame motion, frame image quality, as well cinematographic

110



CHAPTER 6. CONCLUSIONS 111

and consumer preference are uniquely fused together to determine interesting segments

from long videos. Key frames from the most impactful segments are converted to textual

annotations using an encoder-decoder recurrent neural network. Textual annotations are

summarized using extractive methods where LSA, LexRank and SumBasic approaches

performed best. Human evaluations of video summaries indicate promising results.

Independent experiments validate both superframe cuts as well as key frame selection

techniques. A key limitation is passing of incorrect superframe or key frame information

to the captioning framework. A potential solution would be availability of datasets with

ground truth on both key segments and associated captions/summaries.

The work in Chapter 4 inspired to develop a framework that shows the flexibility

in performing cross-modal transformations. It advances the area of caption conditioned

image generation by allowing the common vector space to be shared between vision and

language representations. It addresses some limitations in existing studies such as one-

to-one word correspondence by using the n-gram metric and conditioning on multiple

semantically similar sentences. It is among the first efforts to directly tie a common

vector connection space in a bidirectional visual-to-text framework by adopting image

and text generative techniques. The area of image generative models has seen significant

progress recently. However, evaluation techniques of the generated images are still in a

nascent stage. Moreover, quality of generated images from diverse categories is limited

and most current works that generate high quality images are limited to a single category.

In Chapter 5, we extend the concept of common vector space for cross-modal re-

trieval and zero-shot retrieval. We present a framework for learning a multi-modal

common vector space. Irrespective of a sample’s modality, similar concepts lie close,

while dissimilar concepts lie far apart. Once in this latent representation, it is difficult

to determine the original modality, making this method suitable for generic search and

retrieval. Our method uses modality specific embedding functions and a new aligned at-

tention mechanism. Weights are learned through a new multi-modal metric loss function.

State-of-the-art results on image-to-text and text-to-image retrieval as well as zero-shot
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learning are demonstrated across numerous datasets. We show the natural extension of

our methods to five modalities- image, sentences, audio, video and 3D-models.

Overall, this thesis presents learnings through experiments for combining image and

language modalities. The developed models include a video captioning framework along

with an extension to summarize very long videos. We also introduced the concept of

a common vector space that is shared between multiple modalities. To understand the

common representations, we created models for bi-directional translation between data

from image and language modalities through a generative as well as a retrieval aspect.

The developed models can be extended to applications such as human-robot interaction,

search & retrieval, image & video description services and video surveillance.

We have published multiple papers in various relevant areas. These include:

• Image Captioning [162, 163]

• Video Captioning [164, 165]

• Long Video Summarization [166]

• Video Activity Recognition [167]

• Very Large Deep Networks [168, 169]

• Video Redaction [170, 171]

• Graph-CNN [172]

• Sentence Paraphrasing and Summarization [173]

• Common Vector Space [174, 175, 176]

• Cross Modal Retrieval [177]
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6.1 Future Work

Some potential directions for future work include −

Firstly, a current challenge is to train a generalized image generator that is capable of

not only generating high quality images but also generate images from diverse categories.

Most current works that generate high quality images are limited to a single category.

For example, an image generator trained to synthesize only face images may generate

very good face images but is limited to only the face category. In contrast, an image

generator trained on multiple object categories from datasets such as MS-COCO or

ImageNet is limited in terms of image quality. When trained unconditionally on the

entirety of such diverse datasets, the generated images produced by current GANs have

little recognizable structure, mostly producing amorphous blobs rather than recognizable

objects.

Secondly, an important next step to demonstrate the value of current approaches in a

more realistic settings requires learning about abstract concepts. This involves learning

from very large scale unconstrained data such as information from the Internet or the

physical world around us. Unsupervised and semi-supervised learning based approaches

are very good at handling such kind of data. Unfortunately, current techniques are un-

likely to improve learned visual representations as compared with supervised approaches

trained on a sufficiently large labeled dataset like ImageNet. However, once unsupervised

learning approaches mature, demonstrating the benefits will be key for their adoption.

It is also important to recognize that a critical factor is that the information about the

world has to be made available to the computer. This already presents many practical

difficulties related to data collection and storage. Overall, this also raises the argument

that computers may not reach the same level of understanding as humans have unless

they can also interact with the world like we do.

Lastly, a primary challenge also lies in designing architectures that can model indef-

inite theories. It is insightful to note that the representations of such abstract concepts

are difficult to encode in a formal language and learned by a computer. Furthermore,
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for many concepts of interest, particularly in the visual world, some of the underlying

factors of variation may be discrete in nature rather than continuous. However, the

latent spaces typically learned through different approaches are entirely continuous. A

promising approach is to allow the models to discover the internal representation of the

data by its own. This is similar to the word encoding methods where the structure and

relationships between words emerge as a result of optimizing an objective.
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networks,” arXiv preprint arXiv:1607.03474, 2016.

[188] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated

recurrent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555,

2014.

[189] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-

ing with deep convolutional generative adversarial networks,” arXiv preprint

arXiv:1511.06434, 2015.

[190] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet

Large Scale Visual Recognition Challenge,” International Journal of Computer

Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[191] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and com-

posing robust features with denoising autoencoders,” in Proceedings of the 25th

international conference on Machine learning, pp. 1096–1103, ACM, 2008.

[192] H. Amiri, P. Resnik, J. Boyd-Graber, and H. Daumé III, “Learning text pair
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