
A Voxel-Based Approach for Imaging Voids in Three-Dimensional Point

Clouds

by

Katie N. Salvaggio

B.S. Rochester Institute of Technology, 2010

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

in the Chester F. Carlson Center for Imaging Science

College of Science

Rochester Institute of Technology

May 21, 2015

Signature of the Author

Accepted by
Coordinator, Ph.D. Degree Program Date

CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE

COLLEGE OF SCIENCE

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

CERTIFICATE OF APPROVAL

Ph.D. DEGREE DISSERTATION

The Ph.D. Degree Dissertation of Katie N. Salvaggio
has been examined and approved by the

dissertation committee as satisfactory for the
dissertation required for the

Ph.D. degree in Imaging Science

Dr. Carl Salvaggio, Dissertation Advisor

Dr. David W. Messinger

Dr. Derek J. Walvoord

Dr. Rajendra K. Raj

Date

I

A Voxel-Based Approach for Imaging Voids in Three-Dimensional Point

Clouds

by

Katie N. Salvaggio

Submitted to the
Chester F. Carlson Center for Imaging Science

in partial fulfillment of the requirements
for the Doctor of Philosophy Degree

at the Rochester Institute of Technology

Abstract

Geographically accurate scene models have enormous potential beyond that of just sim-

ple visualizations in regard to automated scene generation. In recent years, thanks to ever in-

creasing computational efficiencies, there has been significant growth in both the computer

vision and photogrammetry communities pertaining to automatic scene reconstruction from

multiple-view imagery. The result of these algorithms is a three-dimensional (3D) point cloud

which can be used to derive a final model using surface reconstruction techniques. However,

the fidelity of these point clouds has not been well studied, and voids often exist within the

point cloud. Voids exist in texturally difficult areas, as well as areas where multiple views were

not obtained during collection, constant occlusion existed due to collection angles or overlap-

ping scene geometry, or in regions that failed to triangulate accurately. It may be possible to

fill in small voids in the scene using surface reconstruction or hole-filling techniques, but this

is not the case with larger more complex voids, and attempting to reconstruct them using only

the knowledge of the incomplete point cloud is neither accurate nor aesthetically pleasing.

A method is presented for identifying voids in point clouds by using a voxel-based approach

to partition the 3D space. By using collection geometry and information derived from the point

cloud, it is possible to detect unsampled voxels such that voids can be identified. This analysis

takes into account the location of the camera and the 3D points themselves to capitalize on the

idea of free space, such that voxels that lie on the ray between the camera and point are de-

void of obstruction, as a clear line of sight is a necessary requirement for reconstruction. Using

II

III

this approach, voxels are classified into three categories: occupied (contains points from the

point cloud), free (rays from the camera to the point passed through the voxel), and unsampled

(does not contain points and no rays passed through the area). Voids in the voxel space are

manifested as unsampled voxels. A similar line-of-sight analysis can then be used to pinpoint

locations at aircraft altitude at which the voids in the point clouds could theoretically be im-

aged. This work is based on the assumption that inclusion of more images of the void areas

in the 3D reconstruction process will reduce the number of voids in the point cloud that were

a result of lack of coverage. Voids resulting from texturally difficult areas will not benefit from

more imagery in the reconstruction process, and thus are identified and removed prior to the

determination of future potential imaging locations.

Acknowledgements

An old African proverb states "It takes a village to raise a child." Well, I am here to attest that

it also takes a village raise a grad student. I am lucky enough to have many people in my life

who helped me get to this point, and I would like to take a moment to say thank you.

First and foremost, I must thank my thesis committee. Dr. Carl Salvaggio has been my

advisor through both my undergraduate and graduate career, and I cannot thank him enough

for his dedication, patience, and encouragement. Without him, I never would have made it to

this point. I would like to offer my sincerest appreciation to Dr. Derek Walvoord, who started

out as my contact point at Exelis and through this process has become a trusted advisor and

friend. His passion and enthusiasm for the research is unparalleled and he served as a constant

source of encouragement and inspiration. Thank you to Dr. David Messinger for serving on

my committee and his endless support. His thought-provoking questions and helpful insights

were always appreciated. And finally, thank you to Dr. Rajendra Raj, for not only introducing

me to the world of object-oriented programming, but also for serving as the chair of my thesis

committee.

A very special thanks to Dr. David Nilosek, who was my 3D partner in crime and braved the

unknown world of C++ and computer vision with me. Despite the fact that he has graduated

and moved on from his work at RIT, he still made himself available to help debug finicky 3D

codes via late night chats. Thank you to Dr. Shea Hagstrom, whose voxel-based LIDAR pro-

cessing for his own research inspired me to look at image-based 3D point clouds in a different

way, and eventually led me down a voxel-based path of my own. Another very special thanks

goes to Jason Faulring, who always made himself available to help, mostly by putting out fires

as I continually broke different pieces of code that I was working on. Without his insight and

technical expertise, the voxel processing would have never come to fruition. Many thanks go to

Cindy Schultz, DIRS students such as myself would be lost without your help and guidance. Sue

Chan has also offered support and guidance to help keep me on track, and I truly appreciate it.

I would like to thank all of the professors that I had through my course work at RIT, both

within the Center for Imaging Science and outside it. Imaging Science is what drew me to RIT,

combining my love of photography, mathematics, and science, but I feel truly blessed to have

been a part of an institution with such a wealth of knowledge and talent. I am grateful to have

had a chance to learn from all of you.

I am lucky enough to have shared office space with several people during my DIRS tenure,

and for that experience I am grateful. Amanda, Dave, Josh and Monica were the first lucky

IV

V

bunch, and we navigated the first year of graduate coursework together. Though most of our

time was spent trying to figure out Fourier homeworks, we did manage to have some fun along

the way (like that time we covered everything on Dave’s desk with aluminum foil). Phil, Shao-

hui, and Mike were on deck next, and I could not have asked for people more willing to help

think through complex research problems, or tackle me into a pit of mud. To the others not

mentioned, our time was brief, but I truly enjoyed all of it.

I would also like to thank my family and friends. To my mother, thank you for always be-

lieving in me and supporting me in every way imaginable. To my father, thank you for believing

in me, and offering to read everything I wrote, even though it was outside of your domain of ex-

pertise. To my sister, I am so proud of the person you have become and so grateful to have had

the support of your friendship along the way. And to the rest of my family, I love you all, thank

you for being there for me. A huge thank you goes to Oesa and her husband Sid, who graciously

gave me an open invitation to stay with them whenever I needed to return to Rochester, after

I moved to Pennsylvania to complete my research from afar. I cannot thank them enough for

their hospitality, as I took full advantage of their offer and gained lifelong friends in the process.

I need to thank my dog Maggie. I was supposed to be the one rescuing her, but it was her

who rescued me. Sitting with me in the office during those late nights writing, or finding a way

to make me laugh through my frustrations, she truly has been an outstanding “research dog.”

Last but certainly not least, I would not have made it here without the unyielding support that

Chris has provided me. He has always believed in me, even when I had doubts myself, and

supported me anyway that he could, be it helping with code, editing, or simply putting food

in front of me so that I remembered to eat. I am so fortunate to have him to rely on, and as a

partner in life.

To those who believed in me, and those who taught me along the way.

VI

Contents

1 Introduction 1

1.1 Research Goals . 3

1.2 Objectives . 3

1.3 Scope and Limitations . 4

1.4 Contributions to Knowledge . 6

2 Background 7

2.1 Structure from Motion . 7

2.1.1 Image-to-Image Correspondences . 8

2.1.2 Bundle Adjustment . 11

2.1.3 Dense Stereo Matching . 13

2.1.4 Geoaccurate Transformation . 15

2.1.5 Accuracy and Completeness . 17

2.1.6 Datasets . 18

2.1.7 Software . 19

2.2 Voids in Point Clouds . 22

2.2.1 Lack of Coverage . 23

2.2.2 Texturally Difficult Regions . 25

2.3 Surface Reconstruction . 26

2.3.1 Alpha Shapes . 28

2.3.2 Ball-Pivoting . 30

2.3.3 Poisson Surface Reconstruction . 33

2.3.4 Moving Least Squares . 36

VII

CONTENTS VIII

2.3.5 Marching Cubes . 36

2.3.6 Dual Contouring . 37

2.4 Hole Filling . 38

2.5 LIDAR . 44

2.5.1 Quality Metrics . 45

2.5.2 LIDAR Derived Geometry . 45

3 Methodology 48

3.1 Visibility Analysis . 49

3.1.1 Surface-Based Models . 49

3.1.2 Voxel-Based Models . 52

3.1.3 Incorporating Ray Origins . 55

3.1.4 Voxel Classification . 62

3.2 Void Identification . 66

3.2.1 Voxel Boundaries . 66

3.2.2 Distinguishing the Type of Void . 68

3.3 Future Image Location Identification . 82

3.3.1 The Backward Approach . 83

3.3.2 The Forward Approach . 85

3.3.3 Cost Function . 90

3.3.4 Constraints . 91

3.3.5 Sensor Positions . 93

3.4 Voxel-Based Workflow . 94

4 Results and Analysis 95

4.1 Voxel-Based Visibility Analysis . 95

4.1.1 Validation of Approach with DIRSIG Data 95

4.1.2 Generation of Voxel Spaces from Image-Derived Point Clouds 98

4.1.3 Investigation of Voxel Space Parameters . 99

4.2 Identification of Voids in the Voxel Space . 107

4.2.1 Visibility Analysis . 108

4.2.2 Texture Analysis . 109

CONTENTS IX

4.3 Identification of Future Image Locations . 117

4.3.1 Weighting Function . 117

4.3.2 Fixed Pointing: Nadir . 121

4.3.3 Fixed Pointing: Off-Nadir . 127

4.3.4 Fixed Stare Point . 128

4.4 Proof of Concept . 132

4.5 Additional Datasets . 137

4.5.1 WASP: Downtown Rochester, NY Dataset . 137

4.5.2 WASP: Quarry Dataset . 140

4.5.3 CorvusEye: Downtown Dataset . 144

5 Conclusions 150

5.1 Voxel-Based Visibility Analysis . 151

5.2 Void Identification . 152

5.3 Future Image Location Identification . 154

5.4 Limitations . 155

6 Future Work 157

6.1 Generating Point Clouds . 157

6.2 Improving Scalability and Computational Efficiency 158

6.3 Dealing with Texturally Difficult Regions . 159

6.4 End-to-End Testing of Additional Datasets and Flight Patterns 160

6.5 Expanding Sensor Positions . 160

6.6 Developing Flight Lines . 161

6.7 Real-time Applications . 161

6.8 Using the Voxel Model as a Surface Model . 162

6.9 Rendering a Volumetric Model . 163

6.10 Fusing Multiple Modalities . 163

Appendices 164

A Data 165

A.1 WAMI . 165

CONTENTS X

A.2 CorvusEye 1500C . 168

A.3 WASP . 170

A.4 DIRSIG . 172

B Code 176

B.1 SfM Workflow . 176

B.2 Creating the Voxel Space . 177

B.3 Selecting a Subspace . 179

B.4 Predicting Future Image Locations . 180

B.5 Summary . 181

C Data Formats and Handling 182

C.1 Voxel Space File Format . 182

C.2 PLY Output Files . 183

C.3 Plane Map File Format . 184

D Tutorial: Creating Voxel Visualizations with Blender 185

D.1 Generalized Procedure . 185

D.2 Detailed Actions . 187

Bibliography 192

List of Figures

2.1 3D Workflow Block Diagram . 19

2.2 Full Scene 3D Reconstruction . 20

2.3 Skyline View of the Reconstruction . 21

2.4 Close-up Views of Points of Interest in the Reconstruction 21

2.5 Visible Voids in a Point Cloud . 22

2.6 Lack of Coverage from CMVS Image Removal . 24

2.7 Lack of Features in Texturally Flat Areas . 26

2.8 Alpha Shape Reconstruction . 29

2.9 Ball Pivoting 2D Illustration . 31

2.10 BPA Reconstruction . 32

2.11 Poisson Surface Reconstruction - Intuitive Illustration 33

2.12 Poisson Surface Reconstruction - Full Point Cloud 34

2.13 Poisson Surface Reconstruction - Close Up View . 35

2.14 Marching Cubes 2D Illustration . 37

2.15 Liepa et al Complex Hole-Filling Illustration . 40

2.16 Wang et al Hole-Filling Illustration . 41

2.17 Davis’ 2D Hole-Filling Illustration . 41

2.18 Davis’ 2D Hole-Filling Oblique Problem . 42

2.19 Ju’s Repair of Polygonal Models . 43

2.20 Sharf’s Context Based Surface Completion . 44

3.1 Surface Reconstruction of Planar Voids . 50

3.2 Surface Reconstruction of Complex Voids . 51

XI

LIST OF FIGURES XII

3.3 Surface Reconstruction of a Bridge . 52

3.4 Voxel Models of Simple and Complex Holes . 55

3.5 Voxel Traversal . 58

3.6 Detailed Incremental Voxel Traversal . 58

3.7 Ray-Box Intersection with Intersecting Ray . 60

3.8 Ray-Box Intersection with Non-Intersecting Ray . 60

3.9 Voxel Space Visualization in 2D with Ternary Classification System 64

3.10 Voxel Models of Simple and Complex Holes with Unsampled Voxels 65

3.11 Voxel Space Visualization in 2D with Labeled Boundaries 67

3.12 Building Shadow in Voxel Space . 68

3.13 Unsampled Voxel Visibility . 70

3.14 Determining Visibility of Unsampled Voxel Faces 72

3.15 Texture Analysis - Context in Voxel Space . 73

3.16 Texture Analysis - Image Context for ROIs . 74

3.17 Texture Analysis - WAMI Point Cloud . 75

3.18 Texture Analysis - Regions of Interest . 75

3.19 The Backward Approach in 2D . 84

3.20 The Backward Approach in 2D with Normals . 86

3.21 The Backward Approach in 3D . 87

3.22 The Forward Approach in 2D . 88

3.23 The Forward Approach in 3D . 89

3.24 Plane Map Generation Illustration . 93

3.25 Voxel Workflow Diagram . 94

4.1 DIRSIG Nadir Reference . 96

4.2 DIRSIG 3D Voxel Spaces . 97

4.3 Image Derived Voxel Space and Corresponding Point Cloud 100

4.4 Voxel Resolution Effect . 101

4.5 Voxel Resolution Effect - 3D . 102

4.6 Probability of Free Space Distributions . 103

4.7 Probability of Free Space Effect . 104

4.8 Probability of Free Space Effect - 3D . 106

LIST OF FIGURES XIII

4.9 Sample Pyramid in Voxel Face Resulting from the Ray-Tracing 107

4.10 Illustration of Pyramids Resulting from Ray Tracing 108

4.11 Histogram of the Number of Views in which Unsampled Voxel Faces were Visible 109

4.12 Visualization of Unsampled Voxel Centers Scaled by the Number of Views 110

4.13 Unsampled Voxel Centers Projected onto Imagery 111

4.14 Nadir View of WAMI Point Cloud . 112

4.15 Texture Analysis - Visualization of the Window Size Effect 113

4.16 Texture Analysis - Visualization of the Local Standard Deviation Threshold 115

4.17 Histogram of the Local Standard Deviation of Unsampled Voxel Faces 116

4.18 Illustration of Unsampled Voxels that Reproject Incorrectly 116

4.19 Incident Angle Occurrence Plot - WAMI . 117

4.20 Incident Angle Occurrence Plot - WASP . 119

4.21 Estimated Surface Normals for PMVS Points . 120

4.22 Probability of Free Space Distributions . 121

4.23 WAMI Voxel Space - Orthographic View . 122

4.24 Future Imaging Locations for Nadir Sensor - Standard Deviation Threshold . . . 123

4.25 Future Imaging Locations for Nadir Sensor - Maximum Camera Threshold 125

4.26 Histogram of Incident Angles Computed for a Nadir Pointing Angle 126

4.27 Visible Unsampled Voxels - Nadir Result . 126

4.28 Diagram of Off-Nadir Pointing . 127

4.29 Future Imaging Locations for Off-Nadir Sensor . 128

4.30 Visible Unsampled Voxels - Off-Nadir Result . 129

4.31 Future Imaging Locations for Fixed Stare Point Sensor 130

4.32 Effect of Area in Fixed Stare Point Configuration . 130

4.33 Visible Unsampled Voxels - Fixed Stare Point Result 131

4.34 Point Cloud Constructed using Half of the Original Imagery 134

4.35 Voxel Space Constructed from the Point Cloud using Half of the Original Imagery 135

4.36 Future Imaging Locations for Nadir Sensor, Half Voxel Space 135

4.37 Future Imaging Locations for Off-Nadir Sensor, Half Voxel Space 136

4.38 Visible Unsampled Voxels - Half Voxel Space . 136

4.39 WASP Downtown Point Cloud . 137

4.40 WASP Downtown Voxel Space . 139

LIST OF FIGURES XIV

4.41 Future Imaging Locations for Off-Nadir Sensor, WASP Downtown 140

4.42 Visible Unsampled Voxels - WASP Downtown . 141

4.43 WASP Quarry Point Cloud . 142

4.44 WASP Quarry Voxel Space - Side View . 142

4.45 Future Imaging Locations for Off-Nadir Sensor, WASP Downtown 143

4.46 Visible Unsampled Voxels - WASP Quarry . 144

4.47 CorvusEye Downtown Point Cloud . 145

4.48 CorvusEye Downtown Point Cloud - Side Views . 146

4.49 CorvusEye Downtown Voxel Space - Side View . 147

4.50 Future Imaging Locations for Nadir Sensor, CorvusEye Downtown 148

4.51 Future Imaging Locations for Off-Nadir Sensor, CorvusEye Downtown 148

4.52 Visible Unsampled Voxels - CorvusEye Downtown 149

6.1 Developing Flight Lines . 162

A.1 Raw WAMI Image Data . 167

A.2 CorvusEye Sample Imagery . 169

A.3 WASP Sample Imagery - Downtown Rochester, NY 170

A.4 Quarry Extent via Google Maps . 171

A.5 WASP Sample Imagery - Quarry . 171

A.6 DIRSIG Synthetic Imagery . 173

A.7 DIRSIG Minimum and Maximum Range Illustration 174

A.8 DIRSIG Truth Imagery . 174

A.9 Sample DIRSIG Point Cloud . 174

D.1 Blender - Delete Object . 187

D.2 Blender - Cycles Render . 187

D.3 Blender - Import . 188

D.4 Blender - Object Selection . 190

D.5 Blender - Material Attributes . 190

D.6 Blender - Render . 190

D.7 Blender - World . 190

D.8 Blender - Camera . 191

LIST OF FIGURES XV

D.9 Blender - Resolution . 192

D.10 Blender - Sampling . 192

List of Tables

3.1 Texture Analysis - Regions of Interest . 76

3.2 Texture Study - Number of Features for ROIs . 78

3.3 Texture Study - Average Gradient for ROIs . 79

3.4 Texture Study - Standard Deviation for ROIs . 81

A.1 Exelis WAMI Specifications . 166

D.1 Blender Navigation . 188

D.2 Blender View Points . 189

XVI

Chapter 1

Introduction

Advancements in modern computing have expanded the domains of research into areas pre-

viously considered to be too computationally intensive. One area that has benefited from such

advancements and seen rapid development in the past decade is the automated generation of

three-dimensional (3D) models from imagery. The photogrammetry community has been us-

ing aerial imagery for decades to develop topographic maps using stereo techniques, and more

recently the computer vision community has developed an interest in photo-tourism, using

Structure from Motion (SfM) techniques.

Image-based modeling techniques are of particular interest in an array of fields due to

their wide applicability and low cost. Autonomous navigation and guidance has benefited

tremendously from global positioning systems (GPS), however that is not available in all con-

ditions (e.g. indoors), making vision-based techniques an attractive alternative. Typical two-

dimensional (2D) segmentation techniques, such as thresholding, pixel clustering, and region-

growing, used for object segmentation and recognition could see significant improvements

with the inclusion of depth information. Other potential areas for application include image

mosaicking, photo organization, spatial and temporal tracking, and robotic hand-eye calibra-

tion, to name a few [1].

The objective of scene reconstruction methodologies is to automatically extract 3D struc-

ture from the imagery to obtain a complete model of a scene. SfM techniques usually result

in a point cloud, containing individual 3D point locations for a model. In most cases, a point

cloud will not suffice as a model as they are not directly usable in most 3D applications. The

1

CHAPTER 1. INTRODUCTION 2

point clouds themselves are converted to a surface model through a process referred to as sur-

face reconstruction. The reconstruction of surfaces from points is not a straightforward prob-

lem, as point sampling and spacing is often non-uniform, positions (and normals if available)

are noisy, and some regions are lacking data due to obscuration, accessibility limitations, and

textural challenges. Traditional surface reconstruction techniques will often fail in complex re-

gions where a point cloud is devoid of points, resulting either in a hole in the model or a poorly

estimated surface that is neither accurate nor aesthetically pleasing.

Voids exist in a point cloud where multiple views of an area were not included in the input

imagery, occlusion or heavy shadow blocked an area from clear view, texturally difficult areas

which fail to generate features or result in poorly matched correspondences, or an insufficient

baseline between images that resulted in poor triangulation. Developing methods to identify

the voids in the point cloud as well as methods for filling in these voids are of significant in-

terest. Fitting surfaces to the raw point cloud data or rasterizing the point cloud to identify

surfaces are popular approaches in surface reconstruction techniques, but as stated previously

these methods are not equipped to reconstruct heavily occluded areas that resulted in large

voids in the point cloud containing complex intersecting geometries.

When reconstructing structure from imagery, the resulting point cloud can only represent

part of the information. If a point is reconstructed from a particular image, it must be assumed

that there was a clear line of sight between the camera and the point, thereby introducing the

concept of free space. Point cloud representations are not equipped to represent the idea of

free space, but this can be achieved using voxel-based representation. Representing the point

cloud in a three-dimensional rasterized space will provide means to capitalize on the free space

idea as a way to identify voids in the point cloud.

In areas where voids are a result of occlusion or lack of coverage, it is reasonable to assume

that including images in the reconstruction where those areas were visible would result in an

improved reconstruction. In addition to identifying the voids, it is of interest to identify loca-

tions from which the voids could be seen, because inclusion of such images in a reconstruction

may in the voids in the initial point cloud. Additional imagery is not necessarily readily avail-

able to include in a reconstruction, particularly when specifying areas of interest. Therefore

it may be useful to provide potential imaging locations for the purposes of flight planning for

future image collections.

This work will focus on the development of algorithms to construct voxelized scene repre-

CHAPTER 1. INTRODUCTION 3

sentations from point cloud data, and to leverage the information available in the voxel space

to identify voids and potential future image locations.

1.1 Research Goals

As was previously stated, reconstructions of three-dimensional (3D) point clouds from multi-

view aerial imagery are readily obtainable, but the fidelity of these point clouds has not been

well studied, and voids often exist within the point cloud. Voids in the point cloud are present in

texturally difficult areas that failed to generate feature matches during the densification process

of reconstruction, as well as areas where multiple views were not obtained during collection or

a constant occlusion existed due to collection angles or overlapping scene. The goals of this

work are to be able to identify voids in point clouds, identify the type of void, and subsequently

identify suitable locations from which to image the void. Ideally, inclusion of these new images

in the 3D reconstruction would reduce the voids in the point cloud that are a result of lack of

coverage.

1.2 Objectives

1. Create a set of high frame rate, oblique synthetic image data with corresponding ground

truth for every pixel. DIRSIG software will be used to produce synthetic imagery of a

scene in addition to truth imagery with corresponding ground truth positions and nor-

mals from the model.

2. Generate 3D point clouds with high frame rate oblique imagery, both real and synthetic,

using an open source Structure from Motion (SfM) workflow.

3. Develop tools and algorithms to construct voxel maps from the point cloud data. It is

assumed that the point cloud data is a result of a specific workflow, and therefore has

corresponding camera coordinates that were used to reconstruct each point, registered

in the same coordinate system as the point cloud.

4. Identify voids in the point clouds using the voxel maps. By using collection geometry and

information derived from the point cloud, it is possible to detect unsampled voxels such

CHAPTER 1. INTRODUCTION 4

that voids can be identified.

5. Identify voids that were likely the result of texturally difficult areas. When determining

the best location to image the voids from to increase the fidelity of the 3D model, it is

important to recognize that texturally difficult areas will likely not benefit from more cov-

erage and therefore should have little impact in determining the best locations.

6. Generate maps that can be used to determine future aircraft imaging locations and point-

ing vectors. This is a six-dimensional problem that will be constrained using limitations

of airborne platforms. The maps themselves can then be used to find specific locations

and/or generate flight lines for future collections.

7. Evaluate the assumption that the predicted view would be beneficial to the 3D recon-

struction by verifying that it encompasses void voxels.

1.3 Scope and Limitations

Generation of 3D point clouds from imagery requires a high level of overlap between frames, in

addition to image baselines sufficient for reconstruction. The computer vision community has

posed the Structure from Motion problem in the framework of photo tourism, where the in-

put imagery is mined from internet photo collections, and the assumption is that the cameras

are uncalibrated with unknown locations. The resulting models are reconstructed in an arbi-

trary space. For the purposes of this research, the datasets will come from airborne platforms

equipped with a Global Positioning System (GPS) and Inertial Navigation System (INS) so that

a post-processing step can be applied to put the model in a fixed Earth-based coordinate sys-

tem. In addition it will be assumed that properties of the sensor, such as the focal length and

pixel pitch, are known. Use of the focal length and pixel pitch (or the focal pixels) is required

input to the SfM workflow that is used at RIT such that the recovered scene geometry is a met-

ric reconstruction, which differs from the real-world model by a similarity transform (rotation

and translation). For the purposes of this work, it will be assumed that a metric reconstruc-

tion is recovered from the SfM process and that a similarity transform can be used to place the

reconstruction in a fixed Earth-based coordinate system.

CHAPTER 1. INTRODUCTION 5

Voxel maps require large amounts of memory, depending on the resolution. It may be nec-

essary to limit the resolution of a voxel space based on memory capabilities of the systems

available, despite the fact that the voxel space may be capable of supporting smaller voxel sizes.

In addition, the models will be limited to cubic voxels to simplify calculations. Similarly, while

voxel maps will be created for the entire scene, subsequent steps may focus on a subset of the

scene, particularly for visualization purposes.

This work is based on the assumption that inclusion of more imagery in a 3D reconstruction

will result in a point cloud with fewer voids. While there is nothing fundamentally wrong with

this assumption, it is important to note the limitations of the 3D workflow used at RIT to auto-

matically generate point clouds from imagery. The 3D workflow leverages several well-known

computer vision algorithms, including Bundler (an algorithm to perform a bundle adjustment)

and CMVS (a Cluster-based Multi-View Stereo algorithm). Bundler performs a bundle adjust-

ment, but in some cases may reject images in the optimization if the resulting error vectors

become too large. CMVS clusters images in such a way that is intended to remove redundancy,

but the behavior of this algorithm is not well known, and it frequently removes large portions of

the input dataset. In addition, CMVS has a random component to it, resulting in the removal of

different images each time the algorithm is run, despite using identical parameters and image

datasets. Removal of Bundler and CMVS from the workflow is beyond the scope of this work.

Another objective of this work is to identify the void areas and subsequently identify voids

that were a result of texturally difficult areas, where a difficult area is a region in which it is diffi-

cult to obtain accurate image-to-image correspondences. This can be a result of homogeneous

regions, spatially repetitive textures, or other regions not well suited for feature detection and

matching. These regions will not benefit from the inclusion of more imagery in the reconstruc-

tion and as such should be identified prior to the future image location prediction stage. It

should be noted that it may be possible to identify such regions during the densification pro-

cess if all pixels were tested for matches such that each pixel could be scored, and the score

could then be used to quantify poorly matched regions. This is not easily achieved within the

PMVS framework and as such is beyond the scope of this work.

The final stage of the voxel-based workflow is to generate a map that can be used to deter-

mine future image locations based on a cost function. For the purposes of this work, the cost

function will be based on the number of unsampled voxels visible from a given location. Due

to the nature of the cost function, the predicted image location is not guaranteed to tie into

CHAPTER 1. INTRODUCTION 6

the current reconstruction and as such the predicted view may be vastly different from previ-

ously included views. It will be left up to the end user to tie the predicted view into the current

reconstruction.

Finally, the field of 3D reconstruction is rapidly developing and there are numerous meth-

ods available to generate point clouds from multi-view imagery. Innovations have been made

since the development of the 3D workflow used here such that the workflow may no longer

be state-of-the-art, but modifications and upgrades are beyond the scope of this research. In-

stead the focus will be on developing methods and techniques that address voids in a point

cloud, which could be applied to point clouds generated by other methods, provided that the

necessary camera reconstruction information is available.

1.4 Contributions to Knowledge

This research will provide methods to convert point cloud models to voxel spaces, identify voids

within the voxel space, and subsequently identify optimal viewing angles at which the voids can

be imaged.

Chapter 2

Background

The use of 3D models extends to a variety of applications including navigation, visualization

and animation. While models can be generated using computer-aided design (CAD) software,

it is difficult to achieve an accurate and realistic model of a complex scene or object. Thus

there is an interest in the photogrammetry and remote sensing community, as well as the com-

puter vision community, in 3D reconstruction of scene geometry from imagery with no a priori

knowledge of the world. This chapter is intended to provide the background information nec-

essary to understand the process of generating 3D point clouds from imagery, including post-

processing reconstruction techniques used to create surface models. References to external

sources are included throughout that explain processes and algorithms in greater detail.

2.1 Structure from Motion

One method of identifying objects within a scene and subsequently extracting information

about their structure is through analysis of their motion in a series of images; this process is

commonly referred to as Structure from Motion (SfM). SfM has its roots in photogrammetry,

but recent advancements have come from the computer vision community. As a result of this,

much of the SfM chain assumes little knowledge of the sensor or its position and the result-

ing structure is in a relative coordinate system. In general, there are three steps in the SfM

pipeline that leads to automated 3D reconstruction: (1) generation of image-to-image corre-

spondences, (2) estimation of relative geometry via bundle adjustment, and (3) dense recon-

7

CHAPTER 2. BACKGROUND 8

struction.

2.1.1 Image-to-Image Correspondences

Identification of image-to-image correspondences is a crucial aspect of solving for 3D geome-

try and has been well studied. The correspondences allow estimation of fundamental matrices,

which describe the relation between image stereo pairs and provide the necessary epipolar ge-

ometry for initial triangulation. A fundamental matrix is a homogeneous 3x3 matrix, described

by seven degrees of freedom, that relates image correspondences between stereo pairs. A 3x3

homogeneous matrix has eight independent ratios and therefore eight degrees of freedom,

however a fundamental matrix satisfies the constraint that the determinant of the matrixis zero,

thereby removing one degree of freedom. Prespective changes in an image are described by an

X Y Z rotation, X Y Z translation, and a scale factor, thereby achieving the seven degrees of free-

dom in the fundamental matrix. A strictly correlation-based approach to feature matching is

not suitable for SfM applications because it can only describe a two-dimensional translation.

Image-to Image correspondences are generated as a result of a three step process: (1) de-

tecting possible feature locations, (2) distinguishing individual features through use of a unique

feature descriptor, and (3) matching feature descriptors across images to obtain the desired

correspondences. The scale-invariant feature transform (SIFT) [2], currently one of the most

popular feature detectors in the community, accomplishes all three tasks and will be the basis

for discussion here. It should be noted that there are many other feature detectors available,

many of which are cited in the forthcoming sections. Use of other feature detectors is becom-

ing more common as there has been an increasing trend in the community to move away from

SIFT.

Feature Detection

The objective of detection is to identify locations such that the detector will reliably find the

same points of interest under varying viewing conditions. Detection of local interest points can

be traced back to corner detectors and the work of Moravec [3] and Harris [4]. These algorithms

are designed to detect image locations that have large gradients in all directions, and therefore

are not limited to identifying only corners, however they are not scale-invariant. Objects in the

world appear differently depending on the scale of the observation. If the objective is to de-

CHAPTER 2. BACKGROUND 9

scribe and relate these objects, the notion of scale becomes important. The idea of automated

scale selection was introduced by Lindeberg [5], based on the notion of scale space introduced

by Witkin [6]. Mikolajczyk and Schmid showed that extrema in the scale-normalized Laplacian

of Guassian produced the most repeatable features [7].

SIFT detects features using a cascaded filtering approach. Locations that are invariant to

scale change of an image are determined by searching for features across all possible scales,

where the scale space of an image is given by the convolution of the image and a variable scale

Gaussian kernel. Stable feature locations are found using scale space extrema in a difference-

of-Gaussian function convolved with the image. The difference-of-Gaussian, easily computed

by subtracting adjacent image scales, is a close approximation to the scale-normalized Lapla-

cian of Gaussian required for true scale invariance [2]. Local minima and maxima in the difference-

of-Gaussian images identify possible candidate locations. A detailed model is fit at each candi-

date location, and candidates are selected based on measures of stability. For a more in-depth

explanation of how the SIFT algorithm chooses candidate pixels, refer to Lowe [2].

Other feature detectors include SURF (Speeded Up Robust Features) [8], FAST (Features

from Accelerated Segment Test) [9], and MSER (Maximally Stable Extremal Regions) [10], though

this list is far from exhaustive.

Feature Descriptors

Once a stable set of feature locations has been found, the locations must be characterized with

a descriptor that will be invariable under a variety of viewing conditions. A wide range of de-

scriptors have been proposed, though it has been shown that distribution-based descriptors of

the region of interest in the feature’s local neighborhood outperform other methods [11]. The

SIFT descriptor is distribution based and its features have been shown to be invariant to image

rotation and scale in addition to being robust to a range of affine transforms, the addition of

noise, as well as some change in illumination [2].

SIFT achieves rotation invariance by assigning a dominant orientation to a feature such

that the descriptor is developed relative to this orientation. The scale of the feature is used to

select a Gaussian smoothed image in which to perform computations so as to achieve scale

invariance. The gradient magnitude and orientation are computed for each pixel and an ori-

entation histogram is formed. The orientations are weighted by their gradient magnitude and

CHAPTER 2. BACKGROUND 10

a Gaussian-weighted circular window, and the highest peak in the histogram defines the dom-

inant orientation of the feature. For locations with multiple dominant peaks, multiple features

are created.

To generate the feature descriptor, the image gradient magnitudes and orientations are

sampled around the feature location. The orientations are rotated relative to the dominant

orientation computed previously. Orientation histograms summarizing subregions around the

point of interest are then computed in a manner similar to the one described previously. Typical

SIFT features are 128 elements in length. The complexity of the SIFT descriptor can be varied

by changing the number of orientations in the histogram and the size of the sampled regions.

Though larger descriptors will theoretically result in better discrimination between features,

they will also be more sensitive to occlusions and perspective changes. Finally, the feature de-

scriptor is normalized to unit length in order to account for constant changes in brightness or

contrast and the influence of large gradient magnitudes is reduced by thresholding.

Mikolajczyk and Schmid provided an extension to the SIFT descriptor by changing the loca-

tion grid and reducing the size with principle components in the Gradient Location and Orien-

tation Histogram (GLOH) descriptor [11]. The DAISY descriptor replaces the weighted sums of

gradient norms by recursive convolutions with oriented derivatives to reduce computational

requirements such that a descriptor can be efficiently generated for every pixel in an image

[12]. DAISY is intended for dense wide-baseline matching and therefore does not employ a

detection stage. Finally, the SIFT descriptor is invariant to four of six parameters of an affine

transform, and ASIFT or Affine-SIFT was designed to extend SIFT such that full affine invari-

ance is achieved [13].

Feature Matching

Once features and descriptors have been computed, the next step is to match feature descrip-

tors across images such that the desired image-to-image correspondences are finally obtained.

There are several methods that could be employed to match features. Simple metrics such as

Euclidean distance, Mahalanobis distance, and spectral angle matching can be employed such

that two features are considered matches if the distance or angle between them is less than

some predetermined global threshold. These methods require an exhaustive search and would

likely result in a high number of false matches due to the global thresholds applied. In addition

CHAPTER 2. BACKGROUND 11

to such brute-force techniques, model-fitting algorithms such as random sample consensus

(RANSAC)[14] can be employed.

The method of matching employed by SIFT is based on a Euclidean distance, but adds an-

other level of complexity by comparing the distance of the closest neighbor to the distance of

the second closest neighbor in order to reduce the number of incorrect matches. Due to the

high dimensionality of the space, for false alarms it is likely that there are several other matches

within a similar distance. Using this logic, the second match can be thought of as providing an

estimate of the density of false matches while also identifying feature ambiguity [2]. If the clos-

est neighbor and second closest neighbor are the same distance from the feature of interest,

the ratio of the distance of the second closest neighbor to the distance of the first closest will

be close to unity. A threshold can be implemented such that only feature pairs where this ra-

tio is below the threshold are considered matching and those above the threshold are rejected

as potential matching pairs. Lowe suggests rejecting all matches in which the distance ratio

is greater than 0.8 to eliminate 90% of false matches while discarding less than 5% of correct

matches [2].

2.1.2 Bundle Adjustment

Image-to-image correspondences can then be used to define the projective geometry between

two scene views, known as epipolar geometry, through use of what is known as the fundamen-

tal matrix [15]. Though the fundamental matrix is dependent on intrinsic camera parameters

and relative pose, it can be computed from corresponding scene points without this knowl-

edge. A series of fundamental matrices provides the necessary epipolar geometry for cursory

triangulation, resulting in a series of equations that relate the image coordinate system to the

world coordinate system. Given these initial estimates, refinement of the camera projection

matrices is critical to ensuring accurate relative orientation and consistent triangulation. This

refinement is accomplished using a bundle adjustment.

Bundle adjustment refers to the large non-linear least squares problem that is solved in a

feature-based SfM algorithm. The term is utilized both in the photogrammetry community,

where it was conceived in the 1950s [16], and the computer vision community, where it is now

regarded as the gold standard for performing 3D reconstructions from correspondences [15].

The objective of a bundle adjustment is to estimate the camera projection matrices and 3D

CHAPTER 2. BACKGROUND 12

scene points to obtain an optimal reconstruction. This is achieved by minimizing the reprojec-

tion error between the observed and predicted points, expressed as a sum of squares of non-

linear real-valued functions [17]. This minimization is achieved using non-linear least squares

techniques, of which the Levenberg-Marquardt (LM) algorithm has been found to be most suc-

cessful [17].

The LM algorithm iteratively linearizes the function in the neighborhood of the current

estimate to solve what are known as the normal equations. However, due to the nature of the

bundle adjustment, this can become an extremely large minimization problem. Consider a

reconstruction of n 3D points over m views. Given that each 3D point has three degrees of

freedom, and each camera matrix has eleven degrees of freedom, this gives rise to a problem

with 3n + 11m parameters. The size of the Jacobian and large matrix factorizations required

by the LM algorithm become more complicated and costly as m and n grow. However there is

a sparse block structure in the normal equations matrix due to the lack of interaction among

parameters, and considerable computational benefits can be gained by taking advantage of

this structure.

Bundler, a software package for iterative bundle adjustment written by Snavely [18], lever-

ages SBA, a package for generic sparse bundle adjustment written by Lourakis [17], to obtain

camera matrices and a sparse point cloud. Bundler works to find geometrically consistent

matches between image pairs by computing a fundamental matrix from matching features us-

ing a RANSAC algorithm [14]. Features are organized into tracks by matching across multiple

images. Camera parameters and 3D locations for each track are recovered using an incremen-

tal bundle adjustment approach to add one camera at a time. The initial pair is chosen such

that it has a large number of matches and a large baseline. Large SfM problems are prone to

getting stuck in bad local minima and the incremental approach helps to avoid this problem

[18]. Relative position of the cameras is estimated from the images and requires no external

information. Cameras are added one at a time, adding ones that have observed the most previ-

ously estimated tracks first. Extrinsic parameters are estimated using a direct linear transform

and 3D points are estimated with triangulation [15]. SBA minimizes the objective function at

every iteration, and the process is repeated until there are no cameras remaining.

Snavely’s work successfully demonstrated the application of SfM techniques on real world

photo collections from internet sources [19]. These photo collections offer challenges as they

are taken from many different cameras with different resolution, levels of zoom, illumination,

CHAPTER 2. BACKGROUND 13

time of day, weather conditions, etc. This differs from the parameters of an aerial reconstruc-

tion in which images are taken in sequence from the same camera source, often with position

and orientation information readily available. Admittedly, it may be possible to leverage the

additional information available with an aerial dataset, however, Bundler is widely used in the

community and was implemented for convenience.

2.1.3 Dense Stereo Matching

The bundle adjustment process results in an estimation of the camera matrices in addition

to a sparse point cloud. While the sparse point cloud does contain scene structure, a denser

version is often desired for surface reconstruction to obtain a realistic model. Standard multi-

view stereo (MVS) algorithms can be applied to achieve a dense reconstruction of the desired

object or scene.

These methods generally require two different inputs, the images themselves and the cam-

era pose, estimated precisely by a SfM algorithm such as the bundle adjustment described pre-

viously. MVS algorithms can be organized into four categories based on their underlying ob-

ject models: voxel-based models, deformable polygonal mesh models, depth map models, and

patch-based models. The following discussion will focus on the patch-based models [20, 21],

but it should be noted that probabilistic voxel modeling [22] and semi-global image matching

[23] have also shown promise and should be explored in future endeavors.

Cluster-based Multi-View Stereo (CMVS)

As the number of images to be used in a 3D reconstruction grows, it is no longer feasible to

use all available images simultaneously to construct a model and it becomes necessary to use

a cluster-based method to achieve scalability in dense reconstruction. View selection can be

used to decompose a set of images into clusters, a MVS algorithm can then be used to recon-

struct dense 3D points and the resulting solutions can be merged into a single model. The

Cluster-based Multi-View Stereo (CMVS) algorithm [20], written by Furukawa, accomplishes

this task.

There are three constraints that need to be satisfied to solve the overlapping view cluster-

ing problem: (1) redundant images must be excluded to ensure compactness, (2) a size con-

straint must be enforced to ensure that clusters are small enough for reconstruction, and (3)

CHAPTER 2. BACKGROUND 14

reconstructions from the clusters must result in a minimum loss of detail in comparison to

that which can be obtained using the full image set to ensure coverage [20]. It is important that

there is some amount of overlap in the clusters because a strict partition of the imagery would

result in undersampling surfaces near cluster boundaries. Redundant images in the set are ex-

cluded to reduce the noise that will result from an insufficient baseline between images, as well

as to improve computational efficiency. The algorithm implicitly incorporates image quality

because poor image quality will result in fewer SfM points and therefore low quality images are

more costly to include given the imposed coverage constraint.

The algorithm begins by minimizing the number of SfM points by merging points with

neighbors. Each image is then tested to see if the coverage constraint is satisfied without the

image; images removed in this step are removed permanently to speed processing in other

steps. Image clusters are then divided if they do not satisfy the size constraint and then images

are added back to the clusters if the coverage constraint is not satisfied; this process is repeated

until the size constraint is satisfied.

Patch-based Multi-View Stereo (PMVS)

Once the images have been divided into clusters using CMVS, the Patch-based Multi-View

Stereo (PMVS) algorithm [21] is used on each cluster to generate a dense point cloud. Patch-

based methods suffice for a point-based rendering such as a point cloud, but will require post

processing to turn the point clouds into a mesh model if desired.

Images are associated with a regular grid of pixel cells and the objective of the algorithm

is to reconstruct at least one patch in every image cell. In this case, a patch is a local tangent-

plane approximation to a surface that is fully described by its center, unit normal vector, and

the reference image in which the patch is visible [21]. The reconstruction process is achieved

by initial feature matching, followed by a repetitive expansion and filtering operation designed

to increase the density of the model and remove erroneous patches.

Initial features are detected in the images using both difference of Gaussians and a Harris

corner detector. For each detected feature, a set of features is collected within other images

that lie within two pixels of the corresponding epipolar lines and a triangulation is performed

to obtain the associated 3D points. These features are considered potential patch centers. It

is assumed a patch is visible in an image if the angle between the camera axis and the patch

CHAPTER 2. BACKGROUND 15

normal is less than a specified threshold angle. If a specified number of images exist with low

photometric discrepancy, then the patch generation is deemed a success. Once a patch has

been reconstructed and stored, all the features in the cell are removed and not used again.

Once the initial patches are created, then an expansion takes place where the objective is

to reconstruct at least one patch in every image cell. A set of neighboring image cells are iden-

tified for a given patch and new patch candidates are generated. The new patches are filtered

and a visibility constraint is enforced to eliminate erroneous patches and incorrect matches.

The color and normals of matching patches are compared and discrepancies are indicative

of incorrect matches. The expansion and filtering processes are iterated three times to make

patches dense and remove outliers. Certain parameters and thresholds are loosened after each

iteration. Once the expansion and filtering is complete, the result is a dense 3D point cloud. It is

important to note that the particular implementations of the bundle adjustment and multiple-

view stereo algorithms used require no input beyond initial imagery, and therefore the scene is

reconstructed up to a projective ambiguity with respect to the world coordinate system.

2.1.4 Geoaccurate Transformation

The models generated through a typical SfM process cannot be used directly to extract pre-

cise geographic measurements without additional information. Many SfM applications use

imagery available on the internet that has been tagged with geographic location data. With

imagery captured from an airborne platform equipped with a global positioning system (GPS)

and inertial navigation system (INS), position and orientation information is available within

the image metadata. The position and orientation information from GPS/INS systems, though

not without noise, is often much more reliable than that associated with most internet photo

collections.

While it may seem that triangulation from existing metadata and the physical sensor model

will yield the desired results, this approach will likely fail due to large triangulation errors as

a result of uncertainties in the data, even with an initial bundle adjustment [24]. Similarly,

using existing metadata to initialize a bundle adjustment such that the resulting solution is

in the desired coordinate system will likely result in a poor model due to the mixing of image

and sensor based geometries [24]. Instead, geolocation can be performed as a post-processing

step, such that the previously discussed algorithms can still be leveraged to obtain dense point

CHAPTER 2. BACKGROUND 16

clouds.

In many practical SfM processes, including Bundler [25], intrinsic camera parameters (i.e.

focal length, pixel pitch, and sensor size) are used such that the resulting model is a met-

ric reconstruction, where metric properties such as the angles between lines and ratios of

lengths are preserved [15]. A metric reconstruction and an absolute reconstruction in the

world-coordinate system differ by a rotation, translation, and uniform scale factor and thus

can be described by a similarity transform with seven degrees of freedom [26].

In general, there are two assumptions made to obtain a geoaccurate model: (1) both the

SfM reconstruction and the real world can be considered metric reconstructions, and (2) the

difference between the two can be modeled by a similarity transform. It should be noted that

a fully metric reconstruction is not always obtained from the SfM approach [18]. In such cases,

the arbitrary coordinate system of the reconstruction and the desired fixed earth-based coordi-

nate system will differ by more than a similarity transform, and therefore an affine or projective

transformation may be necessary to put the SfM reconstruction in the desired space.

The similarity transform can be calculated using a set of known corresponding points be-

tween the two coordinate systems by first computing the scale, then the rotation, and finally

the translation. This method is sensitive to noise in the correspondences and could benefit

from a model fitting method that is robust to outliers such as RANSAC [14].

Traditional photogrammetry approaches would call for ground control points to compute

the similarity transform, but in the absence of ground control points other methods to esti-

mate the mapping must be employed. The simplest registration method uses the estimated

camera centers from the SfM process as the set of points from the metric coordinate system,

and the corresponding GPS located camera centers as the points from the world coordinate

system. This is the method most commonly used in the computer vision community, but it is

sensitive to noise in the GPS locations. Additional information can be used to further refine

the transform, such as the digital surface models used by Wendel et al [27] or the Google Street

View imagery and Google Earth models employed by Wang et al [28]. The high-fidelity esti-

mates of the position and orientation provided by GPS/INS systems on airborne platforms as

well as complete knowledge of the ground-to-image function allows for a simpler approach to

georegistration, presented by Walvoord et al [24].

For the purposes of this work, the GPS camera center approach will be used. In future

endeavors, this could easily be substituted for a more complex method.

CHAPTER 2. BACKGROUND 17

2.1.5 Accuracy and Completeness

Automated scene reconstruction from imagery is an inherently under-determined problem.

While the state of the art in 3D reconstruction is rapidly improving, there is a noticeable lack of

quality metrics available for quantitative comparisons of point clouds. The Middlebury bench-

mark dataset and corresponding qualitative evaluation was the first of its kind for multi-view

stereo algorithms [29]. Calibrated image datasets were collected in addition to 3D ground truth

models. Various reconstruction methods were compared to the ground truth models and eval-

uated for accuracy, how close the reconstruction was to the truth, and completeness, how much

of the truth was modeled by the reconstruction. However, the study was limited in scope and

explicitly stated it did not consider SfM methods [29].

Often point density or completeness metrics are used as a method of comparison, or even

simply the number of points in a model. However, there are no industry standards, and various

definitions for such metrics exist due to the fact that the definitions of accuracy and complete-

ness are application dependent. As such, there is still a heavy reliance on visual inspection of

the point clouds. In addition, while a variety of techniques to perform georegistration exist,

researchers have begun to question the accuracy of these methods.

Many have taken to using some type of ground truth as a means for accuracy assessment

of the georegistered model. Neitzel et al. [30] evaluated the point density and completeness

of resulting SfM models, in addition to evaluating the accuracy of georegistration using error

residuals between survey points and the corresponding points in the SfM georegistered model.

Crandall et al. [31] used geotags from consumer GPS (e.g. iPhone 3G) to seed their bundle

adjustment, and compared the results with highly accurate camera pose information collected

as ground truth. Hudzietz et al. [32] compared known path distances to the corresponding

measured path distances in the generated models. Generating ground truth using 3D range

scanners is another popular method for accuracy assessment. The Middlebury dataset [29]

used such a method to generate the ground truth models. Koutsoudis et al. [33] also took this

approach, using a single structure as a test case to evaluate readily available commercial SfM-

based software packages.

While using ground truth is a valid approach, sources of error within the SfM chain itself

cannot be isolated. Nilosek et al. [34] presented a technique to assess the accuracy of SfM

models using a synthetic dataset such that sources of error could be separated. It was con-

CHAPTER 2. BACKGROUND 18

cluded that there are two major sources of error in the geo-accurate SfM process: the georeg-

istration process itself (noise associated with camera pose information) and the SfM process

(inaccurately matched features resulting in error in triangulation).

With regards to completeness, the quality of the dataset available largely determines the

extent to which 3D information will be able to be extracted. Multiple views of each part of a

scene must be present in the dataset in order to have a chance at reconstruction. This type

of overlap has been well studied in the photogrammetry community, particularly with aerial

photography and the construction of digital elevation maps. With aerial photography, overlap

can be built into flight lines and/or the data acquisition rate, though this rate is aircraft and

sensor dependent. Typical near-nadir aerial photography is flown with 60 percent forward lap

and 30 percent side lap. While intuitively it may seem that reconstructions would increasingly

improve with more overlap and more photographs, this is not the case. The base-to-height ratio

of the aerial collection has a significant impact on the elevation accuracy that can be achieved

with a model.

2.1.6 Datasets

The computer vision community has more of a focus on photo-tourism and as such has em-

ployed methods for mining internet photo collections, such as those from Google and Flicker

[18]. One of the goals of this area of study is to allow for virtual tourism of the world’s most

interesting landmarks; an example of this work is the “Building Rome in a Day” project [35].

Small scale datasets are also available (e.g. the Middlebury multi-view datasets [29]).

While internet photo mining and ground-based systems present interesting problems, they

are not the only type of imagery used in 3D reconstruction. Researchers have also been taking

advantage of aerial photography for the purposes of constructing digital elevation maps and

large scale 3D models. RIT released an aerial dataset to the community that was flown with

90 percent overlap for the purposes of evaluating image collection requirements for 3D recon-

struction [36].

For the purposes of this research, the focus will be on high frame-rate airborne imagery

with significant overlap. Detailed information about the specific datasets used is located in

Appendix A.

CHAPTER 2. BACKGROUND 19

• Feature
extraction

• Feature Matching

SIFT

• RANSAC

• 5 Point Pose
Estimation

• SBA

Bundler
• Removal of

redundant images

• Clustering

CMVS

• Patch based
Multi-view Stereo
reconstruction

PMVS
• Transformation to

the GPS
coordinate
system

Gtrans

Image Correspondences

Camera Matrices and Sparse
3D Point Cloud

Options Files

Images

Point Cloud

Dense 3D Point Cloud GPS Info

Figure 2.1: A block diagram of the 3D workflow used at RIT to develop dense point clouds from multiple-
view imagery. This workflow is a combination of several well known, open-source software packages from
the computer vision community, with an additional post-processing step to place the point cloud in a
geoaccurate coordinate system.

2.1.7 Software

At this point, it seems appropriate to discuss specific software packages available for 3D re-

construction. Due to the heightened level of interest in the field, a collection of open-source

software has emerged from the community that can be put together to form a workflow to ex-

tract 3D structure from multi-view imagery.

The workflow used to generate dense 3D point clouds at RIT is a combination of several

well known software packages. Image correspondence information is generated using a GPU-

accelerated version of SIFT, written by Changchang Wu [37]. Sparse bundle adjustment is then

performed by Bundler, written by Noah Snavely [25]. The optimized camera information is

passed through CMVS, to remove redundant images and perform clustering, and then PMVS

to generate a dense 3D point cloud; both CMVS [20] and PMVS [21] are written by Yasutaka

Furukawa. Finally, the GPS/INS information is used to calculate a similarity transform that

places the point cloud in a fixed earth-based coordinate system; this code utilizes the simple

camera center approach discussed in Section 2.1.4 and was written in house by David Nilosek

[38]. The workflow is shown as an end-to-end process in Figure 2.1.

Though typically used in the computer vision community on close range photo collections,

CHAPTER 2. BACKGROUND 20

(a) Reconstruction (b) Rochester, NY [39]

Figure 2.2: Full scene reconstruction of downtown Rochester, NY using 48 WAMI images, and an aerial
image from Google maps for visual comparison.

this workflow was used initially at RIT to test its modeling capabilities using nadir-looking im-

agery from airborne platforms. From there, the scope was expanded to verify the workflow per-

formance on high frame-rate oblique imagery from airborne platforms. Images from the Exelis

Wide Area Motion Imagery (WAMI) system were used to generate a point cloud, shown here to

demonstrate the SfM capabilities of the workflow. A detailed description of the WAMI sensor

and imagery is available in Appendix A. The imagery used to generate this point cloud covered

approximately 4 minutes of flight time over 477 images, completing just over one full rotation

in a circular pattern with a fixed stare point around downtown Rochester, NY. The high frame

rate achieves a significant overlap and the image frame is large; to reduce the computational

load, every tenth frame was selected in the subset of 477 images, giving a separation of 5 sec-

onds of flight time between images and a total of 48 images to be used for the reconstruction.

The 5 seconds in flight time results in an estimated 90% overlap between the imagery. Due to

the circular flight pattern, there is no side-lap to estimate, but there is an additional rotational

component between consecutive images.

The full scene reconstruction, containing over two million points, is shown in Figure 2.2

along with an aerial image from Google Maps of the same region for comparison purposes.

The Genesee river is easily discernible, defined by a lack of points, and the highways that loop

CHAPTER 2. BACKGROUND 21

Figure 2.3: Reconstruction of the Rochester, NY skyline as compared to an image of the city skyline [40].

Figure 2.4: Top Left: City view. Top Right: Fredrick Douglass bridge. Bottom Left: Monroe County Civic
Center and Blue Cross Arena. Bottom Right: Chase building.

around the city are also perceptible. Knowledge of the city may reveal other details at this high

level, such as the Blue Cross Arena, the Riverside Convention Center, and the Fredrick Douglass

Bridge that crosses the Genesee river on the inner loop (I-490).

A more detailed view of the reconstructed city skyline is shown in Figure 2.3, along with

a comparison image for reference. The major difference in this reconstruction using oblique

imagery, as opposed to previous reconstructions with only nadir imagery, is that the sides of

buildings in the scene are reconstructed because they were visible in the imagery when previ-

ously they were not. More detailed views of the point cloud are shown in Figure 2.4.

CHAPTER 2. BACKGROUND 22

Figure 2.5: View of the reconstruction that clearly depicts some of the voids in the point cloud. Particular
areas of interest are labeled for further discussion.

2.2 Voids in Point Clouds

The results of the SfM workflow shown in Section 2.1.7 are promising, though not without im-

perfection. Voids in the point cloud, areas that lack points and appear to be missing informa-

tion, are readily apparent by visual inspection. Certain voids, such as small holes in surfaces,

may be easy to fill using a few basic assumptions and known surface reconstruction and/or

hole filling algorithms, discussed in Sections 2.3 and 2.4 respectively. The problem is with larger

voids, particularly those present in the large point clouds generated from aerial imagery, as they

can contain multiple surfaces and are not as easily filled.

Before discussing methods for filling the voids, it is important to develop an understanding

for why they exist. To illustrate this, a view of a point cloud showcasing some of the voids is

shown in Figure 2.5. Note that this is the same reconstruction that was shown in Section 2.1.7.

There are small holes throughout the model, as well as the larger, more obvious, holes. A hu-

man observer is also able to discern areas where building walls are missing (two such walls are

denoted by the arrows labeled A and C). The river, noted by the arrow labeled B, is distinguished

by a distinct lack of points.

There are many potential reasons for the voids in the point cloud. The most obvious reason

CHAPTER 2. BACKGROUND 23

is that multiple views of an area were not included in the input imagery, or a constant obscu-

ration was present. Voids can also be a result of texturally difficult areas that resulted in poor

image correspondences, an insufficient baseline between images that resulted in poor triangu-

lation, or mismatched image correspondences that resulted in large triangulation errors.

2.2.1 Lack of Coverage

First consider the problem of lack of coverage. As stated previously, this is one of the most

obvious reasons for a void in the point cloud because an area that was not present in the input

imagery cannot possibly be reconstructed. A similar case can be made for constant obscuration

resulting from overlapping geometries. There needs to be a clear line of sight between the

camera and the area of interest, and the area must be visible in a minimum of three views in

order to have a chance at reconstruction.

The void labeled A in Figure 2.5 is an example of lack of coverage. In the particular sequence

of images used, that building rotated out of the frame multiple times, such that only three sides

of the building were ever visible. The void labeled C in Figure 2.5, at first glance may appear

to be the result of constant obscuration, as the building is surrounded by taller structures. The

original input images from the reconstruction, cropped to feature the building of interest, are

shown in Figure 2.6. The images clearly capture all sides of the building, albeit at a steep an-

gle in some cases, but there are multiple views of each side of the building. However, due to

the algorithms used in the workflow, particularly the CMVS algorithm, not all 48 initial images

were used in the final dense reconstruction performed by the PMVS algorithm. Those image

highlighted in green in Figure 2.6 were used, and those highlighted in red were flagged as re-

dundant images and removed from the set. When considering only those views in green, there

are not enough views of the particular portion of the building that is missing for it to have been

reconstructed.

CHAPTER 2. BACKGROUND 24

Figure 2.6: The set of 48 input images used in the reconstruction in Section 2.1.7, cropped to feature build-
ings of interest in the downtown region. Images highlighted in green were used in the final dense recon-
struction by PMVS, and image highlighted in red were removed by the CMVS algorithm and not included
in the final reconstruction.

CHAPTER 2. BACKGROUND 25

2.2.2 Texturally Difficult Regions

Now consider the case of texturally difficult regions in the imagery. A texturally difficult re-

gion can be a homogeneous region that fails to generate features, but it can also be a region of

repetitive texture that results in non-unique features that are not easily matched. Feature de-

tection and matching is a crucial component of reconstruction, and it fails in two ways on such

surfaces. First and foremost, these surfaces may not be particularly interesting with respect to

texture and/or gray-level gradients and therefore may fail to generate features. Consider the

river, noted by the absence of points in the reconstruction, labeled B in Figure 2.5. Though

present in every input image, the river is a large homogeneous region with few points of inter-

est. The SIFT algorithm, discussed in Section 2.1.1, was run on one of the WAMI images used

for reconstruction. Peaks of the difference-of-Gaussian scale space were filtered using differ-

ent thresholds to remove those that were too small. The feature locations were displayed on

the image and the results are shown in Figure 2.7. Note that there are fewer features in the

river than anywhere else in the image, even before a threshold is applied (indicated by the 0.0

threshold image). As the threshold increases, the feature locations in the river are the first to

disappear. In some sense, this is indicative of the stability of the features themselves, as more

stable features will have larger peaks.

The stability of a feature leads to the second reason for failure, and that is in the match-

ing. Features need to be stable in the sense that they will be generated across multiple views

such that there is at least a chance of finding a match. Not only does a feature need to be

stable, it also needs to be unique. Feature descriptors with multiple potential matches are dis-

carded. Because texturally flat surfaces are not particularly interesting, it is possible that the

features generated across the surface will be too similar to one another such that there are no

stable and unique matches. The same idea can be applied to regions with spatially repeating

patterns, again because there is not a way to distinguish one area from another. Regions that

may be texturally repetitive could include geometric repetitions, such as architectural design

on structures, but can also include more organic repetitions, such as regions of trees, grass, etc.

Saponaro et al.[42] implemented an approach to fill in holes in SfM point clouds that re-

sulted from textureless regions using Shape from Shading (SfS) techniques. SfS determines the

shape of an object, up to scale, from a single image and performs better than SfM in textureless

regions. Regions that lack texture often still contain shading information that varies smoothly,

CHAPTER 2. BACKGROUND 26

(a) 0.0 (b) 0.5 (c) 1.0 (d) 1.5

Figure 2.7: Feature detection performed on a WAMI image, using the indicated threshold to filter the peaks
that were too small; feature locations are labeled in green. Images generated using VLFeat [41].

which is what SfS techniques use to determine object shapes. The proposed approach uses a

SfS based method, known as gradient constrained interpolation, to fill in holes in SfM point

clouds. The work used standard SfM algorithms, and successfully filled in holes in textureless

regions, focusing on icescapes in particular, which can be difficult to reconstruct using SfM

alone.

2.3 Surface Reconstruction

In general, the objective of 3D reconstruction is a complete model of the object and/or scene.

Point cloud models, including those resulting from SfM methods discussed previously, are not

directly usable in most 3D applications, rather the models are made of geometric primitives.

These geometric primitives are extracted from the point cloud automatically to obtain a sur-

face model through a process commonly referred to as surface reconstruction. Reconstruction

of surfaces from points is not a straightforward problem. Point sampling and spacing is non-

uniform, positions (and normals if available) are noisy, and some regions are lacking data due

to obscuration and accessibility limitations, regardless of application. Given these issues, sur-

face reconstruction algorithms are designed to infer the topology of the unknown surface, while

accurately fitting but not over-fitting or under-fitting the noisy data.

The most popular surface reconstruction techniques can be classified as geometric and im-

plicit methods. Geometric surface reconstruction methods are proximity-based methods that

employ mechanisms such as Delaunay triangulation (e.g. alpha shapes [43]) and region grow-

ing (e.g. ball pivoting [44]). These techniques tend to leave holes in undersampled regions,

particularly ones dependent on balls and shapes as it can be difficult to find a radius that will

CHAPTER 2. BACKGROUND 27

bridge holes without bridging the fine surface details of the model. Implicit methods are by

far the more popular methods. These methods generally produce hole-free models, but have

difficulty with surfaces that have boundaries, as they will often interpolate gaps or extend the

surface across boundaries. Poisson surface reconstruction is an example of an implicit poly-

nomial fitting algorithm [45]. There are also volumetric methods that are often used as part of

reconstruction and hole-filling algorithms (e.g. marching cubes [46] and dual contouring [47]).

In general, these algorithms cannot handle a set of unorganized points directly, but require that

the data is converted to a volumetric representation on a regularly spaced grid.

It is important to address the idea of sampling density in reconstruction. Given adequate

sampling density, a topologically consistent surface can be constructed, as proven by Amenta

et al [48] and others. Intuitively, the density demands will vary based on the complexity of

a surface, as smooth surfaces can be reconstructed with fewer samples. In the point cloud

data of interest here, the sampling density varies greatly across the dataset. Texturally rich and

distinctive areas result in a dense sampling of points, whereas texturally difficult areas result in

few points due to the nature of the feature detection and matching algorithms employed in the

dense stages of reconstruction. In addition, the holes in the point cloud present an additional

challenge for reconstruction.

Surface reconstruction techniques are often application specific, designed to address a par-

ticular type of data. Some algorithms focus on ordered datasets, such as those that would come

from a range scanner, and other focus on unorganized datasets, such as those that may result

from SfM techniques. In addition, some algorithms simply require the points as input, while

others require additional information such as surface normals. As the surface reconstruction

problem grows and expands, it becomes more apparent that reconstructing the entirety of a

surface (particularly considering large point clouds over large surface areas) may not be the

best approach. Assuming that individual buildings can be extracted from a larger point cloud,

Zhou et al [49] present a method just for reconstructing buildings. It is not difficult to surmise

that multiple algorithms may be necessary to reconstruct a single scene, as some algorithms

may perform well with manmade structures, and others with more organic materials.

Due to the constant evolution and rapid expansion of the field, this is not an exhaustive

review of the field of surface reconstruction. Rather, the following is a review of common re-

construction algorithms, designed to provide a sampling of the different approaches. More

specifically, it is designed to illustrate why it may not be feasible to apply these algorithms to

CHAPTER 2. BACKGROUND 28

the types of point clouds being addressed here, particularly because of the non-uniform sam-

pling and large gaps in the data.

2.3.1 Alpha Shapes

Alpha shapes are a generalization of the convex hull of a point set. In mathematics, the convex

hull of a point set is given by the smallest convex set that contains the points, where a set is

considered to be convex if every line segment that joins two points in the set, is also within the

set. Every convex hull is an alpha shape, but not every alpha shape is a convex hull.

Let S ∈ R3 be a finite set of points, and α ∈ R where 0 ≤ α ≤∞. When α =∞, the α-shape

and convex hull are the same, but asαdecreases, theα-shape will develop cavities, tunnels, and

holes as the shape molds itself to the point set. Consider the α-shape where α=∞; intuitively

pieces of this shape will disappear asα decreases, such that spheres with a radiusα can occupy

portions of the space without encompassing any of the points in S. The resulting object is an

α-hull, and the α-shape is obtained by substituting straight edges for the circular ones and

triangles for the spherical caps [43]. The resulting α-shape is not guaranteed to be convex nor

is it guaranteed to be connected as the shape itself can contain components such as single

points, edges, and patches of triangles. The family of α-shapes can be represented implicitly

by the Delaunay triangulation of the point set S [43].

While a convex hull may be able to adequately describe a simplistic rectangular building, it

is by definition unable to describe a building with any concavity. For this reason, convex hulls

and α-shapes where α=∞ are inadequate for the types of surface reconstructions considered

here. Similarly, when α <∞, the alpha shape reconstruction is by definition, likely to contain

holes. While a hole-free surface would be the ideal model, there is a trade-off to consider be-

tween the presence of holes in the reconstruction and a smooth model that, while hole-free,

may be grossly inaccurate.

Meshlab [50] was used to compute the alpha shape for the point cloud that was shown in

Section 2.1.7 and the results are shown in Figure 2.8 for various values ofα. This reconstruction

is less than ideal, as there are not only several holes in the model, but the surfaces themselves

appear rough and jagged due to the triangulation. A smaller α value could reduce some of the

jaggedness of the model, but the number of holes will increase, and ultimately this will not

achieve a complete reconstruction.

CHAPTER 2. BACKGROUND 29

(a) α = 0m (b) α = 1m (c) α = 2m

(d) α = 3m (e) α = 15m (f) α = 22m

(g) α = 27m (h) α = 30m (i) α = ∞m

Figure 2.8: Nine different α-shapes for increasing values of α are shown. The points, α=0, are shown in
(a), and the convex hull, α =∞, is shown in (i). The size of the triangles and connectivity increases as α
increases. Smaller values of α result in more holes in the model, but large values of α connect components
that should not necessarily be connected, removing some of the finer details.

CHAPTER 2. BACKGROUND 30

Whileα-shapes may be the best-known approach, other surface reconstruction algorithms

have been based on Delaunay triangulation. The crust algorithm, presented by Amenta et al

[48], effectively automatically computes local values ofα, which allows sampling density of the

input model to vary, overcoming the major drawback of α-shapes. Yau et al [51] extended the

crust algorithm to include the concept of inner and outer poles. Methods based on Delaunay

triangulation usually result in the reconstructed surface model passing through the original

sample points. Whether this is beneficial or desirable is dependent on the reliability and noise

levels of the input point cloud, as well as the application.

2.3.2 Ball-Pivoting

The ball-pivoting algorithm (BPA) is a conceptually simple method for surface reconstruction

based on region growing. Region growing methods start with a seed, often a triangle in the

case of surface reconstruction, then consider new points to join to the existing boundary; this

process is repeated until all points have been considered. BPA assumes that points are dis-

tributed over the entire surface with adequate sampling frequency for the application, and that

an estimate of the surface normal is available for each point [44].

With an initial seed triangle, a ball with a radius p is placed in contact with the initial three

sample points and then, keeping in contact with two of the points, the ball is “pivoted” until it

reaches another point [44]. A 2D illustration of BPA is shown in Figure 2.9, including the effect

of low sampling density and high curvature on the resulting model. This process is repeated

as the ball pivots around the edge of the mesh boundary, and the triplets of points that the

ball contacts form the triangles in the mesh model. Surface normals are used to distinguish

between internal and external regions and ensure consistency in the reconstruction. The use

of these surface normals is particularly important in the presence of imperfect data, where

sampling is not uniform, a very common occurrence across multiple modalities.

Because of the nature of the ball pivoting, knowledge of the sampling density and feature

sizes are necessary to choose an appropriate radius for BPA. In areas with a higher sampling

density, the ball will still pivot on top of the surface, though choosing a sampling spacing too

large can result in a loss of smaller feature details. Areas with lower sampling densities are

problematic because the ball with “fall through” and this will result in holes in the model. To

address the holes, BPA can be run iteratively with multiple passes that use increasing ball radii,

CHAPTER 2. BACKGROUND 31

Figure 2.9: Ball Pivoting Algorithm illustrated in 2D, where a circle with radius p pivots from point to
point, connecting them with edges. (a) Adequate sampling density results in a fully closed surface. (b) Low
sampling density results in holes, due to some edges not being created. (c) Curvature in the surface larger
than 1/p results in missed features, due to sampling points not being reached by the pivoting ball. Figure
from Bernardini [44].

however there is no specification to be able to only fill certain holes.

Again, Meshlab [50] was used to compute a BPA surface reconstruction of the point cloud.

An initial radius of p=1m was used, followed by p=2m, and p=3m. A subset of the point cloud

was used to speed up computation time, though this should have no impact on the reconstruc-

tion. The resulting surface is much smoother than that obtained with α-shapes, though still

exhibits holes, as to be expected due to the varying sampling densities. As can be seen, holes in

the initial reconstruction can be filled by increasing the ball radii. However even with multiple

passes, there are still holes in the model and a complete surface reconstruction is not obtained.

Region growing methods such as BPA can also be referred to as incremental surface con-

struction or advancing-front surface construction algorithms, and there are many others of

this type. Boissonnat [52] defined an edge-based algorithm that started with an edge and iter-

atively attached triangles at boundary edges of the emerging surface. Gopi et al. [53] also use a

progressive triangulation technique to generate a mesh from a point set with no assumptions

about underlying geometry.

CHAPTER 2. BACKGROUND 32

(a) p = 1m (b) p = 2m (c) p = 3m

Figure 2.10: BPA reconstruction of a point cloud. The algorithm was initially run with p=1m (a), then
p=2m (b), and finally p=3m (c). On the first pass 262,526 faces were created, 84,449 faces were added on
the second pass, and 18,610 faces were added on the third pass. As can be seen, the initial pass left a lot of
holes and gaps in the surfaces. Subsequent passes were able to fill in some, but not all, of these holes. As a
result, the final model still contains holes.

CHAPTER 2. BACKGROUND 33

(a) Oriented Points (b) Indicator Gradient (c) Indicator Function (d) Surface

Figure 2.11: A 2D, intuitive illustration of Poisson surface reconstruction. Given a set of points with surface
normals (a), the surface normal can be assumed to be a sample of the indicator gradient (b), which can
be used to derive the indicator function (c). The indicator function is defined such that it is unity inside
the surface, and zero outside the surface and can be used to derive the final surface model (d). Figure from
Kazhdan, et al [45].

2.3.3 Poisson Surface Reconstruction

Poisson surface reconstruction uses an implicit function framework, expressing the surface re-

construction as a solution to a Poisson equation [45]. The solution is independent of view

direction and considers all points at once, and therefore does not need to resort to partitioning

or blending. The resulting model is resilient to noise and is composed of smooth surfaces. The

objective of the algorithm is to reconstruct a watertight, triangulated model of the surface.

For a Poisson reconstruction the input data is a set of points, each associated with an

inward-facing surface normal, assumed to lie on or near the surface of the unknown model.

A 3D indicator function, which is a binary function defined to be unity inside the model and

zero outside the model, is computed and then used to extract the appropriate isosurface as the

reconstructed surface. The key insight of the Poisson algorithm is that the gradient of the indi-

cator function is zero almost everywhere except at the surface, where it is equal to the inward

surface normal; thus it can be assumed that the points are a sampling of the gradient of the

indicator function. An intuitive illustration of Poisson surface reconstruction is shown in 2D in

Figure 2.11.

In order to handle the demands of reconstructing large datasets, a parallel implementation

of the Poisson surface reconstruction algorithm was implemented, designed to run on multi-

processor systems with distributed memory [54]. The parallel algorithm demonstrated both

CHAPTER 2. BACKGROUND 34

(a) octree depth = 10 (b) octree depth = 12 (c) octree depth = 14

Figure 2.12: Full scene Poisson surface reconstruction of a point cloud at different octree depths. Note the
additional surfaces, not part of the original point cloud, that have been added as part of the reconstruc-
tion, shown in white.

scalability and an equivalence to the serial implementation as far as reconstruction accuracy.

Another group of researchers expanded on the Poisson idea to improve efficiency, using a linear

interpolation and quicker searching method to obtain the final isosurface [55].

An implementation of the Poisson surface reconstruction algorithm is available in Meshlab

[50]. The point cloud shown in Section 2.1.7 was reconstructed using the algorithm at differ-

ent octree depths. The octree depth in the Poisson reconstruction is related to the number of

functions that are used to define a surface, thus finer details can be reconstructed with a higher

octree depth, but there is a trade-off as the higher depth requires more memory and computa-

tion time. A full view of the reconstructions at octree depths of 10, 12, and 14 is shown in Figure

2.12. Octree depths above 14 could not be computed due to insufficient memory. Notice that

there is an additional surface present in each of the point cloud reconstructions, extending

beyond the original points. This is likely due to the fact that the reconstruction algorithm is de-

signed to reconstruct watertight models, something that will never be achieved with this kind

of data, and its attempt to do so has introduced these extraneous surfaces. At depths of 12 and

14, the surface curves upward, seemingly to approximate a sphere, and additional surfaces are

added far above the point cloud itself.

From a distant perspective, the models created from the surface reconstruction may look

promising. However a closer examination of the reconstruction will begin to reveal flaws, as

shown in Figure 2.13. The original point cloud was shown for comparison purposes, alongside

the three different Poisson reconstructions. Examination of the point cloud reveals that the tall

CHAPTER 2. BACKGROUND 35

(a) point cloud (b) octree depth = 10

(c) octree depth = 12 (d) octree depth = 14

Figure 2.13: A close up view of the point cloud and corresponding Poisson surface reconstructions at dif-
ferent octree depths. This view in particular was chosen because of the obvious holes in the point cloud
model, highlighting that a simple surface reconstruction cannot necessarily achieve quality results, de-
pending on the hole present.

building on the left is missing one side entirely, and the shorter building in foreground is miss-

ing several sides. Poisson reconstructions with higher octree depths are able to capture finer

details in the surfaces because higher resolution functions are used to fit the indicator function

at higher depths, and improvement can be noted as the octree depth is increased in the model.

Despite the improvement with increased octree depth, both buildings exhibit significant defor-

mations in the areas that are missing information because it is trying to reconstruct a portion

of the scene with no information about the surface that should be there and the resulting ap-

proximation is poor.

CHAPTER 2. BACKGROUND 36

2.3.4 Moving Least Squares

Moving Least Squares (MLS) is another method for constructing continuous surfaces out of a

set of unorganized points, using an extension of well-known least squares methods. In this

case, the ‘moving’ refers to the weights that are applied to individual points to calculate their

contribution to the surface solution at a given location. The weights are biased toward the

region around which the surface is being calculated. Unlike the often jagged results from tri-

angulation based methods, MLS provides smooth surfaces. One important thing to note is that

MLS surfaces are not guaranteed to pass through the original points, but rather the surfaces

pass near the points. Like many other algorithms, MLS methods have trouble in areas that are

undersampled, and it is sensitive to outliers.

MLS surfaces were originally introduced by Levin [56], and later adopted by Alexa et al.

[57] for surface reconstruction from point set surfaces. Kolluri [58] improved upon traditional

MLS methods by including surface normals. The algebraic point set surfaces (APSS) introduced

by Guennebaud et al. [59] are based on moving least squares, but aim to fit a higher order

algebraic sphere rather than a plane. In cases where plane fitting fails, such as undersampling

and sheet separation, spheres have improved stability. Öztireli et al. [60] combined implicit

MLS methods with statistics in order to improve robustness against outliers and retain sharp

features in the point cloud without over smoothing. MLS also serves as the basis for some hole-

filling algorithms, as discussed in Section 2.4.

2.3.5 Marching Cubes

Marching cubes is a popular computer graphics algorithm for extracting a polygonal mesh from

a 3D scalar field, and is particularly applicable to voxel spaces. The algorithm was originally

developed for medical data, such that quality 3D visualizations could be obtained from com-

puted tomography, magnetic resonance, and single photon emission computed tomography

data [46]. The marching cube algorithm is designed to work with data that is presented in a

grid, and therefore is not well suited for point cloud reconstruction. However, it is frequently

used as a component of volumetric algorithms that require the scan-conversion, also known as

voxelization, of a point cloud.

The algorithm proceeds through space taking eight neighboring locations into account at

a time to determine the polygon(s) necessary to represent the surface that passes through the

CHAPTER 2. BACKGROUND 37

(1) (2) (3) (4) (5) (6)

Figure 2.14: Illustration of the marching cubes algorithm in 2D. The 6 2D primitives are shown at the top,
and an example scalar field is shown below, with the corresponding surface. Two primitives have been
highlighted and their location in the example is indicated.

resulting cube. It is based on a threshold value for the scalar field, and points on the cube

are assigned a value of unity if they exceed or equal the value of the surface threshold and

are inside the surface, and those below receive a zero value and are outside the surface. The

surface intersects the cube if the cube contains vertices that are both inside and outside the

surface. Due to the eight corners of the cube and two possible states, there are 256 ways for the

surface to intersect the cube. Symmetry of the cube allows for a reduction of this number. The

original marching cubes algorithm [46] reduced to 15 different primitives (including the case

where there was no surface intersection and all vertices were the same). The original method

was shown to cause ambiguities and result in meshes with holes, and was improved upon to

obtain topologically consistent models; an extended version presented 33 primitives [61]. An

illustration of marching cubes in 2D is shown in Figure 2.14, with the 6 2D primitives and an

example scalar field with the resulting surface.

2.3.6 Dual Contouring

In dual contouring methods, such as Surface Nets [62], vertices are free to move inside the cube,

and not constrained to lie on the edges of the grid as in cube-based methods, such as marching

cubes. Dual contouring is another method designed to work with data that is partitioned into

CHAPTER 2. BACKGROUND 38

a grid. More specifically, it requires Hermite data which includes the intersection points of

the surface with the grid, in addition to surface normals. Vertices are generated for each cube

exhibiting a sign change, positioned at the minimum of a quadratic error function such that

they are consistent with the normals [47].

Zhou et al [49] presented a dual-contouring method to create 2.5D building models from

aerial LIDAR (Light Detection and Ranging) point cloud data. In this case, the 2.5D is based on

the assumption that a building is composed of complex roof components that are connected

with vertical walls. A disadvantage to this 2.5D approach is that it cannot handle overlapping

geometries, such as overhangs on a building. Similar to marching cubes, dual contouring algo-

rithms cannot be applied directly to a point cloud for surface reconstruction without some sort

of voxelization process.

2.4 Hole Filling

As was seen in the previous section discussing surface reconstruction, many reconstruction

methods will result in surface models that contain holes (e.g. alpha shapes and ball pivot-

ing). Surface reconstruction is often used in conjunction with hole filling algorithms to address

this problem. Holes and undesirable effects can be introduced in models for a variety of rea-

sons. Depending on the algorithm used, surface reconstruction can leave holes in the resulting

mesh model and therefore hole filling is an important part of object and scene reconstructions.

Much of the work in developing hole filling algorithms has been derived from 3D scanning and

range finding applications. Occlusions, missing views, and accessibility limitations are causes

of holes and missing data in 3D scanning applications, in addition to problems with low re-

flectance, and constraints on scanner placement. While the datasets themselves may be large

and contain millions of points, typically the scans are of figurines, statues, or single rooms in-

volving a few cubic meters, and nothing on a city-wide scale. While a review of hole filling

algorithms is certainly appropriate, it is important to note that most are simply not designed

to handle the problems present in large-scale 3D point clouds derived from aerial imagery,

nor would they be successful at doing so accurately. City-wide reconstructions may contain

millions of points, but the point density is often low in comparison to data obtained from close

range 3D scanners. The low point density and the variation in point density throughout a scene

make the prospect of hole filling difficult. In addition, many hole filling algorithms are based

CHAPTER 2. BACKGROUND 39

on the premise of a water-tight model. While this may be achievable for a singular building, it

is generally not possible in such large-scale models that contain numerous objects.

Holes can be filled by addressing them in the surface reconstruction itself, as discussed in

Section 2.3, or hole filling algorithms can be applied as a post-processing step, making them

compatible with multiple kinds of reconstruction algorithms. In general, a hole filling algo-

rithm should identify holes, and find appropriate parametrizations to reconstruct missing parts

using all available information, resulting in plausible geometry with non-self-intersecting sur-

faces. Simple holes can often be filled with discs or smooth patches that meet the boundary

conditions of the hole, and this technique works well in cases where holes are small in compar-

ison to the geometric variation of the surface. However, the problem becomes more difficult

when the holes grow in size and/or have multiple boundary components because the geomet-

ric variation of the surface becomes increasingly complex. In this case, there are multiple pos-

sible topologies that could fill the area. The possibility of a complex hole that includes twists

and folds increases as the size of the hole grows, and this seemingly rare convoluted geometry

occurs frequently in the presence of joints and crevices. The potential holes in point clouds

derived from aerial imagery are almost guaranteed to be complex.

Due to the popularity of 3D scanning, the extent of the research in the area of hole filling is

vast. Though there are many ways of grouping the algorithms, two major model repair group-

ings will be considered here: mesh-based algorithms and volumetric algorithms.

Mesh-Based Model Repair

Mesh-based repair algorithms operate directly on the polygons of the model to repair any geo-

metric and topological errors that may exist. Typically only regions with defects are addressed,

and the resulting surface models are not guaranteed to be closed and potentially contain self-

intersecting polygons.

Liepa [63] presented an algorithm to fill holes in oriented, connected manifold triangular

meshes. Holes are identified by finding boundary edges, where a boundary edge is adjacent

to a single triangle in the mesh. Once a hole is identified, an initial triangulation of the hole

is determined, using a minimum area triangulation accompanied by a weighting function that

takes into account the angle between the normals of the triangles in order to avoid creating

sharp folds and non-manifold edges. A smoothing process is then applied in order to fill the

CHAPTER 2. BACKGROUND 40

Figure 2.15: An example of a complex hole, filled by the algorithm presented by Liepa et al [63]. (a) A
complex hole that almost circumnavigates the sphere. (b) Initial triangulation. (c) Refined mesh with
density approximating surrounding mesh. Figure from Liepa et al [63].

hole with a mesh that will approximate the density of the surrounding mesh. An example of a

complex hole and the resulting filled mesh is shown in Figure 2.15. Due to the assumption of

having a connected manifold, this algorithm is limited and cannot handle large gaps between

surfaces or holes with islands without some modification.

Wang et al [64] present a hole filling technique that can be performed after meshing, and

thus any surface reconstruction technique that results in a triangular mesh can be used. Bound-

ary edges belonging to a single triangle in the triangulated mesh are used as indicators of holes

in the model. Once a hole boundary is identified, a reference plane for the hole vicinity is

computed from the points on the boundary edge. Moving least squares is then used to inter-

polate the hole, and reconstructed patches will blend smoothly into the original mesh while

still preserving the original boundary points. An illustration of the hole filling process is shown

in Figure 2.16. Processing is limited to the vicinity of the holes, and the sampling frequency in

the vicinity is recreated. This process is repeated until there are no holes left in the model. The

algorithm is likely to fail if the hole presents twists or folds that do not define a one-to-one map-

ping function when projected onto the reference plane, a situation that is increasingly likely as

the size of the hole grows.

Volumetric Model Repair

A volumetric approach to model repair will impose a volumetric grid on the surface, and the

output surface is reconstructed from the grid. The key to this voxelization-type approach is

the determination of whether a grid point lies inside or outside the model, often referred to

as a sign function. It is important to note that these methods do not necessarily preserve the

CHAPTER 2. BACKGROUND 41

Figure 2.16: A cylinder with a hole is shown in (a) and the vicinity of the hole is identified with red. New
points are added in (b) and the resulting reconstructed mesh is shown in (c). Figure from Wang et al. [64].

(a) (b) (c) (d) (e)

Figure 2.17: Illustration of Davis’ volumetric diffusion algorithm used to fill holes. The source term is
shown in (a), where the grayscale values represent the signed distance function with black being outside
the model and white inside. The diffusion process begins to extend the surfaces in (b), where the red curve
denotes the zero set. The surfaces begin to interact in (c), the hole closes in (d), and the final converged
shape is shown in (e). Figures from Davis et al [65].

original points of the model.

Davis et al [65] present a method for building water-tight models from surfaces with holes

that are topologically complex such that they cannot be filled by triangulation. The surface

model is converted to a voxel-based representation, where voxel values are defined near the

surface in a relatively narrow band; values are positive inside the surface, negative outside the

surface, and zero on the surface. The objective of the algorithm is to diffuse the values out from

the surface into undefined areas in order to complete the surface model. An illustration of this

is shown in Figure 2.17.

This algorithm was designed for range scanning data, and was implemented in such a way

as to take advantage of line-of-sight information given by the range scanner to indicate where

surfaces are, in addition to where surfaces are not. Constraints are built-in to control how far

a surface can extend into a known empty region and thus there is a trade-off between the

CHAPTER 2. BACKGROUND 42

(a) (b)

Figure 2.18: Due to the tendency of the diffusion process to propagate perpendicular to boundaries, the
hole filling method presented by Davis et al. has trouble filling holes correctly for oblique scans. Diffusion
of the source term in (a) results in boundaries that are incorrectly angled upwards as shown in (b). Figures
from Davis et al [65].

smoothness of the model, and how far it will protrude into an empty region. Due to the dif-

fusion process and its tendency to propagate perpendicularly to boundaries, this approach has

difficulties with the angled boundaries introduced by oblique scans, resulting in reconstructed

surfaces that are incorrectly angled upward. An illustration of this is shown in Figure 2.18.

Verdera et al. [66] used a volumetric approach similar to that presented by Davis et al [65].

The major difference between the two approaches is the system of partial differential equations

that is used to smoothly continue the surface of interest.

Ju [67] also presents a method for building water-tight models, using an octree grid that

is more space efficient than uniform volumetric grids. The model repair is implemented as a

three step process: (1) the input model is embedded in a uniformly-spaced grid and intersec-

tion edges are identified, (2) signs are generated that are consistent with the intersection edges,

and (3) a closed surface is reconstructed on the grid by contouring. The intersection edges are

edges of voxels that intersect polygons in the model; exact intersection points can be recorded

to obtain a better surface reconstruction later. Signs are generated such that each intersection

edge exhibits a sign change, thereby giving a consistent sign configuration. Contouring algo-

rithms are then used to reconstruct the surface that separates grid points with opposite signs;

if the intersection points were stored, an algorithm such as marching cubes (Section 2.3.5) can

be used. An illustration that depicts the model at various steps in the process is shown in Figure

2.19. Areas with complex holes, highly curved shapes, or multiple boundaries may not result in

optimal looking repaired regions due to the simplistic nature of this approach.

CHAPTER 2. BACKGROUND 43

(a) (b) (c) (d)

Figure 2.19: Illustration of Ju’s polygonal model repair algorithm used to fill holes. The input model is
shown in (a), the edges intersected and corresponding dual surface is shown in (b), the patched dual sur-
face is shown in (c), and the repaired model is shown in (d). Figures from Ju [67].

Sharf et al [68] introduce a context-based method to complete surfaces, inspired by the

recent advances in texture synthesis and image completion methods. Figure 2.20 shows the

difference between smooth filling and context-based filling methods. In this approach, char-

acteristics of the surface are analyzed and holes are filled iteratively by copying patches from

other regions of the surface. More specifically, the point cloud data is divided into cells, where

surface cells intersect the current surface approximation; a surface cell is valid if there are a

sufficient number of points for surface representation in the cell, and invalid if it contains less

points. The objective is to fill the invalid cells by copying content of valid surface cells that

match the surface approximation around the empty cell. This process is repeated until cells

contain enough points to be accepted as a final surface representation, and can be further re-

fined by subdividing cells to achieve a higher level of detail. In this instance, the relationship

between the sampling density and the detail frequency of the model is important, because cells

must be sufficiently small to be able capture the high frequency content of the model. Due to

the reliance on a local surface approximation to provide a reasonable initial smooth surface,

this process is particularly susceptible to failure under the presence of noise and undersam-

pling. In addition, surface completion areas can only contain copies of the sample set, and

therefore may result in poor matches in cases where no appropriate examples exist. While it

is possible that the point clouds contain examples of the missing surfaces, it is unlikely that

examples of all missing surfaces are contained within the point cloud.

CHAPTER 2. BACKGROUND 44

(a) Original Model (b) Marked Area (c) Smooth Filling (d) Context-Based Filling

Figure 2.20: Illustration showing the differences between smooth hole filling and context-based filling
presented by Sharf et al. The original model is shown in (a), and a marked portion that was removed to
demonstrate surface completion techniques is shown in (b). The results of smooth filling are shown in (c)
and context-based filling are shown in (d). Figures from Sharf et al [68].

2.5 LIDAR

It would be remiss not to mention that image-based SfM techniques are not the only viable

method of achieving a 3D point cloud. One of the most influential additions to the remote sens-

ing community has been that of LIDAR (Light Detection and Ranging). LIDAR takes advantage

of collimated laser light to gather information about distant objects based on their backscatter

radiation. Topographical LIDAR is based on laser ranging coupled with GPS/INS data. When

coupling surface interaction points obtained using the laser with the position and orientation

information from the GPS/INS, the surface interaction points can be determined in absolute

world coordinates, thereby resulting in a 3D map of the scene. Ground-based (close-range) and

aerial (long-range) LIDAR systems have been used to generate 3D models in the form of point

clouds.

Given that LIDAR is an active imaging system, it is not always a feasible solution to generate

surface maps, hence the increased interest in passive based systems using SfM techniques.

However, many of the surface reconstruction and hole filling algorithms mentioned previously

result from research involving 3D scanners, and most quality metrics and techniques that can

be applied to a LIDAR point cloud are directly applicable to SfM point clouds, thus a discussion

of such things seems appropriate.

CHAPTER 2. BACKGROUND 45

2.5.1 Quality Metrics

One thing that exists in the LIDAR community that is lacking in the SfM community is the

definition of quality metrics for the point clouds. The level of detail in a LIDAR scan is defined

by two primary spatial metrics: point spacing and point density. Point spacing is defined as the

nominal 2D spacing between LIDAR points and their neighbors within the point cloud. Point

density is defined as the nominal number of LIDAR points per square meter. As defined by

the ASPRS (American Society for Remote Sensing and Photogrammetry), nominal is defined

to mean that 95% of the data are closer/denser than the value given [69]. Density is often the

only metric calculated and is approximated by subdividing the dataset into a regular grid and

calculating the metric for each block. Both metrics can be significantly biased by areas that

only contain a few points, but the most limiting factor for each of these metrics is that they

are calculated from a 2D projection of the 3D data. While multiple definitions of these terms

exist, and admittedly they may not be the most effective metrics, both could be applied to point

clouds that result from SfM data.

2.5.2 LIDAR Derived Geometry

Point clouds are the direct result of LIDAR processing and provide a basis for any further pro-

cessing to derive scene geometry, such as surface reconstruction. While any of the techniques

discussed in Section 2.3 would be suitable for a LIDAR point cloud, there are a few popular

techniques that have yet to be mentioned.

Triangulated Irregular Network Mapping

One of the most popular reconstruction methods in the field is Triangulated Irregular Network

(TIN) mapping [70]. The objective of this method is to reconstruct a continuous surface from

the point cloud by connecting all of the points. This is achieved using triangular faces, typically

by employing some type of Delaunay triangulation method, effectively giving the TIN map a

variable resolution based on point density. The largest limitation of this method is that it is

performed on a 2D projection of the 3D point cloud and thus cannot handle overlapping ge-

ometries. As such, it is more suitable for digital elevation model (DEM) creation, its intended

purpose, than generating models of urban scenes with complex geometries.

CHAPTER 2. BACKGROUND 46

Voxelization

Voxels provide another method for representing 3D information that can handle more complex

geometries. Voxels use 3D blocks (i.e. small volumetric elements) on a regular grid to represent

3D volumes, much the same way that pixels are used to represent 2D images. Voxels have an

inherent ability to be able to handle overlapping objects, such as those that may be found in

scene reconstruction. Voxels have been widely used for visualization of data in the medical and

scientific communities, in addition to their use in multi-image 3D reconstruction [22]. Some

of the surface reconstruction methods from Section 2.3, such as marching cubes and dual con-

touring, required voxelization as a pre-processing step.

One of the downsides to voxelization of a scene is that details within the scene that are

smaller than the voxel size will be removed during the process. This can be mitigated pro-

vided there are sufficient input data to support a voxel map of the desired resolution. If straight

voxelization is used for reconstruction, stair-step artifacts can be introduced in the resulting

models due to the nature of voxels. This does not have to be the case if a more complex method

of reconstruction based on voxelization is chosen. Finally, due to the nature of voxels, there

is the inherently large storage requirement. Compression techniques could be used to reduce

the data volume, given that many of the voxels in a real-world scene will not contain scene

structure.

One method for voxelizing a point cloud is hit-counting, where the objective is to mea-

sure the amount of occlusion amassed in each voxel based on the number of points it contains

[71, 72, 73]. There are two assumptions made in hit-counting: (1) the occlusion of a voxel is

proportional to the number of points in the voxel, and (2) voxels that contain no samples are

empty. A normalization factor must be used to convert from number of hits to amount of occlu-

sion [74]. Using a normalization factor assumes uniform sampling, which is not true of either

a LIDAR or SfM point cloud. In addition, voxels that do not contain points are not guaranteed

to be transparent as both truly empty voxels and unsampled voxels will not contain hits.

A better approach would be a transmission approach that uses information about how the

point cloud was derived, which can provide better voxelization. By using the sensor position

(which will apply to both LIDAR and SfM points), the entire path of the ray can be examined to

analyze obscuration [75, 76]. This analysis can be used to define a transmission equation on a

per voxel basis [77, 78], given the number of points within the a voxel and the number of rays

CHAPTER 2. BACKGROUND 47

that passed through it. This approach requires no normalization factor, and the transmission

of a voxel can be refined as more samples and rays are added. In addition, it provides a way to

differentiate between truly empty voxels and unsampled voxels.

d d d

While the generation of 3D models from imagery is continually improving thanks to ad-

vancements in SfM techniques, the models often exhibit holes or voids. These holes can be the

result of a lack of coverage in the input imagery, but can also be the result of homogeneous,

texturally flat areas that fail to generate features, fail to provide consistent matches, and/or fail

to achieve an accurate triangulation. Surface reconstruction algorithms that are applied to the

point clouds are used to approximate surfaces, and in some cases can adequately estimate the

missing regions, provided they are simplistic and small. However, in cases where the missing

region is significant and contains complex geometries, surface reconstruction and hole-filling

techniques will fail to generate surfaces or the estimated surfaces will be grossly inaccurate.

As feature detectors and dense stereo matching techniques improve, it is possible that the

denser point clouds that are produced will result in fewer holes in subsequent models. How-

ever, the voids in the point cloud that are a result of lack of coverage in the imagery will see

no significant improvements. The problem being addressed here is related to the voids in the

point cloud, particularly those resulting from a lack of coverage, and the approach will be two-

pronged. First, a method to identify the voids in the point cloud will be established, including

techniques to differentiate between the types of void. Second, a method to address filling the

voids will be explored. The voxel-based approaches being used in the LIDAR community will

provide a foundation for this approach.

Chapter 3

Methodology

The objective of 3D reconstruction from imagery is to accurately reconstruct the scene with

no a priori knowledge of the world. The previous chapter discussed the Structure from Mo-

tion (SfM) process in detail, from generating image-to-image correspondences through dense

stereo matching that results in a 3D point cloud. In general, point clouds are not directly us-

able in most 3D applications, so reconstruction techniques are applied to achieve a surface

model. The problem with this workflow is the voids that are often present in SfM reconstruc-

tions, where voids arise in regions where there was a lack of coverage in the imagery, or in

regions that failed to generate image-to-image correspondences, failed to accurately match

correspondences, or failed to triangulate properly.

This chapter develops methods to identify these voids in the point cloud using visibility

analysis and identify potential image locations for regions that lacked image coverage. This

process takes advantage of information in the reconstruction process that is generally dis-

carded to analyze the visibility of the points in the point cloud from the camera positions

used to reconstruct the scene. This visibility information is used to carve out the line-of-sight

from cameras in a voxel space, such that voxels can be identified as containing structure or

free space; the remaining voxels are unsampled. Voids in the voxel space manifest in the un-

sampled voxels. Original imagery is exploited to identify homogeneous regions that failed to

reconstruct, using a texture metric to separate such regions from others that failed to recon-

struct due to a lack of coverage or obscuration. It is believed that inclusion of more imagery in

the reconstruction process can fill in the voids in the point cloud that are not a result of textu-

48

CHAPTER 3. METHODOLOGY 49

rally difficult regions, and a line-of-sight analysis is used to determine potential locations for

additional imagery.

3.1 Visibility Analysis

While the 3D structure, derived from SfM techniques, represented by the point cloud provides a

good starting place, it is not representative of all the information contained in the data and gen-

erally is not an acceptable end point for most 3D applications. In a simplistic representation,

a 3D point generated during scene reconstruction is a result of triangulating image-to-image

correspondences where the point was visible in the imagery. Thus, the images that contained

correspondences for a specific point provide visibility information. More specifically, the rays

between the cameras used in reconstruction and the 3D point must be devoid of obstruction

such that the path between each camera and the 3D point is clear. This type of visibility infor-

mation is computed, either implicitly or explicitly, during the reconstruction process, but it is

often discarded once the final point cloud is obtained. Typically the point cloud data is then

used as input to a surface reconstruction algorithm to obtain a surface-based reconstruction

made up of geometric primitives.

3.1.1 Surface-Based Models

A surface-based model provides a good basis for many objects because it is inherently simplis-

tic. In addition, it provides a bridge between the mapping and rendering communities. Gen-

erating surfaces from points has been the standard method used to build a model from point

clouds in both SfM and LIDAR applications, and specific algorithms were discussed at length

in Section 2.3.

One potential downside in the context of a surface model is that there is often an implied

continuity of the surface. While this may be the case in large-scale applications such as terrain

mapping, it is not necessarily the case in urban scenes, particularly in regards to the point

clouds of interest here. Forced surface continuity may result in large oscillations in the surface

or inaccurate surface estimates.

The voids present in SfM point clouds also provide a challenge for traditional surface-based

reconstruction models. As discussed in Sections 2.3 and 2.4, the complexity of the hole deter-

CHAPTER 3. METHODOLOGY 50

(a) Planar Hole (b) BPA (c) Poisson

Figure 3.1: An example of a simple, planar void in a point cloud. (a) The Clinton Square building was
extracted from the WAMI point cloud in Section 2.1.7, and exhibits a void on one of the sides (highlighted
in green). (b) BPA surface reconstruction of the points, performed in Meshlab with automatic settings.
(c) Poison surface reconstruction, performed in Meshlab with an octree depth of 12, where surfaces were
colored with the associated points except in areas where that information was unavailable and are shown
in green. The Poisson reconstruction does a nice job estimating the missing area, filling in the hole.

mines how accurately that surface can be reconstructed or how well that hole can be filled. A

hole on a planar surface is easily filled, but the complex holes with multiple intersecting sur-

face, often present in SfM point clouds, are much more challenging. Three areas of interest

from the WAMI point cloud shown in Section 2.1.7 were selected to illustrate the complexity

of voids in point clouds: (1) the Clinton Square building, (2) the HSBC building, and (3) the

Fredrick Douglass bridge. BPA and Poisson surface reconstructions were performed with built

in functions in Meshlab [50], where the radius for each BPA algorithm was automatically se-

lected based on point density, and the Poisson reconstructions were run with an octree depth

of 12. Note that due to the nature of Poisson surface reconstruction, additional surfaces are

reconstructed outside the bounds of the points in an effort to construct a watertight model.

The Clinton Square building, shown in Figure 3.1, is missing a portion of one side, outlined

in green for clarity. This particular hole was chosen as it represents a relatively simple missing

region in the point cloud that could be filled with a planar surface. The BPA surface reconstruc-

tion contains several smaller holes in addition to the larger hole that was meant to be the focus.

Iteratively performing BPA with increasing radii would likely fill in some of those holes, while

a simple hole filling algorithm would likely be successful with the larger hole due to its planar

CHAPTER 3. METHODOLOGY 51

(a) Complex Hole (b) BPA (c) Poisson

Figure 3.2: An example of a complex void in a point cloud. (a) The HSBC building was extracted from
the WAMI point cloud in Section 2.1.7, and exhibits two sides that are completely devoid of points. (b)
BPA surface reconstruction of the points, performed in Meshlab with automatic settings. This reconstructs
surfaces where the density is high, but is unable to reconstruct the missing sides (c) Poison surface recon-
struction, performed in Meshlab with an octree depth of 12, where surfaces were colored with the asso-
ciated points except in areas where that information was unavailable and are shown in green. Though
the Poisson reconstruction attempts to fill in all surfaces, the estimation is wildly inaccurate in the areas
where the points were missing.

nature. The Poisson algorithm accurately fills in the hole in this case, though color information

is not available for the reconstructed faces.

A more challenging void in the point cloud is presented in Figure 3.2, with the HSBC build-

ing, where multiple views of all sides of the building were not present in the input imagery. The

building itself has two different roof levels, which are densely populated with points, in addi-

tion to one side that is densely populated. One other side of the building contains points at

varying densities, while the two remaining sides exhibit a complete lack of points. While it is

visually discernible as a building and a human observer would likely be able to fill in the miss-

ing parts, this type of void is considered complex in regard to surface reconstruction and hole

filling due to the multiple intersecting surfaces that are missing. Voids of this nature are com-

mon in SfM point clouds, particularly where multiple views of the region were lacking in the

input imagery as was the case here. The BPA reconstruction performs similarly to the previous

example; regions that have an adequate sampling density are reconstructed well, and there are

holes in the regions with a lower density. Again, this could be mitigated by iteratively running

the BPA algorithm, which would fix some of the smaller holes, but likely would have little im-

CHAPTER 3. METHODOLOGY 52

(a) Bridge (b) BPA (c) Poisson

Figure 3.3: An example of a bridge in a point cloud with overlapping structure. (a) The Frederick Douglass
bridge was extracted from the WAMI point cloud in Section 2.1.7, and is well reconstructed in the point
cloud. (b) BPA surface reconstruction of the points, performed in Meshlab with automatic settings. (c)
Poison surface reconstruction, performed in Meshlab with an octree depth of 12, where surfaces were col-
ored with the associated points except in areas where that information was unavailable and are shown in
green. The Poisson reconstruction does a nice job estimating both the bridge and the surrounding missing
area in the river.

pact on the missing sides of the building. A very large radius could potentially fill in the missing

sides, but the results would not be an accurate representation of the surface. The Poisson sur-

face reconstruction of the building does manage to bridge the gaps, but does so with a wildly

inaccurate estimation, thereby providing an unacceptable reconstruction.

The final example is the Fredrick Douglass Bridge, shown in Figure 3.3. The bridge is fairly

well reconstructed in the point cloud, but provides a unique example of overlapping geometry

as both the bridge trusses and street below are visible. Without knowledge of the object or sur-

rounding space, this region could easily be singled out as a potential area that contains holes.

In this instance, both the BPA and Poisson surface reconstructions are able to distinguish the

bridge trusses from the surface beneath. This may not be the case with other reconstruction

methods.

3.1.2 Voxel-Based Models

Voxels provide another method for representing 3D information that can handle complex ge-

ometries and provide a suitable framework for this application. A voxel is a 3D block (i.e. a small

CHAPTER 3. METHODOLOGY 53

volumetric element) on a regular grid that is used to represent 3D volumes, much the same way

that pixels are used to represent 2D images. Voxels make no assumptions regarding overlapping

geometries and there is no implied continuity in the resulting geometry. A voxel model is ideal

for general purpose object representation and can easily represent complex scene geometry

with overlapping objects such as buildings, bridges, trees, and building overhangs.

Due to its simplicity, the most common method used to construct a voxel model is hit-

counting, also known as voxel binning, due to its simplicity. During voxelization, the scene

volume is divided up into a regular grid and the number of points in each voxel is tallied. For

most geometric representations, a threshold of some count is applied to the voxel map to clas-

sify voxels as either surfaces (containing sufficient points) or empty (containing insufficient

points). This technique was used by Pyysalo et al. [72], to perform line-of-sight calculations

using a voxel map derived from LIDAR, where any voxel containing LIDAR points was consid-

ered to be opaque. Alternatively, the point counts can be used to derive estimates of physical

parameters, such as opacity, as done by Levick et al.[73] or Mutlu et al.[74]

There are two assumptions made in hit-counting: (1) the occlusion of a voxel is propor-

tional to the number of points in the voxel, and (2) voxels that contain no samples are empty.

A normalization factor must be used to convert from number of hits to amount of occlusion

[74]. Using a normalization factor to convert the number of hits to occlusion, such as Mutlu et

al.[74], assumes uniform sampling, which is not true of SfM point clouds. In addition, voxels

that do not contain points are not guaranteed to be transparent as both truly empty voxels and

unsampled voxels will not contain hits.

The primary disadvantage in voxelization is the loss of detail in the gridding process. Ob-

jects or details in the scene that are smaller than the voxel resolution cannot be represented.

Therefore, a large voxel size (undersampling) could result in a loss of detail. In a similar re-

spect, the resolution of the voxel map is limited by the density of the point cloud. A small voxel

size (oversampling) will result in undersampled volumes that do not adequately represent the

scene. An additional consideration with the SfM point clouds is the inconsistent sampling den-

sity. Densely sampled areas of the point cloud may be able to support a higher voxel resolution

than other areas. This could be mitigated by using an adaptive sampling approach by subdivid-

ing voxels based on point density, allowing more detail in areas that have the density to support

a higher resolution. Due to the increased complexity, this adaptive approach will be reserved

for future work.

CHAPTER 3. METHODOLOGY 54

Another potential downside to using voxels is the inherent large memory requirement. In-

cluding fine details in a scene requires a smaller voxel size, thus using more voxels, and con-

sequentially more storage, to represent the same amount of space. Modern computing capa-

bilities can handle reasonably sized scenes, though there may be some difficulties with large

scenes depending on the voxel size. Given that much of the voxel space contains open air and

no point data, some sort of compression scheme designed for use on the voxel data could mit-

igate some of the memory requirements, but further discussion of this is beyond the scope of

this research.

The approach presented here defines a voxel space with an origin (Xo ,Yo , Zo), number of

elements (nx ,ny ,nz), and the element sized v . For the purposes of this research, only cubic

voxels are considered, thus the use of a single element size. The size of the voxel space is deter-

mined by the bounding rectangular cuboid of the point cloud, where the bounding cuboid is

given using the minimum and maximum coordinate values of the points. Note that the discrete

number of elements and the flooring operations used in the computation of the voxel space

origin will result in a slightly larger voxel volume than that explicitly defined by the bounding

cuboid. Due to the nature of SfM point clouds and their irregular boundaries based on the in-

put imagery, the boundary of the voxel space will contain regions outside of the point cloud

due to the enforcement of the cuboid shape.

Once the voxel space is defined, the vertices from the point cloud are used to identify occu-

pied voxels. Given a 3D point ~X , the voxel P that contains the point is given by

P =
⌊
~X −~O

d v

⌋
(3.1)

where ~O is the voxel space origin, and d v is the block size of the voxels. At this stage, the point

cloud data has been voxelized and is fully represented within the voxel space.

The voxelized models of the simple (Clinton Square building) and complex (HSBC building

and Fredrick Douglass bridge) holes are shown in Figure 3.4. The surface voxels were treated as

opaque, while all other voxels were treated as transparent as would be the case with a hit count-

ing method. The shading on the surface was added for visualization purposes using Blender

[79]. Using just the voxels to represent the surface introduces a stair-step artifact in the models.

An algorithm such as marching cubes or dual contouring could also be used to make a model

from the voxelized point cloud and this could reduce this artifact. While the voxelized point

CHAPTER 3. METHODOLOGY 55

(a) Simple Hole (b) Complex Hole (c) Complex Hole - Bridge

Figure 3.4: Voxelized models of the regions of interest shown in Figures 3.1, 3.2, and 3.3, representing both
simple and complex holes in the point cloud. Using hit counting voxel methods alone does not enhance
the resulting model, as there are still holes and no additional information has been gained.

clouds provide different methods to obtain a model, there is not necessarily more information

provided than could be obtained from a traditional surface-based model.

At this point, it may seem that voxels do not provide enough added benefit to justify their

usage, as surface-based methods can accurately define surfaces without the stair-step artifacts

that are introduced with voxelization. However, the primary advantage to using a voxel map in

this case is the ability to represent the concept of free space, something that a simple surface-

based model cannot handle.

3.1.3 Incorporating Ray Origins

As stated previously, visibility information for each point is computed during the generation of

the point cloud. Given that a camera was used to reconstruct a point, the point must be visible

in the image and the ray between the camera origin and the point must be devoid of obstruc-

tion, providing a clear line of sight. Though generally discarded after the final SfM point cloud

is obtained, this information can be used to identify free space and the voxel map provides a

convenient spatial framework to aggregate this information. The camera position defines a ray

origin for the line of sight, and these sightlines can be used to carve out areas surrounding the

scene that should be free space. By definition, this free space cannot contain scene structure.

The concept of free space has been applied to voxel models previously in the computer

vision community in the development of navigation systems for mobile robots, particularly

those operating in unknown environments. Multi-dimensional random fields that maintain

estimates of the occupancy state of a cell in a spacial lattice, known as occupancy grids, were

CHAPTER 3. METHODOLOGY 56

noted to show promise for robot navigation and perception by Elfes [80]. Depth information,

derived from either rangefinding or stereo imagery, is used to construct occupancy grids where

cells are marked as empty or full. The occupancy grids are updated with new information as

additional viewpoints are observed, creating a more complete representation of the local scene.

Murray et al. [81] presented a correlation-based stereo technique to generate occupancy grids

for autonomous robot navigation. Though there is a slight difference in terminology used, the

cells of the occupancy grids are equivalent to the voxels of the voxel space.

The implication of empty voxels is an important concept, as it provides more information

than could be obtained from just the surface model. By incorporating the idea of free space,

it is possible to take advantage of both the voxel representation and the additional visibility

information that is usually ignored.

It should be noted that the following approach is based on point clouds for which visibil-

ity information is available. In addition to the point cloud data, the following information is

required for use of this approach:

• List of cameras with good visibility for each point

• Location of each camera

• Principle axis of each camera

It is important that the ground plane of the point cloud nominally aligns with the X −Y plane.

In this case, the geo-accurate transformation used as a post-processing step in the 3D workflow

achieves this using the GPS centers of the cameras to compute a transform. In the absence of

GPS locations, it may also be possible to perform a principle component analysis to pull out

the dominant axes. It is important to align at least the Z-axis of the point cloud with the Z-axis

of the fixed Earth-based coordinate system because it is better for visualization purposes and.

Both the Bundler and PMVS algorithms used in the SfM workflow supply the necessary in-

formation. Bundler outputs a file that contains estimated scene and camera geometry, where

each camera entry contains intrinsic and extrinsic parameters, and each point entry contains

the point location, color and a list of views in which the point was visible [82]. PMVS also

provides full reconstruction information including files for each camera that contain the corre-

sponding camera projection matrix, and reconstruction information for each point, including

CHAPTER 3. METHODOLOGY 57

the 3D location and estimated surface normal, a photometric consistency score, the image in-

dicies in which the point is visible and the textures agree well, and the image indices in which

the textures may not agree well but the point should be visible [83]. For the purposes of this

research, the PMVS output will be used to build the voxel space, as the denser point cloud from

PMVS will not limit the voxel resolution to the same extent as the sparse point clouds output

by Bundler.

With the incorporation of ray origins into the voxel workflow, inclusion of the camera cen-

ters within the boundaries of the voxel space should be considered. Initial algorithm testing

included the vertices of the camera centers in the set of points used to define the bounding

cuboid of the voxel space. This proved to be useful for testing and visualization purposes, but

memory requirements expanded rapidly. Consider an urban scene with the highest point at

300m, imaged at an altitute of 3000m; storage requirements for the voxel space increase 10

times in the z-direction alone by including the space between the scene and the camera. The

voxels in the space above the point cloud are likely to be free space, and their inclusion will not

provide any additional useful information about the scene below. By using just the bounding

cuboid of the point cloud data (and not the bounding cuboid of the point cloud and cam-

era centers), both the memory requirements and the processing time are significantly reduced

without a notable impact on the results. Therefore, it is assumed that any voxels above the

bounded voxel space are unoccluded.

A fast voxel traversal algorithm [84] can be used to identify voxels on the ray defined by

the camera and the surface point by computing the intersection of the ray with the voxel map.

Traditionally there are two types of intersection algorithms: space partitioning and bounding

volumes. A space partitioning algorithm divides a space up into smaller partitions (e.g. voxels),

and looks for intersections in the voxels along the given ray, continuing until either an intersec-

tion has been found or the space partition has been completely traversed. A bounding volumes

algorithm is based on the premise that if there is no intersection with the bounding volume of

a complicated object, then there is no need to intersect the complicated object within. This

approach will use a combination of the two techniques.

First consider the traversal of the voxel space itself, given a starting point inside the voxel

space as shown in Figure 3.5. Assume the equation of the ray is given by~r +~st , where t >= 0.

Starting at the origin of the ray,~r , the algorithm must traverse through the voxels a, b, c, d, e, f,

g, and h in that order to reach the terminating point. A space partitioning algorithm is used to

CHAPTER 3. METHODOLOGY 58

end

start a
b

c
d e f

g h

Figure 3.5: Example of a voxel space, with a ray origi-
nating at start and terminating at end (adapted from
Amanatides [84]). A traversal algorithm must visit vox-
els a, b, c, d, e, f, g, ang h to correctly traverse the grid.
The highlighted red portion is enlarged and shown in
more detail in Figure 3.6.

start

t M axX

t M axY

Figure 3.6: Enlarged view of Figure 3.5,
showing the incremental traversal from
the point start. The vertical and hori-
zontal boundary crossings are distances
t M ax X and t M axY from start respec-
tively.

identify the voxels along the ray. Traversal is initialized by determining the voxel in which the

ray originates, given by equation 3.1. Let the variables X , Y , and Z be the starting voxel coordi-

nates, and the variables step X , stepY , and step Z indicate whether the voxel coordinates are

incremented or decremented when crossing voxel boundaries, determined by the sign of the

components of~s. Following the initialization of variables, the incremental traversal through the

voxel space is achieved by computing distances, t , along the ray, to determine where it crosses

voxel boundaries in each dimension. If the stepping direction is positive, the distance to the

boundary is given by

t M axi =
~Oi +d v · (cur r entBl ocki +1)− cur r entPosi

~si
(3.2)

where i indicates the x, y , or z direction, cur r entBl ock is a 3 element integer vector with

the current voxel indices, and cur r entPos is a 3 element floating point vector at the current

position given by ~r +~st . If the stepping direction is negative, the distance to the boundary is

given by

t M axi = cur r entPosi − (~Oi +d v · cur r entBl ocki)

~si
(3.3)

Values are calculated in each of the dimensions, such that t M ax X , t M axY , and t M ax Z

CHAPTER 3. METHODOLOGY 59

are obtained. The minimum value indicates the distance that must be traveled along the ray in

order to step into the next voxel. The two dimensional case is shown in Figure 3.6, where the

distance to cross the vertical boundary is given by t M ax X and the distance to cross a horizontal

boundary is given by t M axY . In this case, the algorithm would take a step in the x-direction

because t M ax X < t M axY . The basic loop of the incremental phase of the traversal algorithm

is shown in algorithm 1.

Algorithm 1 Voxel Traversal Loop (adapted from Amanatides [84])

Input: Voxel map, and a ray with origin~r and direction~s
Output: List of voxels along the ray, and the current position ~p

loop
if t M ax X < t M axY then

if t M ax X < t M ax Z then
X = X + step X
~p = ~p +~s · t M ax X

else
Z = Z + step Z
~p = ~p +~s · t M ax Z

else
if t M axY < t M ax Z then

Y = Y + stepY
~p = ~p +~s · t M axY

else
Z = Z + step Z
~p = ~p +~s · t M ax Z

Given a point in the point cloud and a camera center that was used to reconstruct that

point, the ray defined by the two points can be used as input to this fast voxel traversal algo-

rithm, which will return the voxels along the ray. Therefore a method for identifying the free

voxels is attained.

As was stated previously, the voxel space does not extend all the way to the camera centers

and thus the camera center resides outside of the voxel space. To address this problem, the

traversal algorithm is modified by incorporating a bounding volumes algorithm. A ray-box in-

tersection algorithm will intersect a ray with axis aligned bounding volumes[85] (i.e. the voxel

CHAPTER 3. METHODOLOGY 60

x
m

in

x
m

ax

y
m

in

y
m

ax

Figure 3.7: Ray-box intersection in 2D, showing
xmi n , xmax , ymi n , and ymax , with the ray origin
outside the box and the ray intersecting the box
twice.

x
m

in

x
m

ax
y

m
in

y
m

ax

Figure 3.8: Ray-box intersection in 2D, showing
xmi n , xmax , ymi n , and ymax , with the ray origin
outside the box but not intersecting the box.

space), identifying a point within the voxel space that can be used as input to the previous

traversal algorithm.

The ray-box algorithm is similar to the traversal algorithm. Distances from the ray origin to

cross the box boundaries are computed in an effort to determine whether the ray intersects the

box and the point of intersection if it exists. An example of a ray-box intersection that intersects

the box is shown in Figure 3.7, and one that does not intersect the box is shown in Figure 3.8.

The distance from the ray origin to the minimum and maximum box boundary in each dimen-

sion is computed. Given mi n and max vectors defining the minimum and maximum corners

of the box, and a ray~r +~st , where~r is the ray origin,~s is the ray direction, and 0 ≤ t ≤∞, the

distances to the minimum and maximum box boundaries are given by

imi n = mi ni − ri

si
imax = maxi − ri

si
(3.4)

where i indicates the x, y , or z direction, and si is assumed to be positive. If si is negative, the

CHAPTER 3. METHODOLOGY 61

distances to the minimum and maximum box boundaries are given by

imi n = maxi − ri

si
imax = mi ni − ri

si
(3.5)

Values are calculated in each dimension, logic is used to determine whether the ray intersects

the box, and if so, the intersections are returned. The basic algorithm loop is shown in Algo-

rithm 2.

Algorithm 2 Ray-Box Intersection (adapted from Williams [85])

Input: min and max, 3-element vectors defining the minimum and maximum corners of the
box, and r, a ray with a defined origin and direction
Output: tmin and tmax, the distance along ray r from its origin to the points of intersection
with the box

if
(
(xmi n > ymax) ‖ (ymi n > xmax)

)
then

return Null

if (ymi n > xmi n) then
tmi n = ymi n

else
tmi n = xmi n

if (ymax < xmax) then
tmax = ymax

else
tmax = xmax

if
(
(tmi n > zmax) ‖ (zmi n > tmax)

)
then

return Null

if (zmi n > tmi n) then
tmi n = zmi n

if (zmax < tmax) then
tmax = zmax

return tmi n , tmax

The combined ray-box intersection and voxel traversal algorithms provide an efficient method

for identifying free voxels by incorporating the ray origins.

CHAPTER 3. METHODOLOGY 62

3.1.4 Voxel Classification

At this point, the number of points contained within and the number of rays passing through

each voxel have been tallied, and the next step is to determine what properties can be derived

with this information.

In a study performed by the Army Research Laboratory, Haas [76] attempted to apply a

voxel-based ray-tracing approach to change detection between LIDAR scans. An occlusion

metric was used to determine the probability Poccl usi on that a given voxel would produce a

LIDAR return, given by:

Poccl usi on = npoi nt s

npoi nt s +nr ay s
(3.6)

where npoi nt s is the number of LIDAR return points in a voxel, and nr ay s is the number of rays

that intersected the voxel without producing a return point. The results proved to be inconclu-

sive due to errors in the registration of scans and the study was considered a failure. However, it

was noted that the ray-tracing approach appeared to be “a useful counterpoint to the location

of the return in defining an evidence-based measure of voxel content.” [76]

Yapo et al.[75] took the ray-tracing concept further by classifying voxels into three distinct

categories: occupied, free, and hidden. In this case, the hidden state was used to define a voxel

that could not be reached by a LIDAR instrument, such as those inside a building or under-

ground. Voxels were categorized by ray-tracing, where a ray originating at the sensor location

was followed through the voxel space, incrementing the occupied, free and hidden counters as

appropriate. The free counter was incremented for voxels lying on the ray between the sensor

position and the surface return point, the occupied counter was incremented in voxels where

there was a surface return, and the hidden counter was incremented for those voxels lying on

the ray beyond the surface return. The final classification of each voxel was then determined

using the accumulated counters and a set of probabilistic return functions. The addition of a

hidden state is important, as it solves the problem of only using an empty/full classification

for voxels in which hidden/unsampled voxels would be classified as empty in addition to truly

empty voxels.

CHAPTER 3. METHODOLOGY 63

Hagstrom et al.[78] extended the occlusion probability to compute the transmission of a

voxel, given by:

τ
(
Vx,y,z

)= ∑
Ii transmitted throughVx,y,z∑

Ii insideVx,y,z +∑
Ii transmitted throughVx,y,z

(3.7)

where Vx,y,z is the voxel at position (x, y, z), and Ii is the intensity of the return i from the set

of all returns collected. This method relies on the ratio of energy that passes through a voxel to

the energy returned from a voxel, where energy is computed from the LIDAR return intensities.

Passive image techniques do not have the ability to provide return intensities in the way that

LIDAR does, which limits the use of this method of transmission computation to LIDAR derived

point clouds.

All of these studies show how the knowledge of the system position can be used to derive

additional information, and it is important to find a method for classifying the voxels. In this

case, voxels will be classified using a ternary system to define occupied, free, and unsampled

voxels. In general, voxels that contain reconstructed 3D points should be classified as occupied

voxels, and voxels that lie on the ray between the camera and the point should be classified as

free voxels. Those voxels that do not contain points or rays have yet to be identified as occupied

or free and remain unsampled. A 2D visualization of occupied, free, and unsampled voxels

constructed from a simple scene is shown in Figure 3.9.

This ternary classification system is conceptually simple, however it does not take into ac-

count that a voxel is not infinitesimally small. It is possible that the finite space of a voxel will

contain multiple interactions. For example, multiple points could be contained in the voxel,

multiple rays could pass through the voxel, or a combination of both points and passing rays

could be contained in the voxel. This can be equated to an occlusion, or conversely transmis-

sion, property of a voxel. A voxel that contains only points can be considered fully occluded,

while a voxel that contains only rays can be considered fully transmissive. A voxel that contains

many points and only a few passing rays could be considered more occluding, or conversely

more transmissive, than a voxel that contains only a few points and many passing rays.

CHAPTER 3. METHODOLOGY 64

B

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R R R R R R R R R R R R R R

R R R R R R R

R R R

R

R R R R R R R R R R R R R R R R

R R R R R R R R R R R R

R R R R R R R

R R R

G G G G

G G G G

G G G G

G G G G

G G G G

G G G G

G G G G

G G G G

G

G

G

G G G G

G G G

G G G

G G G

G G

G G

B B

B

B

B

B

B B B B G

G

G G G

G G G

G G G

G

G

G

G G G

G G G

G G G

G

G

G

G G G

G

G G

G G

G

G

G G

G G

G G

G

G

G

G G G

G G G

G B B

Figure 3.9: A 2D visualization of occupied, free, and unsampled voxels. Voxels that contain black points
are occupied and denoted with blue (B). The camera is located in the top left and free voxels that rays
pass through are denoted with green (G); three rays, denoted with dashed lines, are depicted for reference.
Unsampled voxels are denoted with red (R). The scene depicts a rectangular surface, such as a building,
on a ground surface; where surfaces visible in the image are denoted with a solid line, and non-visible
surfaces with a dotted line.

Each voxel has a corresponding number of points and number of rays associated with it that

can be used to define a voxel property. A traditional transmission property is not achievable in

this case, so a probability of free space P f r ee will be used, where P f r ee is given by:

P f r ee =
nr ay s

npoi nt s +nr ay s
(3.8)

where npoi nt s is the number of points in a voxel, and nr ay s is the number of rays that inter-

sected the voxel. The probability of free space is simply 1−Poccl usi on , where Poccl usi on is the

probability of occlusion given by:

Poccl usi on = npoi nt s

npoi nt s +nr ay s
(3.9)

Using this approach, all voxels that contain points and/or rays have a probability associated

with them. Those voxels that are unsampled will be given a probability of -1 to make them

easily identifiable in subsequent analysis.

CHAPTER 3. METHODOLOGY 65

(a) Simple Hole (b) Complex Hole (c) Complex Hole - Bridge

Sampled surfaces Unsampled surfaces

Figure 3.10: Voxelized models, including unsampled voxels, of the regions of interest shown in Figures 3.1,
3.2, and 3.3, representing both simple and complex holes in the point cloud. The unsampled voxels appear
to reasonably define the portions of the buildings that were missing, and the free space between the bridge
trusses and road below is correctly identified.

An advantage to using this type of approach is that the probability of free space can be com-

puted from a single sample in a voxel, and additional samples in a voxel can be used to refine

the associated probability. This representation also allows for voxels to be represented with

continuous values, rather than only using the occupied/free labels. For simplicity, a threshold

will be implemented such that a probability of free space greater than the specified threshold

will be considered a free voxel, and a probability less than the threshold will be considered an

occupied voxel. Further investigation into the continuous nature of P f r ee warrants future work.

The voxel models shown in Figure 3.4 were updated to reflect the addition of the unsampled

voxel state and the results are shown in Figure 3.10. The models were created in Blender, where

free voxels are transparent and the unsampled voxels are indicated with orange; shading was

added for visualization purposes. As expected, the unsampled voxels fill the space inside the

buildings, however, they also appear to reasonably define the portions of the walls that were

missing in the point cloud. While there are some unsampled voxels surrounding the bridge

trusses, the majority of the region between the trusses and the road below have been identi-

fied as free space, something that may be difficult to ascertain from the previous models or

point cloud data alone without knowledge of the scene. These models show that the additional

information provided by the unsampled voxels can be used to identify the voids in the point

cloud.

CHAPTER 3. METHODOLOGY 66

3.2 Void Identification

Once the voxel space has been created from the point cloud data and the ray tracing is com-

plete, the voxel space can be used to extract information about both the structure and voids

present in the point cloud. Voids in the point cloud and corresponding voxel space are mani-

fested as unsampled voxels. This was shown theoretically in Figure 3.9, where the right side of

the rectangular shape was not reconstructed and thus resulted in a region of unsampled voxels,

as well as practically in the models shown in Figure 3.10.

While it may seem that the objective should be to create a voxel space that is free of un-

sampled voxels, this will never be the case. Due to the nature of surface reconstruction, it is

impossible to obtain a model free of unsampled voxels, as there will always be unsampled vox-

els under the model (e.g. in the interior areas of buildings and below the ground plane) in areas

that are impossible to image. Rather, the objective is to obtain a voxel space such that free

voxels and unsampled voxels are separated by occupied voxels.

3.2.1 Voxel Boundaries

The most pertinent information in the voxel space lies in the boundaries between the voxel

types. Given the ternary voxel classification (free, occupied, and unsampled), there are three

different types of boundaries to consider: the free-occupied boundary, the free-unsampled

boundary, and the occupied-unsampled boundary. An illustration of the boundaries in the

voxel space is shown in Figure 3.11.

A voxel face that is shared by a free voxel and an occupied voxel (i.e. the free-occupied

boundary) is indicative of known structure in the scene. Similarly, a voxel face that is shared by

a free voxel and an unsampled voxel (i.e. the free-unsampled boundary) is indicative of a void

or missing structure in the scene. Note that the occupied-unsampled boundary is theoreti-

cally complementary to the free-occupied boundary, where the free-occupied boundary will

be on the side of the surface model oriented in the general direction of the cameras, and the

occupied-unsampled boundary will be on the side of the surface model oriented away from the

general direction of the cameras. Inclusion of this third boundary does not gain any useful in-

formation and thus only two boundaries, the free-occupied boundary and the free-unsampled

boundary, will be considered.

CHAPTER 3. METHODOLOGY 67

B

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R R R R R R R R R R R R R R

R R R R R R R

R R R

R

G G G G G G G

G G G G

G

G G G G

G G G

G G G

G G G

G G

G G

B B

B

B

B

B

B B B B G

G

G G G

G G G

G

G

G G G

G G G

G G G

G

G

G

G G G

G

G G

G G

G

G

G G

G G

G G

G

G

G

G G G

G G G

G B B

Figure 3.11: A 2D visualization of the voxel space with the three types of voxel boundaries marked. The
free-occupied boundary is shown as a solid gray line, the free-unsampled boundary is shown as a dashed
orange line, and the occupied-unsampled boundary is shown as a dotted red line. The voxel space itself is
a subset of the voxel space depicted in Fig. 3.9.

If the free-occupied boundary represents known surfaces, and the free-unsampled bound-

ary represents unsampled surfaces, then the previous objective, to have occupied voxels be-

tween the free and unsampled voxels, can be restated such that the objective is to obtain a

model with minimal unsampled surfaces.

At this point, it is important to consider whether it is reasonable to assume that the unsam-

pled surfaces represent the most likely location of a surface that was not reconstructed in the

SfM process. For this to be the case, the ray tracing must have carved out the free space such

that the knowledge of unsampled voxels is complete. While this may be a reasonable assump-

tion in certain cases, it is not inherently true for voxel spaces derived from SfM point clouds,

particularly in areas that lacked image coverage. The trivial example of a 2D voxel space derived

from a single image, shown in Figure 3.9, illustrates this, where the rays cast from the camera

are blocked by the building structure, creating a shadow effect. This same effect can be seen

in the voxels spaces from image-derived point clouds where a single face of a building recon-

structed from multiple views, as shown in Figure 3.12. This indicates that it is not reasonable to

assume that an unsampled surface is a likely location for a surface that was not reconstructed.

The faces of the voxels that lie on the free-unsampled boundary define the unsampled sur-

CHAPTER 3. METHODOLOGY 68

Sampled surfaces Unsampled surfaces

Figure 3.12: Shadow cast by the building in the unsampled voxels as a result of ray-tracing in the voxel
space.

faces (voids) in the voxel space, and will be the basis for subsequent analysis. Using the voxel

faces allows for a distinction to be made between the vertical and horizontal surface bound-

aries. In addition, each unsampled voxel face can be associated with a normal, such that the

normal of the unsampled voxel face is oriented toward the neighboring free voxel. The unsam-

pled face normals will be exploited in methods forthcoming.

3.2.2 Distinguishing the Type of Void

Up to this point, there has been no distinction made regarding the type of void in the point

cloud. The focus of this work is to identify potential image locations such that inclusion of

inclusion of imagery from these locations will result in fewer voids in the point cloud resulting

from a lack of coverage. Lack of coverage or constant occlusion of an area in the imagery will

result in voids in the point cloud, as was stated previously, and the distinction between the two

causes is inconsequential because the inclusion of more imagery would be beneficial in both

cases.

However, voids that are a result of homogeneous or texturally difficult areas will likely not

benefit from the inclusion of more imagery. A technique, such as the one presented by Saponaro

et al.[42], to reconstruct textureless regions could be beneficial in such a case, but that is be-

CHAPTER 3. METHODOLOGY 69

yond the scope of this work. It is possible that a sufficient number of images with a sufficient

baseline between images were included in the reconstruction and therefore including more

images of the area will not improve the reconstruction. This makes it important to distinguish

voids that were a result of texturally difficult regions from other voids.

The voxel space does not have enough information to distinguish the type of void, however

the original imagery used to reconstruct the point cloud is available and can be leveraged to

identify homogeneous areas. An unsampled voxel face can be reprojected to the image frame,

and the local image texture can be analyzed to provide additional information about the cause

of the void.

Visibility of Unsampled Voxels

The unsampled voxels do not contain any points from the point cloud, and thus there is no

visibility information associated with them. In order to accurately analyze the image texture,

the camera frames in which the unsampled voxel would have appeared need to be determined.

A line-of-sight analysis, similar to the one that was used to create the voxel space, can be used

to determine visibility of the unsampled voxel surfaces.

The concept here is simple: if the unsampled voxel falls within the camera field of view,

and all of the voxels along the ray between the camera center and the unsampled voxel face are

free, then it is assumed the unsampled voxel face was imaged by the camera. If one or more

occupied voxels are present along the ray, it is assumed that the camera was unable to image

the unsampled voxel face because a surface exists between the camera and the unsampled

voxel face that would obstruct the unsampled voxel face from the camera’s view. As it has yet

to be determined whether the unsampled voxels in the voxel space contain surfaces or not, it

is assumed that unsampled voxels are opaque. Thus, the presence of one or more unsampled

voxels along the ray also results in an obstructed camera view. For the purposes of this analysis,

it is assumed that the content of the voxels is homogeneous, partial transmission of the voxels

is ignored and voxels are assumed to be either fully opaque (occupied) or fully transmissive

(free) based on the threshold chosen previously. An illustration of the ray-tracing for visibility

purposes is shown in Figure 3.13

In addition to the requirement that the line-of-sight between the unsampled voxel face and

the camera be free in the voxel space, it is also important to consider whether the ray would

CHAPTER 3. METHODOLOGY 70

Sampled surfaces Unsampled surfaces

Figure 3.13: Determining the visibility of the unsampled voxel faces using a line-of-sight analysis. For
each unsampled voxel face, a ray is traced back to each camera used to create the point cloud; if there are
no occupied or unsampled voxels on the ray, the ray is within the camera field-of-view, and the angle of
incidence onto the unsampled surface is not a grazing angle, then it is assumed that the voxel was visible
in the frame.

CHAPTER 3. METHODOLOGY 71

intersect the cameras focal plane array, as a point outside of the field-of-view of the camera

will not be imaged. This means that the pointing angle and field-of-view of the camera need to

be considered. A central circular field-of-view was selected for simplicity, such that it did not

include areas outside of the focal plane array. Selection of a narrow circular region will limit

the effects of geometric distortion in the imagery, but more importantly the implementation is

computationally efficient. The circular nature makes it possible to implement this with a dot

product to determine the angle between the camera axis and the ray of interest.

Another consideration here is the angle between the unsampled voxel face and the incident

camera ray. The angle of incidence can be used when determining whether a camera had po-

tential to image a voxel face, and can indicate instances where the angle is less than favorable

for imaging and reconstruction, such as grazing angles. Consider a nadir looking camera, and

a missing voxel on the side of a building. In this case, the free-unsampled face of interest is

likely oriented such that its surface normal is perpendicular to the angle of incidence from the

camera. While the line-of-sight between the camera and the unsampled voxel space may be

clear and within the cameras field-of-view, it is possible that the angle of incidence is a grazing

angle. Regions that are imaged at grazing angles are not well reconstructed, and therefore vis-

ibility of a camera for a particular unsampled voxel face will not be considered if the incident

angle is greater than a specified threshold angle.

To summarize, the visibility requirements for an unsampled voxel face are as follows: the

ray defined by the unsampled voxel face center and camera center must be within the field-of-

view angle of tolerance for a given camera system, and the incident angle between the unsam-

pled voxel surface normal and ray must not be a grazing angle; if both of the previous condi-

tions are satisfied, the ray-tracing algorithm is used to determine whether the line-of-sight is

clear. If the path is not clear, the unsampled voxel face is outside the specified circular view of

the camera system, or the incident ray is at a grazing angle, it is assumed that the point was not

seen by that particular camera. Three examples of unsampled voxel face visibility are shown

in Figure 3.14: (a) a grazing incident angle, where β is greater than the specified tolerance, (b)

a visible unsampled voxel face within the camera field-of-view, where the incident angle β is

within the tolerance, and (c) an unsampled voxel face that lies outside the camera field-of-view.

CHAPTER 3. METHODOLOGY 72

β	

Camera	

(a) Grazing Incident Angle

β	

Camera	

(b) Visible Unsampled Face

β	

Camera	

(c) Outside Camera FOV

Figure 3.14: There are three criteria used to establish the visibility of an unsampled voxel face from a
specified camera view: the incident angle of the ray onto the unsampled surface, the camera field-of-view,
and ray-tracing within the voxel space to ensure that only free voxels lie on the ray between the camera and
unsampled voxel face. The illustrations here show: (a) a grazing incident angle, (b) a visible unsampled
voxel face where the unsampled voxel face is within the camera field-of-view (FOV) and the incident angle
is not grazing, and (c) an unsampled voxel face that is beyond the camera field-of-view.

Image Texture Analysis

Now that camera visibility for each voxel face has been obtained, the camera projection matri-

ces can be used to get an image location for a particular voxel face. The reprojection equation

is given by:

~xcam = P~Xwor l d (3.10)

where~xcam is the homogeneous coordinate in camera space, P is the camera projection matrix,

and ~Xwor l d is the homogeneous coordinate in world space. Once the image coordinate of the

unsampled voxel space has been obtained, the next step is to analyze the local image texture.

The local image texture can provide context to the unsampled voxels in a way that the voxel

space cannot. Figure 3.15 shows two highlighted regions that feature a number of unsampled

voxels, and images of the area are shown for context. In the highlighted region in the river, the

image does not feature a lot of texture. The region on the eastern portion of the image however

does feature some texture. It is important to be able to distinguish between the two regions, so

as not to heavily influence the future image location identification with textureless regions that

CHAPTER 3. METHODOLOGY 73

Figure 3.15: Two regions of the voxel space featuring a number of unsampled voxels are highlighted, and
the corresponding portions of imagery are shown for context. The river region exhibits little texture in the
imagery, while the other region exhibits considerably more interesting features, suggesting that perhaps
this is a void due to lack of coverage.

will not reconstruct.

A statistical approach, in which texture is seen as a quantitative measure of the arrange-

ment of image intensities, is the most common and widely used approach to texture analysis,

particularly regarding natural scenes. One such statistical method is the spatial gray level co-

occurrence texture features, developed by Haralick [86], which assumes that the textural infor-

mation in the image is contained in the overall spatial relationships between the gray tones.

Haralick suggested a total of 28 textural features that are functions of gray level and angle, in-

cluding the angular second moment feature (a measure of homogeneity), the contrast feature

(a measure of local variation) and the correlation feature (a measure of gray-tone linear depen-

dencies). A downside of the gray level co-occurrence features is that they do not necessarily

correspond to the visual perception of the image. While the Haralick features have been used

successfully over a variety of applications on both small scale and large scale imagery, they

may be excessive in this application where the objective is not to distinguish between different

types of texture but rather only to determine whether there is sufficient texture to identify and

reliably match image features. It is likely that a much simpler metric can be used in this case,

as the only concern is if there is enough texture to identify image features and reliably match

them between frames.

A 3D point cloud, reconstructed from 22 images, served as the basis for a preliminary tex-

ture study to determine an appropriate texture metric. The objective was to extract regions of

CHAPTER 3. METHODOLOGY 74

Figure 3.16: Original WAMI Image of downtown Rochester, indicating 8 different regions of interest that
are shown in the smaller images and indicated in green on the original. The regions of interest were used to
analyze image texture, and study the relationship between various image statistics that represent texture
and the likelihood of reconstruction. Descriptions of the regions and corresponding area of the reconstruc-
tion are shown in Table 3.1.

the imagery that consistently reconstructed well, in addition to regions of imagery that consis-

tently reconstructed poorly, and investigate local statistical image metrics that could be used

to identify the regions that did not reconstruct. Eight regions of interest (ROI) were selected,

four that were reconstructed well in the point cloud (ROI-1, ROI-2, ROI-3, ROI-4), and four that

consistently lacked reconstruction points (ROI-5, ROI-6, ROI-7, ROI-8). The ROIs are shown

in Figure 3.18, with an original WAMI image of the downtown area shown for context. The 3D

reconstruction point cloud is shown in Figure 3.17, where the blue background was used to be

able to differentiate areas that lack points. Descriptions of the regions as well as visual descrip-

tions of the reconstruction are shown Table 3.1. And finally, the images and point cloud regions

are shown side by side in Figure 3.18.

Selection of the ROIs in each of the 22 images was performed by manually by selecting

100x100 pixel portions of the imagery. As this process was done by hand, it was not precise

CHAPTER 3. METHODOLOGY 75

Figure 3.17: Nadir view of the WAMI point cloud, provided for context in the texture analysis. The cor-
responding image and regions of interest are shown in Figure 3.16. The blue background was used to
highlight the holes in the point cloud so that they would be easily distinguished from the points them-
selves.

Figure 3.18: Eight regions of interest for texture analysis in the WAMI imagery. Descriptions of the image
region and quality of the point cloud reconstruction are shown in Table 3.1. Top: 100x100 pixel cropped
region of WAMI image. Bottom: Corresponding region of the point cloud, where the image area has been
highlighted in green.

CHAPTER 3. METHODOLOGY 76

Table 3.1: Names and visual descriptions of the point cloud reconstruction for the eight regions of interest
in the texture analysis. The original image context is shown in Figure 3.16, and the corresponding cropped
WAMI image sections and respective sections of the point cloud are shown in Figure 3.18.

Number Name Description

1 Blue Cross Arena Roof Good reconstruction, dense, minor holes in
central portion

2 Convention Center Roof Very good reconstruction, dense

3 Parking Structure North
of Convention Center

Good reconstruction around parking lines,
holes in driving lanes

4 Genesee River East of
BCA

Good reconstruction in the central portion,
some minor holes, larger holes closer to the
bridges

5 Genesee River North of
490 Bridge

No points in point cloud, did not
reconstruct

6 Side of the Former
Changing Scenes Restau-
rant

Poor reconstruction, a few points along the
horizontal lines on the sides of the building,
but otherwise sides do not have points

7 Trucking Parking Lot
Northwest of 490 Bridge

Sparse reconstruction, points congregate
around parking lines, large holes in driving
lanes

8 Side of Xerox Building Three out of four sides contain points, holes
present

CHAPTER 3. METHODOLOGY 77

and though care was taken to extract the same general area for each ROI across the images, the

perspective distortions and rotation of the imagery resulted in slight differences in the selected

regions. It should be noted that different sides were used for the two buildings (ROI-6 and ROI-

8), based on which was visible in the imagery, and only 14 of the 22 images contained the Xerox

building (ROI-8).

The objective of this study was to determine if a statistical image texture metric could be

used to accurately estimate whether a region would generate features that could be used for

reconstruction. There are two steps in the 3D reconstruction workflow that employ feature de-

tection and matching: the initial identification of image-to-image correspondences for use in

triangulation, and the dense stereo matching. In the 3D workflow used here, initial correspon-

dences are determined with SIFT, and dense stereo matching is performed by PMVS. Poten-

tial feature locations for SIFT are identified by looking for local extrema in the difference-of-

Gaussian images across scale space, and corresponding descriptors are gradient-based repre-

sentations of the local image area. PMVS features also use a difference-of-Gaussian approach to

look for feature locations, in combination with a corner detection scheme. Because the initial

feature detection employed by SIFT and the detection performed by PMVS use similar meth-

ods, the following will focus on the number of SIFT features.

For each ROI, SIFT features were computed using VLFeat [41]. In this implementation, the

peak threshold parameter can be used to filter the peaks in the difference-of-Gaussian scale

space that are too small in absolute value, where small peaks can be indicative of unstable

features. Fewer features are obtained as the peak threshold increases. SIFT features were com-

puted with peak threshold values of 0.0 and 0.5, and the number of features for each ROI was

tallied. The average number of features across the set of 22 images, as well as the minimum and

maximum number of features for each ROI are shown in Table 3.2. As expected based on the

reconstruction, ROI 1-4 average a large number of features, while ROI 5-8 average fewer fea-

tures overall, and the minimum and maximum are indicative of the spread of values. The trend

is even more pronounced when the peak threshold is increased to 0.5. Note that ROI-3 (the

parking structure) has at least one image that obviously has very few features, with a minimum

of 10, but also has at least one image with a lot of features, with a maximum of 81. The average

value is consistently high, even after the peak threshold is increased. It may seem that ROI-

6 (the former Changing Scenes restaurant), and ROI-7 (the trucking lot) have a high average

number of features at 31.32 and 35.86 respectively at a peak threshold of 0.0. However, a peak

CHAPTER 3. METHODOLOGY 78

Table 3.2: Number of SIFT features computed for each ROI using VLFeat [41] for a peak threshold of 0.0
and 0.5. The average value was computed across 22 images (except for ROI-8, for which there were only 14
images available), and the minimum and maximum values are indicative of the range. As expected, ROI
1-4 exhibit more features than ROI 5-8, and this trend is even more pronounced with an increased peak
threshold.

Threshold 0.0 Threshold 0.5
avg. min. max. avg. min. max.

1. Blue Cross Arena 48.32 36 58 28.23 20 37
2. Convention Center 40.18 24 57 39.18 24 55
3. Parking Structure 43.45 10 81 32.86 0 65
4. River - North 45.5 33 56 24.77 14 37
5. River - South 13.05 3 25 0 0 0
6. Rotating Building 31.32 17 48 2.23 0 6
7. Trucking Lot 35.86 15 55 1.05 0 6
8. Xerox Building 7.29 3 16 0 0 0

threshold of 0.5 reduces the average number of features for ROI-6 and ROI-7 to 2.23 and 1.05

respectively. The trends exhibited here confirm what was seen in the reconstruction, validating

the use of these particular image regions in the texture study.

Now that the number of features for each ROI has been established, a statistical texture

metric that can be used to reliably determine whether a particular area will be reconstructed

must be determined. Two metrics were chosen as possible candidates: an average local gradi-

ent and a local image variance. The average local gradient was chosen because of the use of

gradient-based feature descriptors while the local variance was chosen for its relative ease of

computation and intuitive relation to image texture.

The first metric to be explored is the average local gradient. The computational formula for

the magnitude of an image gradient is given by:

‖5 f ‖ =
((
∂ f

∂x

)2

+
(
∂ f

∂y

)2) 1
2

(3.11)

where ∂ f
∂x is the gradient in the x-direction, and ∂ f

∂y is the gradient in the y-direction. The gra-

dient was computed for each pixel in a given image, and the average of all the gradient values

in the neighborhood, in this case the entire 100x100 image, was used as a measure of texture.

CHAPTER 3. METHODOLOGY 79

Table 3.3: Average image gradient computed for each ROI at full resolution, half resolution, and quarter
resolution. The reported average value is an average across 22 images (except for ROI-8, for which there
were only 14 images available) of the average image gradient for each ROI, and the minimum and max-
imum values are indicative of the range. Note that the average gradient seems to increase for ROI 1-4 as
the resolution decreases, but decrease for ROI 5-8.

Full Resolution Half Resolution Quarter Resolution
avg. min. max. avg. min. max. avg. min. max.

1. Blue Cross Arena 2.00 1.76 2.30 1.95 1.72 2.10 2.24 1.82 2.53
2. Convention Center 4.94 3.48 6.22 6.99 5.18 9.16 10.87 7.41 15.33
3. Parking Structure 1.72 1.36 1.98 2.06 1.38 2.41 1.90 0.98 2.46
4. River - North 1.45 1.09 2.21 1.41 1.25 1.74 1.78 1.52 2.29
5. River - South 0.77 0.56 1.21 0.60 0.55 0.68 0.42 0.39 0.46
6. Rotating Building 0.94 0.71 1.24 0.96 0.84 1.18 0.93 0.74 1.31
7. Trucking Lot 1.01 0.77 1.35 0.95 0.88 1.07 0.82 0.55 0.96
8. Xerox Building 1.47 0.96 1.85 1.45 0.76 2.20 0.69 0.59 0.82

The average gradient results computed for the 100x100 region are shown in Table 3.3, indi-

cated as full resolution. The initial trends at full resolution did not correlate to the number of

features as expected. When computing feature locations, SIFT employs an image pyramid to

achieve scale invariance, and the effect of this pyramid could potentially account for the unex-

pected behavior from the average gradient, which in this case was only computed for a single

scale. The gradient has some response at the highest resolution, but that response may start

to grow as the resolution decreases, and it is possible that the average gradient value could

change drastically at various scales. To simulate the effect of the image pyramid, the average

gradient values were also computed for half resolution (50x50), and quarter resolution (25x25),

where the degraded resolutions were computed by downsampling the original image area; the

average gradient results from the downsampled images are also shown in Table 3.3.

Looking at the results, the average local gradients for ROI 1-4 are higher than those for ROI

5-7, but ROI-8 would fall into the higher category at both the full and half resolutions. At the

various resolution levels, there is no distinct trend for the average local gradient; in some cases

the gradient increases as the resolution decreases, while in others the gradient decreases as the

resolution decreases. At quarter resolution, the trend for the average local gradient correlates

well with the number of features expected in those regions, but this pattern is not consistent

CHAPTER 3. METHODOLOGY 80

across all of the resolution levels. Interpreting from these results, there is no distinct separation

between the regions that generate a high number of features, and those that generate a low

number of features. A downside to the use of the average local gradient is the lack of intuition

at what the value of the average local image gradient represents.

The average local gradient was chosen as a possible candidate for a texture metric because

many of the feature detectors take advantage of image gradients. While SIFT is a gradient-based

feature descriptor, the detection of possible feature locations is performed by looking for ex-

trema in difference-of-Gaussians. SIFT also employs an image pyramid such that it is possible

to search for features at a variety of scales. In this case the average local gradient is computed

between neighboring pixels, and the response of the gradient can change drastically at different

image scales or resolutions. The unpredictability of the local gradient response at varying im-

age scales, as well as the lack of separability between the reconstructed and non-reconstructed

image regions makes the local gradient less than ideal as a possible texture metric for deter-

mining failed reconstruction as a result of homogeneous regions.

Local image variance provides another possible texture metric. The computational formula

for variance is given by:

σ2
X = E[

(X −E [X])2]
= E[

X 2]− (E [X])2 (3.12)

where E is the expected value; it can be thought of as the mean of the square minus the square

of the mean. Variance can be implemented by blurring the image with box filters, where a nor-

malized box filter is used to represent the expected value of the neighborhood of interest. Note

that the unit of variance in this case would be squared gray-level, whereas the unit of standard

deviation would be simply gray-level, as standard deviation is the square root of variance. The

following results are given as standard deviations because that value is more intuitive. The stan-

dard deviation was computed for each ROI at full resolution (100x100), as well as half resolution

(50x50), and quarter resolution (25x25), and the results are shown in Table 3.4.

The average standard deviations for ROI 1-4 are higher than those for 5-8, and there is a dis-

tinct separation between the reconstructed and non-reconstructed ROI at all of the resolutions.

The standard deviation for ROI-2, the Convention Center, is significantly higher than the other

CHAPTER 3. METHODOLOGY 81

Table 3.4: Standard deviation computed for each ROI at full resolution, half resolution, and quarter reso-
lution. The reported average value is an average across 22 images (except for ROI-8, for which there were
only 14 images available) of the standard deviation for each ROI, and the minimum and maximum val-
ues are indicative of the range. The standard deviation decreases as the resolution decreases, but there is
distinct separability between regions that reconstructed well (ROI 1-4), and those that did not (ROI 5-8) at
each resolution.

Full Resolution Half Resolution Quarter Resolution
avg. min. max. avg. min. max. avg. min. max.

Blue Cross Arena 4.58 3.91 5.28 4.26 3.54 4.90 3.91 3.19 4.58
Convention Center 42.34 35.27 49.64 42.19 35.17 49.50 41.75 34.80 48.95
Parking Structure 3.74 2.83 4.78 3.47 2.38 4.56 2.90 1.89 3.98
River - North 3.69 3.09 4.32 3.48 2.93 4.14 3.34 2.79 4.01
River - South 1.11 0.81 1.44 0.88 0.71 1.09 0.73 0.56 0.96
Rotating Building 1.88 1.42 2.83 1.72 1.33 2.76 1.53 1.16 2.58
Trucking Lot 1.57 1.30 1.91 1.31 1.13 1.46 1.06 0.84 1.18
Xerox Building 2.08 1.45 2.70 1.79 1.12 2.46 1.01 0.77 1.32

regions due to the high contrast of the black and white on the rooftop. The minimum stan-

dard deviations for ROI-3 and ROI-4 are slightly lower than ROI-1, which may indicate that in

some images there was not sufficient structure, but likely there was enough in the other images

that it was not a problem. Similarly, the higher maximum standard deviations for ROI-6 and

ROI-8 may indicate that at least one image had adequate texture, but that there were not a suf-

ficient number of images with adequate texture for proper reconstruction. The local standard

deviation has a higher response at the higher resolutions, decreasing as resolution decreases.

However it appears to have a more uniform response across the image scales than the local

average gradient.

This shows that some texture metric, in this case standard deviation, can be used as an

indicator of whether an area will be rich with possible features to match, or deficient. As the

standard deviation appears to show a better correlation than the average local gradient to the

number of features that are generated for each of the regions of interest, it will serve as the

metric to determine whether a region in the voxel space was not reconstructed due to a lack

of texture in the imagery. Unsampled voxel faces that have an average standard deviation less

than a specified threshold will be removed from consideration in subsequent analysis.

CHAPTER 3. METHODOLOGY 82

In this case, it is better to have a false alarm (indicating a region has adequate texture for

reconstruction when in fact it does not), rather than a miss (indicating a region does not have

adequate texture for reconstruction when in fact it does) given an objective to make the voxel

space as complete as possible by minimizing the number of unsampled surfaces. It is impor-

tant to note that this texture metric will be dependent on both the window size for which the

standard deviation is calculated, as well as the threshold itself.

3.3 Future Image Location Identification

Now that voids that are a result of lack of coverage and occlusion have been identified, the

next step is to determine a method for filling in these surfaces. Due to the nature of this type of

surface reconstruction, it is impossible to obtain a model that is devoid of unsampled voxels, as

there will always be unsampled voxels under the surface model. An ideal model would be free

of unsampled surfaces, such that free voxels are separated from unsampled voxels by occupied

voxels in all areas.

As was discussed in Sections 2.3 and 2.4, traditional surface reconstruction and hole filling

algorithms will not work in most cases in the point cloud. It is believed that the inclusion of im-

agery in the reconstruction process that covers the void areas will result in a point cloud with

fewer voids that are a result of lack of coverage in the imagery. Therefore it becomes impor-

tant to identify potential camera locations that could provide optimal views of the void areas,

particularly those that have not been seen in multiple views previously.

There are two ways to approach the problem of finding optimal imaging locations:

1. The Backward Approach: What is the field-of-view of each voxel? Given a voxel of inter-

est, determine the solid view angle that is unobstructed by projecting out into the voxel

space.

2. The Forward Approach: What voxels are visible from a specific point in space? Given a

specific location and viewing angle, determine which voxels would be visible by tracing

through the voxel space.

While both approaches are designed to address the same problem, where is the best view of the

voxels of interest, they differ in geometric complexity. Starting with the backward approach, the

CHAPTER 3. METHODOLOGY 83

geometry of each are explored in the following sections in order to determine which method

should be used to proceed.

3.3.1 The Backward Approach

This approach may be the more intuitive of the two, and admittedly was the first one to be

considered. For simplicity, consider the problem first in two dimensions. Given a voxel face

of interest, rays can be cast out into the voxel space in such a way as to determine the field-

of-view of the voxel face. If a ray meets an obstruction then that region is removed from the

potential field-of-view. Because the content of unsampled voxels remains unknown, an ob-

struction in this case is defined to be either an occupied or unsampled voxel that intersects the

ray. This process is repeated until the potential field-of-view of the voxel has been adequately

sampled. In 2D, a completely unobstructed voxel face could potentially have a field-of-view of

180 degrees.

A 2D diagram of the backward approach is shown in Figure 3.19, where there is a progres-

sion starting with a single voxel of interest in (a) and moving to three voxels of interest in (c).

Determining the optimal viewing location for each voxel face could potentially lead to hun-

dreds of images, depending on the number of unsampled voxel faces. Depending on the prox-

imity of the unsampled voxel faces, this could also lead to narrow baselines between images. It

is more feasible to determine where the fields-of-view from multiple voxels overlap to predict

a viewing location, while also keeping in mind the camera pointing angle and camera field-of-

view. In Figure 3.19, as the number of voxels increases, the optimal field of view where there

is overlap narrows, potentially converging to an optimal view solution. In the example given

however, the optimal positions predicted by combining the three voxel fields-of-view will re-

sult in grazing views of the voxel faces, due to the fact that the three voxels are on parallel facing

surfaces. While the ray tracing may indicate that the voxel face can be seen, grazing angles are

not optimal for reconstruction, and severe grazing angles may even result in the surface not

appearing in the image.

Just as the angle of incidence between the camera ray and the unsampled surface normal

was used in determining the unsampled voxel visibility to eliminate grazing angles, it can also

be used to mitigate against grazing angles when considering potential future image locations.

There are two potential ways to take advantage of this information: (1) using a threshold to

CHAPTER 3. METHODOLOGY 84

(a) One Voxel

(b) Two Voxels

(c) Three Voxels

Figure 3.19: A 2D diagram of the “backward approach,” shown with one, two and three voxels in (a), (b),
and (c) respectively. The voxel field-of-view is limited by the buildings in each case, and the potential
viewing locations are shown with the arrow. As additional voxels are added, the field-of-view to be able to
image all of the voxels narrows.

CHAPTER 3. METHODOLOGY 85

limit the angles allowed, or (2) using some sort of functional distribution to weight selection

such that grazing angles are given a low probability for selection. The following approach will

use the single threshold for simplicity. Figure 3.20 shows the impact that the addition of surface

normals and an angular threshold would have on the previous scenario. In this case, it indicates

that multiple images are required in order to adequately capture all of the missing voxels.

Using the previous figures, the backward approach seems to be relatively straightforward

in 2D. However, the pointing direction of the camera and its field-of-view have been neglected

here, and would contribute additional complexity. The biggest challenge in the backward prob-

lem however is the addition of the third dimension, which requires the projected cone from the

voxel face to be a 3D solid angle. An illustration of the 3D case is shown in Figure 3.21. As has

been stated previously, the solution space for the possible location is six-dimensional because

the solution needs to consider not only the location of the imaging platform, but also the point-

ing direction. The difficulties are exacerbated in the backward approach because the solution

lies in angle space.

3.3.2 The Forward Approach

While the solution will still have six parameters, the forward approach is conceptually more

manageable. The idea in the forward approach is that, given a location and pointing direction

in addition to knowledge of the camera field-of-view, ray tracing can be used to determine

which unsampled voxel faces are visible. A 2D diagram of this approach is shown in Figure

3.22, where the aircraft is shown at 3 different positions. Again, the surface normals of the

unsampled voxel faces can be taken into account to mitigate grazing angles, such as those that

would likely result from position 2 shown in Figure 3.22(b).

From a computational perspective, the forward approach is readily extensible to 3D by sim-

ply using a 3D location and viewing angle. An illustration is shown in Figure 3.23; note that the

solution space here, shown with the blue ‘+’ signs, is in 2D as only the X and Y positions of the

aircraft are varying. The biggest challenge is that the solution space is large and the ray tracing

is computationally expensive, but this is also true of the backward approach. Ultimately, the

forward approach was selected for ease of implementation.

CHAPTER 3. METHODOLOGY 86

(a) One Voxel

(b) Two Voxels

(c) Three Voxels

Figure 3.20: A 2D diagram of the “backward approach,” shown with one, two and three voxels in (a), (b),
and (c) respectively. In this case however, the normals of the voxel faces are used to limit the potential
field-of-view to avoid grazing angles, as they are not optimal for reconstruction purposes. The one and
two voxel cases are similar to those in Figure 3.19, with just slightly narrower fields-of-view. Due to the
geometry shown here though, the addition of the third voxel indicates that it will not be possible to obtain
views of all three voxels and multiple images must be considered.

CHAPTER 3. METHODOLOGY 87

(a) One Voxel

(b) Two Voxels

Figure 3.21: A 3D diagram of the “backward approach,” shown with one and two voxels in (a) and (b)
respectively. The backward approach becomes much more complex in 3D, dealing with solid angles.

CHAPTER 3. METHODOLOGY 88

(a) Position 1

(b) Position 2

(c) Position 3

Figure 3.22: A 2D diagram of the “forward approach,” shown at three different positions in (a), (b), and
(c).

CHAPTER 3. METHODOLOGY 89

(a)

(b)

Figure 3.23: A 3D diagram of the “forward approach” for two different positions. Note that the solution
space shown here with the blue positions is only 2D, given that only the X and Y positions are varying.

CHAPTER 3. METHODOLOGY 90

3.3.3 Cost Function

The next step is to determine a criteria that can be used to resolve optimal imaging locations,

and this is where a cost function comes into play. Ultimately, the goal of this process is to use

additional imagery in the 3D workflow, such that the resulting reconstruction contains more

points and the subsequent voxel space contains fewer unsampled surfaces. It is impractical

that the criteria of the cost function be based on the resulting reconstruction, as this would

require imagery from all possible locations to have previously been acquired. Therefore the

cost function must be based on some aspect of the current voxel space.

The most obvious choice is to determine the position and pointing angle at which the most

unsampled voxel faces are visible, giving the best probability for improving the reconstruction.

It should be noted that the image acquired from this location may be from a vastly different

perspective than the ones previously used in the 3D reconstruction, and therefore there is no

guarantee that use of a single image will improve the reconstruction based on the criteria here.

The objective of this research is to find the location from which the most unsampled voxel faces

are visible and more than just this single image may be required for improvements to the 3D

reconstruction, presenting an area for future work.

The same method that was used to determine voxel visibility in Section 3.2.2 can be ap-

plied here. In order for an unsampled voxel face to be visible from a specific location, it must

be within the camera field-of-view. Again, a circular field-of-view will be used for simplicity.

Additionally, the line-of-sight from the potential camera location must be clear. The line-of-

sight is considered clear if the voxels that lie on the ray between the unsampled voxel face and

the potential camera location are all free; the presence of any occupied or unsampled voxel on

the ray renders that unsampled voxel face not visible. Both of these criteria are either true or

false.

The angle between the surface normal of the unsampled voxel face and the incident ray

provides another criteria. Previously in determining visibility for the texture analysis, this angle

was used to employ a threshold such that grazing angles could be eliminated from consider-

ation. In this case, it could be used to weight the contribution of each unsampled voxel face

based on probability of reconstruction.

Due to the iterative nature of the voxel traversal algorithm, a purely analytical cost function

is improbable. As such, an algorithmic approach has been taken and is shown in algorithm 3.

CHAPTER 3. METHODOLOGY 91

Algorithm 3 Algorithmic criteria for a given image location.

Input: Voxel map, and a camera with origin~r and direction~s
Output: List of visible unsampled voxel faces

for each unsampled voxel face do
Compute the ray ~p, defined by the unsampled voxel face center and the camera origin
if ~p is inside the camera FOV then

if the line-of-sight along ~p is clear in the voxel map then
Compute the angle of incidence, θ, between vecp and the surface normal
Contribution of the unsampled voxel face is weighted with w(θ)

The result of algorithm 3 is a list of unsampled voxel faces that are visible from the given

location, along with the corresponding angle of incidence. The contribution of each unsam-

pled voxel face will be weighted based on the angle of incidence, and the sum of the weights

will be used to determine the best image location. A discussion of the weighting function can

be found in Section 4.3.1.

3.3.4 Constraints

As was stated previously, there are six degrees of freedom when considering the camera location

(X ,Y , Z) and pointing (ω,φ,κ), and the solution space is large. Because of this, identifying

optimal imaging locations is not a computationally tractable problem. To make the problem

more manageable, three constraints to the camera location and pointing will be applied.

Circular Camera Field-of-View

The constrained circular field-of-view for the camera that was used to determine line-of-sight

for the unsampled voxel faces (Section 3.2.2) will be used again here. The circular field of view

is computationally efficient, because a dot product can be used to determine if an unsampled

voxel face is within the field-of-view of the camera. This eliminates one degree of freedom

because the camera pointing can be defined by a unit vector in the direction of the camera’s

principle axis. Because the circular field-of-view is designed to fall within the bounds of the

focal plane array, any arbitrary choice of the image plane axes when designing flight plans will

be able to see the unsampled voxel faces.

CHAPTER 3. METHODOLOGY 92

Altitude

For the purposes of this research, it is assumed that the potential image locations are con-

strained to an airborne imaging platforms, and therefore potential altitudes can be bounded

given that there is a limited range of flying altitudes for an aircraft. Beyond that, there are also

numerous reasons to restrict the altitude to a single flying height. For flight planning purposes,

it is traditional that an aircraft maintain altitude, rather than climbing and diving at random.

Changes in altitude will affect the ground resolution of the imagery, which may or may not

impact the 3D reconstruction.

Another consideration is the effect of altitude on the cost function. The criteria used to de-

termine the best potential imaging locations is based upon maximizing the number of unsam-

pled voxel faces that are visible from a specified location and pointing vector. Simple geometry

dictates that the footprint of the imaging system on the ground is a function of the aircraft al-

titude, and a higher altitude will have a larger footprint than a lower altitude. Based on the

“number of unsampled voxel faces visible” criteria, higher altitudes will always be favored due

to the fact that their ground footprint is larger and thus they have the potential to see more of

the unsampled voxel faces. Because of this, a constant altitude will be used to determine the

optimal imaging locations, thereby eliminating one more degree of freedom.

Sensor Pointing

Additional constraints on the pointing angle of the imaging system can be employed based on

the capabilities of the sensor platform. Two types of camera pointing will be considered here:

fixed pointing, and fixed stare point. A system with a stationary camera has fixed pointing,

such that the principle axis of the camera remains unchanged in relation to the aircraft. A

system with a mobile camera can employ a fixed stare point, such that the principle axis of

the camera changes in relation to the position of the aircraft relative to the fixed stare point

in the scene. Each case defines the camera pointing, thereby eliminating the remaining two

degrees-of-freedom associated with the camera pointing.

CHAPTER 3. METHODOLOGY 93

Sampled surfaces Unsampled surfaces

Figure 3.24: An illustration of the process used to obtain imaging locations. A regular grid of potential
positions for the aircraft are shown above the model (left). At each location the number of voxels on the
free-unsampled boundary that are visible is computed, which is used to make the heat map (right), where
locations shown in red can see more voxels than those shown in blue.

3.3.5 Sensor Positions

With the previous constraints implemented, the solution space has been reduced to only two

degrees of freedom, the (X ,Y) location of the aircraft. Due to the nature of the cost function,

and the amount of computations required for each (X ,Y) location, the locations will also be

quantized. Quantization should have little impact on the results, provided that the distance

between locations is small, given that positioning of an aircraft in flight is less than exact de-

pending on flight control capability.

For each camera location, the ray-tracing algorithm is employed for every voxel within the

circular field-of-view of the camera to determine whether the line-of-sight is clear. The process

is repeated in different locations, allowing for the development of a map, where the value at

each location is indicative of the number of boundary voxels of interest that were visible from

that location using the specified pointing angle. This map can then be used to determine opti-

mal imaging locations by looking for the locations that saw the greatest number of unsampled

voxels. An illustration of this process is shown in Fig. 3.24.

CHAPTER 3. METHODOLOGY 94

Generate
Voxel Space

Identify
Voids

Suppress
Voids from
Texturally
Flat Areas

Compute
Number of

Voids Visible
at Locations

Point Cloud
Data

Map of
Image

Locations

Figure 3.25: High level diagram of the work flow used to obtain future aircraft image locations from point
cloud data.

3.4 Voxel-Based Workflow

An end-to-end work flow diagram of the procedure used to obtain potential aircraft image lo-

cations from point cloud data is shown in Figure 3.25. Using the point cloud as input, a voxel

space is generated using the procedure from Section 3.1. Voids in the voxel space are identified

as voxels that lie on the free-unsampled boundaries and voids that are a result of homogeneous

areas are removed from consideration using the procedure described in Section 3.2. Finally the

remaining voxels of interest are used to identify potential image locations as described in Sec-

tion 3.3, and the result is a map of potential future image locations, where the value at each

location corresponds to the number of unsampled voxels that can be seen from that location

and pointing angle.

Chapter 4

Results and Analysis

The following Chapter presents results using the voxel-based workflow. Generation of the voxel

spaces was tested on both real and synthetic data to verify it was performing as expected. De-

tailed descriptions of the datasets used is available in Appendix A.

4.1 Voxel-Based Visibility Analysis

4.1.1 Validation of Approach with DIRSIG Data

The algorithm to generate the voxel space, outlined in Section 3.1, was applied first to truth

data from a synthetic data set that was generated using DIRSIG. The DIRSIG dataset is unique,

in that each image is accompanied by truth data which provides a 3D location and point normal

for every pixel. The truth data can be used to generate a point cloud for each image such that

every pixel in the image has a corresponding point in world coordinates. These point clouds

can then be used to test the voxel workflow, without relying on the 3D reconstruction process to

generate a point cloud, to ensure that the voxel space creation is functioning as expected. The

DIRSIG truth data provided a set of noise-free initial data to test, and using the truth data made

it possible to study a point cloud derived from a single image and combinations of vantage

points that would not produce results through the 3D workflow due to lack of correspondences.

Voxel spaces were computed using truth data sets from one, two, three, and four images

(e.g. the truth point clouds from the corresponding images were combined), where the im-

95

CHAPTER 4. RESULTS AND ANALYSIS 96

Figure 4.1: Nadir view of th synthetic for reference, shown for comparison purposes with the DIRSIG re-
sults.

ages were captured facing cardinal directions. Given that the important information in the

voxel space lies in the boundaries, as discussed in Section 3.2.1, 3D models of the space can

be created by visualizing the free-occupied boundaries (i.e. sampled surfaces), and the free-

unsampled boundaries (i.e. unsampled surfaces). This type of visualization is shown in Figure

4.2 (created with Blender [79]), where the sampled surfaces are shown in grey, and the unsam-

pled surfaces are shown in orange. In this case, any voxel that contained points from the point

cloud was treated as occupied. A nadir view of the scene for comparison purposes is shown in

Figure 4.1.

In the one-camera case, sampled surfaces only exist on the side of the model facing the

camera. On the side of the model that is oriented away from the camera, large areas of unsam-

pled surfaces are evident in the shadowing that results from the ray-tracing. As more views are

added, the number of unsampled surfaces in the model decreases and the shadowing effects

begin to disappear as views overlap. When the four views are combined, the majority of the

voxel space is sampled surfaces, and the unsampled surfaces that remain exist under the tree

canopies, or in areas where the four views did not overlap completely. The results presented

here using simple cases indicate that the voxel space generation algorithm is performing as

expected.

CHAPTER 4. RESULTS AND ANALYSIS 97

(a) One camera (b) Two Cameras

(c) Three Cameras (d) Four Cameras

Sampled surfaces Unsampled surfaces

Figure 4.2: Visualization of the DIRSIG voxel spaces in 3D, where sampled surfaces are shown in gray,
and unsampled surfaces are shown in orange. In the single-camera case (a), the shadowing from the
ray tracing is readily apparent. This effect is reduced when the second camera is added in (b), and more
surfaces are filled in. In the four-camera case (d), most of the unsampled voxels lie beneath the trees and
on the outskirts of the model where all four views did not overlap.

CHAPTER 4. RESULTS AND ANALYSIS 98

4.1.2 Generation of Voxel Spaces from Image-Derived Point Clouds

Expanding the voxel space generation algorithm for results from the workflow is a straightfor-

ward problem. The patch files, output by the PMVS algorithm, indicate which cameras were

used to reconstruct each point. The ray-tracing algorithm is used to determine the free space

between the point and each camera used to reconstruct the point. The following results depict

downtown Rochester, NY, and the point cloud imagery was collected with the Exelis WAMI sen-

sor. The point cloud is the same one that was shown in Section 2.1.7, and more information on

the sensor is available in Appendix A.

Using the WAMI point cloud data, a voxel space was derived using 4.0m voxel resolution,

where all voxels containing points were treated as occupied. The results are shown in Figure

4.3 along with the corresponding point cloud. The most notable feature in the voxel space are

the “walls” of unsampled surfaces that surround the model. The irregular shape is due to the

boundaries of the point cloud, but the walls themselves are not a mistake in the process. The

walls are indicative of a free-unsampled boundary around the point cloud, which is created be-

cause the voxel space is defined as the bounding cuboid of the point cloud, which encompasses

regions beyond the irregular shape of the point cloud. The rays to the points on the boundary

of the point cloud will carve out the free space, but beyond that there is no information to be

added, and therefore those voxels remain unsampled creating the free-unsampled boundary

walls around the bounds of the point cloud. This effect can be seen in the illustration in Figure

3.9, where voxels that are outside of the field-of-view of the camera are unsampled, and those

inside are free, resulting in the creation of a free-unsampled boundary. The walls are angled in

this case due to the oblique nature of the imagery.

As the walls are not of particular interest here, an edge condition was defined to mitigate

their existence. An unsampled voxel is considered to be an edge voxel if the edge of the voxel

space can be reached in either the X or Y direction without encountering a sampled voxel.

This removes a majority of the walls surrounding the point cloud. Methods have also been

implemented to extract portions of the completed voxel space that define a particular region of

interest.

Another point of interest here is some of the shadowing effects that are evident along the

edges of the model where not as many views were used in the reconstruction, indicating that

these areas could benefit from more views from different perspectives. Unsampled surfaces are

CHAPTER 4. RESULTS AND ANALYSIS 99

also scattered throughout the model, as expected based on the lack of data in some regions of

the point cloud. At this point it is important to consider the effect that the parameters of the

voxel space impact the number of unsampled surfaces.

4.1.3 Investigation of Voxel Space Parameters

Construction of the voxel space is currently dependent on two user-defined parameters: the

voxel size and the threshold on the probability of free space, used to classify the voxels into the

three classes. The effect of those parameters is investigated here, using the WAMI dataset.

Voxel Size

A voxel space is defined by the size of the voxels, where the voxels are cubic in nature for the

purposes of this work. There are trade-offs to consider between the size of the voxel, the pro-

cessing time, and the amount of data to store. Decreasing the voxel size by a factor of 2 in-

creases the memory required to store it by a factor of 8, in addition to increasing the number of

voxels that a ray must pass through, thereby increasing processing time. The limiting factor in

the processing time is the voxel traversal algorithm, which increases as O (n2) to O (n3) as voxel

size decreases, depending on the data. Depending on the size of the point cloud, it has been

necessary to limit the voxel resolution in some cases due to limitations in memory capacity.

While it may seem intuitive that smaller voxels will provide an increased level of resolution

in the voxel space, this is only true if the dataset is sufficiently dense to support this higher

resolution. The effect of the voxel size as a function of the number of unsampled surfaces in the

model is shown in Figure 4.4. The unsampled fraction of voxel surfaces was computed using

a subset of the WAMI point cloud voxel space. The fraction was computed for two different

subsets and the results were very similar. The relationship between the unsampled fraction

and the voxel size exhibits an exponential decay. The point of interest here is the rapid inflation

of the unsampled surface fraction as the voxel size approaches zero. While it is important for

voxels to be sufficiently small to capture details in the scene, it is also important that the voxels

are sufficiently large such that the free space in the scene can be adequately sampled. The rapid

increase in the number of unsampled surfaces in the scene as the voxel size decreases is a result

of undersampling the free space. Undersampling the free space results in spurious unsampled

voxels, thus creating an influx of unsampled surfaces.

CHAPTER 4. RESULTS AND ANALYSIS 100

(a) Image Derived Point Cloud

(b) Voxel Space with 4.0m Voxels

Sampled surfaces Unsampled surfaces

Figure 4.3: The WAMI image derived point cloud is shown in (a), and the sampled and unsampled surfaces
of the voxel space (computed with a voxel size of 4.0m) are shown in (b). Note the apparent walls of
unsampled surfaces that surround the point cloud. This is a result of the ray tracing algorithm and the
oblique nature of the imagery.

CHAPTER 4. RESULTS AND ANALYSIS 101

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Voxel Size [m]

U
ns

am
pl

ed
 F

ra
ct

io
n

Voxel Size [m] Unsampled Fraction
0.5 0.92402

0.66 0.72868
0.75 0.62661

1 0.46273
1.5 0.33201
2 0.27972

2.5 0.25431
3 0.22344
4 0.19546
5 0.19693

Figure 4.4: Plot of the fraction of unsampled voxel faces versus the voxel size [m]. Note that the number of
unsampled voxel faces rapidly increases as the voxel size decreases.

The effect of voxel resolution is more apparent visually, particularly in regard to the spuri-

ous voxels at small voxel sizes. The model is shown in Figure 4.5 with voxel sizes ranging from

0.5m to 4.0m. At 4.0m resolution, the model is blocky. More details appear in the model at res-

olutions of 2.5m, 2.0m, and 1.5m, and while the number of unsampled surfaces increases, the

model itself is not compromised. The unsampled surfaces lie predominantly on the building

surfaces and the ray tracing still appears to have carved out the free space nicely. At 1.0m res-

olution, more surfaces appear to be unsampled and spurious unsampled voxel appear in what

should be free space around the model. As the voxel size decreases further, the spurious un-

sampled voxels increase and it becomes obvious that the point cloud data cannot support such

fine voxel resolutions. The point density of the voxel space, as well as the rays that are used to

carve out free space, dictate the lower limits of resolution in a voxel space.

At this time, there is no method for automatically determining the voxel size for a given

point cloud as it is not a straightforward calculation. Multiple voxel spaces could be generated,

and the unsampled surface fraction computed to determine the optimal size, as was the case

to generate Figure 4.4, but computation times are long which would make this expensive. The

voxel size can be loosely based on the point density, but this is a 2D metric, and will not neces-

sarily correlate to the 3D voxel space. The most important thing in determining the voxel size

is that the free space around the model is carved out and spurious voxels are minimal. This is

easily accomplished visually, and in practice a voxel size can be determined from a few runs.

CHAPTER 4. RESULTS AND ANALYSIS 102

(a) 4.00m (b) 2.50m

(c) 2.00m (d) 1.50m

(e) 1.00m (f) 0.75m

(g) 0.66m (h) 0.50m

Sampled surfaces Unsampled surfaces

Figure 4.5: The effect of voxel resolution on unsampled regions. Surface voxels are shown in grey and un-
sampled voxels in orange. There are few extraneous unsampled voxels at voxel sizes above 1.50m, though
the number of unsampled voxels on the buildings increases as the voxel size decreases. Additionally, spu-
rious unsampled voxels begin to appear around the model in areas that should be free space as the voxel
size decreases. At 0.50m, it is obvious that the voxel space cannot support this resolution.

CHAPTER 4. RESULTS AND ANALYSIS 103

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Probability of Free Space

Pe
rc

en
ta

ge
 o

f S
am

pl
ed

 V
ox

el
s

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Probability of Free Space

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f S
am

pl
ed

 V
ox

el
s

Figure 4.6: Left: Plot of the percentage of sampled voxels as a function of their probability of free space.
Right: Plot of the cumulative percentage of sampled voxels as a function of their probability of free space.

Probability of Free Space

The other user-defined parameter required for the creation of the voxel space is the threshold

on the probability of free space, used to classify the occupied and free voxels. The threshold is

employed such that a voxel with a probability greater than or equal to the threshold is classified

as free, and a voxel with a probability less than the threshold is classified as occupied. Unsam-

pled voxels are unaffected by the threshold. A subset of the WAMI voxel space, computed at 2m

resolution, was extracted for analysis.

For a total voxel count of 23.4 million voxels, 67.25% were sampled, and 32.75% were un-

sampled. While this may seem like a high percentage of unsampled voxels, consider that all

voxels that lie underneath the first visible surface will remain unsampled, regardless of the

completeness of the voxel surface model. Considering only the sampled voxels, 97.49% con-

tained only ray interactions, 0.40% contained only point interactions, and 2.11% contained

both point and ray interactions. Again, it may seem that the percentage of voxels containing

only ray interactions is high, but all of the voxels that lie above the first visible surface should be

identified as free space. Thus the overall percentage of occupied voxels is expected to be small

in comparison to both the percentage of free voxels and the percentage of unsampled voxels.

The important thing to consider here is the 2.11% of sampled voxels that contained both

point and ray interactions, where the probability of free space will be greater than 0, but less

than 1. These voxels are important because they can affect the number of unsampled surfaces

CHAPTER 4. RESULTS AND ANALYSIS 104

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of Free Space Threshold

U
ns

am
pl

ed
 F

ra
ct

io
n

P f r ee Threshold Unsampled Fraction
0.000 0.60965
0.125 0.60910
0.250 0.59418
0.375 0.55014
0.500 0.52080
0.625 0.43184
0.750 0.34262
0.875 0.20188
1.000 0.09909

Figure 4.7: Plot of the fraction of unsampled voxel faces versus the probability of free space threshold.

in the model, depending on the probability of free space threshold that is used to classify them.

A more detailed breakdown of the percentage of sampled voxels as a function of their prob-

ability of free space is shown in Figure 4.6. While the number of unsampled voxels will not

change as a function of the threshold, the number of unsampled surfaces is dependent on the

threshold, because an unsampled surface is defined as a transition between a free voxel and an

unsampled voxel. A voxel classified as occupied at one threshold, may be considered free at a

lower threshold, thus creating new unsampled surfaces if any neighboring voxels are unsam-

pled.

Again, using a subset of the WAMI voxel space, the number of unsampled surfaces was com-

puted as a function of the threshold on the probability of free space. The downtown subset was

used, and the results are shown in Figure 4.7. Assuming all voxels with point interactions are

occupied (P f r ee < 1.0 is occupied), less than 10% of the surfaces are unsampled. This increases

to over 60% when it is assumed that all points that have ray interactions are free (P f r ee > 0.0 is

free). This plot was computed for multiple subsets, and while the absolute unsampled fraction

differed, the general trend was the same. However it is difficult to discern from this plot exactly

what the effect is on the voxel space.

The effect of the threshold is more apparent visually. The model is shown in Figure 4.8, with

P f r ee thresholds, τ, ranging from 0.0 to 1.0, where a voxel is classified as occupied if P f r ee < τ.

Note that for the 0 case, a small positive number was used such that voxels that contained only

point interactions were the only ones classified as occupied. At τ= 1.0, a majority of the model

CHAPTER 4. RESULTS AND ANALYSIS 105

is comprised of sampled surfaces, which appear to provide an accurate representation of the

scene. As the threshold decreases, the number of sampled surfaces decreases. The sampled

surfaces that are lost as a result of the decreased threshold appear to become unsampled sur-

faces, and the shape of the model does not appear to be significantly different.

In this case, the increase in unsampled surfaces in the model would negatively impact the

identification of void areas as well as the identification of future image locations. As can be seen

with at τ = 1.0, the sampled surfaces provide an accurate model and to classify them as voids

would result in future image location predictions that are heavily influenced by previously sam-

pled areas. For this reason, the threshold used on P f r ee to classify the voxels as occupied/free

will be unity. This parameter could potentially be used to develop partially transmissive mod-

els, but that will be left for future work.

CHAPTER 4. RESULTS AND ANALYSIS 106

(a) 1.000 (b) 0.875 (c) 0.750

(d) 0.625 (e) 0.500 (f) 0.375

(g) 0.250 (h) 0.125 (i) 0.000

Sampled surfaces Unsampled surfaces

Figure 4.8: The effect of threshold τ of the probability of free space P f r ee unsampled regions, where a voxel
is classified as occupied if P f r ee < τ. Voxels with a Sampled surfaces are shown in grey and unsampled
surfaces in orange. A decrease in the threshold results in more unsampled surfaces, however the general
shape of the model remains unchanged.

CHAPTER 4. RESULTS AND ANALYSIS 107

Sampled surfaces Unsampled surfaces

Figure 4.9: Example of the pyramid structure that appears in the unsampled surfaces where large areas
lacked points, such as the Genessee River shown here. The pyramid structure is a result of the ray-tracing
methods and the oblique nature of the imagery. The shape is dependent on the imaging geometry, which
will be explored in more detail with additional datasets.

4.2 Identification of Voids in the Voxel Space

Once the voxel space has been created, the voids are identified by finding voxels that lie on

the free-unsampled boundary. The sampled and unsampled surfaces, created from the free-

occupied and free-unsampled boundaries respectively, have been shown in Figures 3.10, 3.12,

4.3, 4.5, and 4.8. As was discussed in reference to the shadow effect shown in Figure 3.12, the

ray-tracing methods employed and the oblique angle of the imagery creates some unique fea-

tures in the unsampled surfaces in the voxel space. This effect produces the “shadow” effects

on buildings, but also produces a pyramid-like structure in holes near the ground plane. An

example of such a pyramid is shown in Figure 4.9, in the Genessee River. Because there were no

points at the ground level in the river, ray-tracing to the edges of the river left unsampled voxels

in the pyramid shape. An illustration of this phenomenon is shown in Figure 4.10. While these

effects appear strange, they are expected, and serve to further illustrate why it is not reason-

able to assume that unsampled surfaces can be used as an approximation to real surfaces in

all cases. Note that the shape of the unsampled surface structure is dependent on the imaging

geometry, which will be explored further in Section 4.5 with additional datasets.

As detailed in Section 3.2, a list of voxel faces that lie on the free-unsampled boundary is

CHAPTER 4. RESULTS AND ANALYSIS 108

Figure 4.10: A 2D illustration of how a lack of points in an area can result in pyramid-like structures. Note
only a central ray from each camera to the edge of the missing data area has been shown for clarity.

generated, where each voxel face is defined by its center point and a surface normal, oriented

in the direction of free space. Before using these unsampled faces to generate potential fu-

ture imaging locations, the visibility of the points in reference to the current cameras must be

determined such that a texture metric can be computed for each unsampled voxel face.

4.2.1 Visibility Analysis

The centers and normals of the unsampled faces are used to determine which cameras used

in the 3D reconstruction process had a clear line-of-sight of the unsampled surface. This com-

putation of visibility is necessary, because there is no visibility information associated with the

unsampled voxels. A detailed description of what constitutes visibility of a face for a given cam-

era is available in Section 3.2.2.

A histogram of the count of unsampled voxel faces as a function of the number of views

in which they were visible is shown in Figure 4.11, computed for 2m voxels. The histogram is

skewed right with the exception of a dramatic spike between 25 cameras and 26 cameras (where

26 cameras total were used in the reconstruction). These voxels are likely voxels on rooftops and

CHAPTER 4. RESULTS AND ANALYSIS 109

Number of Views Visible
0 5 10 15 20 25

C
ou

nt
 o

f U
ns

am
pl

ed
 V

ox
el

 F
ac

es

×104

0

1

2

3

4

5

6

7

Number of Views Visible
0 5 10 15 20 25

C
ou

nt
 o

f U
ns

am
pl

ed
 V

ox
el

 F
ac

es

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Figure 4.11: Histogram of the count of unsampled voxel faces as a function of the number of views in
which they were visible. Note that the plot is dominated by voxels that were not visible in any frames (left);
another scale is shown (right) to see the detail above the zero value.

in the river area that had a clear view of the sky and thus could be seen by all cameras. More

than half of the unsampled voxel faces were not visible in any views. It is important to note that

the plot is based on a single dataset and the shape will be dependent on the voids in the input

point cloud. A visualization of the unsampled voxel centers, shown as points, is presented in

Figure 4.12, where the brightness is indicative of how many cameras could have imaged each

point. Note the samples in the river are bright, indicating they were seen in many views.

Unsampled voxels that were imaged by two or fewer views are guaranteed not to be recon-

structed, given the constraints used in the 3D workflow. Also note, depending on the angular

disparity between the camera views used in the creation of any point, that reconstruction is not

guaranteed just because a point was seen by 3 or more views.

4.2.2 Texture Analysis

As was stated previously, voids that are a result of texturally difficult areas will not benefit from

the inclusion of more imagery. Therefore one of the goals of this stage is to identify the unsam-

pled voxel centers that were likely the result of a texturally difficult area and remove them from

consideration when identifying future image locations. An image-based method for doing this,

based on the local standard deviation, was outlined in Section 3.2.2.

To verify that the reprojection of the unsampled voxels was working correctly, the unsam-

CHAPTER 4. RESULTS AND ANALYSIS 110

(a) Unsampled Voxel Centers (b) Unsampled Voxel Centers Seen by < 3 Views

0 6 13 20 26

Number of Cameras

Figure 4.12: Unsampled surface centers are shown as points for voxel resolutions of 2m, where the bright-
ness is indicative of how many cameras could have imaged each point. Left: All unsampled surface centers.
Right: Unsampled surface centers seen by less than three cameras.

pled voxel centers were reprojected onto a WAMI image. The results are shown in Figure 4.13.

The unsampled voxel centers appear to accurately reproject into the image based on a visual

observation of their locations. The circular nature of the reprojected voxels is a product of us-

ing a circular field-of-view for camera when determining if an unsampled voxel is visible from a

particular viewpoint. Using a 100x100 window size, the local standard deviation was computed

for each unsampled voxel. As the unsampled voxels are often visible in multiple images, the

local standard deviation was computed in each view in which the unsampled voxel was visible,

and the results were averaged across the views. Unsampled voxel centers with a local stan-

dard deviation greater than 4.00 digital counts are shown in green, and those less are shown

in red. The threshold was chosen based on a visual inspection of the reprojected voxels, such

that a majority of the river region had a standard deviation that was less than the threshold to

suppress those voxels from influencing the identification of future image locations.

The purpose of the texture metric is to identify textureless regions that would fail to gener-

ate correspondences in the densification process, as inclusion of more imagery will not benefit

these regions. The standard deviation texture metric is dependent on the window size and the

CHAPTER 4. RESULTS AND ANALYSIS 111

Local Standard Deviation > ξ Local Standard Deviation < ξ

Figure 4.13: The unsampled voxel centers have been reprojected into a WAMI image, and those shown in
green have a local standard deviation greater than 4.00, while those shown in red have a local standard
deviation less than 4.00 for a given window size of 100x100. The circular nature of the unsampled voxels
is a result of the circular camera model implemented.

threshold, ξ, where voxels with a local standard deviation less than ξ are not considered in the

future image location identification process. The effects of these parameters were investigated,

using the same WAMI image shown in Figure 4.13.

The local standard deviation of a WAMI image was computed for various window sizes,

shown in Figure 4.15; a 2D view of the point cloud is shown in Figure 4.14 for context and the

holes are highlighted by the blue background. A threshold of 2.00 digital counts was used to

highlight the effect that the window size has, given the same threshold. The river is easily pulled

out at each window size, using the given threshold. Note that as the window size is reduced to

a 25x25 pixel region, there is a significant increase in the number of regions that are identified

using the 2.00 threshold.

Using the 100x100 pixel window, different thresholds were used to determine the effect of

the threshold on the texture metric; the effect of the threshold is shown over a threshold range

from 2.00-4.00 digital counts, where again a local standard deviation less than the threshold ξ

is highlighted with green. As the threshold increases, more regions are identified as possibly

textureless regions. At a threshold of 2.50, textureless regions begin to appear on the roof of the

Blue Cross Arena, which was reconstructed in the point cloud, and the regions expand as the

threshold is increased. While this would be considered a false alarm, it would have no impact

CHAPTER 4. RESULTS AND ANALYSIS 112

Figure 4.14: Nadir view of the WAMI point cloud, provided for context in the texture analysis, where the
blue background was used to highlight voids.

on the final results because there are no unsampled voxel surfaces in that region. However it

could potentially impact regions that were not reconstructed if they are misidentified.

The effect of the window size and threshold in Figures 4.15 and 4.16 was computed for a

single image. When computing the texture of an unsampled voxel, the local standard deviation

is averaged across the views in which the unsampled voxel was visible. A histogram of the

count of unsampled voxels as a function of local standard deviation is shown in Figure 4.17;

this histogram was computed for all unsampled voxels, and unsampled voxels that were seen

by 3 or more cameras. As mentioned previously, voxels that were visible in 2 or fewer views are

guaranteed not to be reconstructed regardless of their image texture due to constraints of 3D

reconstruction algorithms. Note the reduction in the count of values in the tail on the right side

of the histogram when voxels that were only visible in 2 or fewer views are not included.

There is a complex relationship between the window size and threshold, and the subse-

quent effect on the identification of textureless regions. The window size and threshold are

tied to each other, but also to the size of the sensor, the ground sample distance (GSD), and

the feature detection and densification schemes. At this time, it is unclear the best method

for determining a window size and/or threshold to use to suppress unsampled voxels from

textureless regions. The effect of the window size and threshold on the future image location

predictions will be investigated in Section 4.3.

It may be possible to eliminate the window size parameter by considering groups of voxels

that make up continuous voids. Continuous regions of unsampled surfaces could be identified

CHAPTER 4. RESULTS AND ANALYSIS 113

(a) Window Size = 100x100 (b) Window Size = 75x75

(c) Window Size = 50x50 (d) Window Size = 25x25

Local Standard Deviation < ξ

Figure 4.15: The local standard deviation was computed for a WAMI image with a window size of indi-
cated and local standard deviations less than ξ= 2.00 are highlighted in green.

as a void region, and the centers of those unsampled surfaces could be reprojected into the

imagery, where the local standard deviation could be computed from the pixels onto which the

unsampled surfaces reproject. In this case, the standard deviation would be computed using

just pixels that are identified as being a part of the void region, and that standard deviation

could be assigned to all of the pixels in the void. There aresome potential issues with this tech-

nique. The first is in voids that are made up of a very few unsampled surfaces, resulting in a

local standard deviation computed from just a few pixels. In this case, it may be safe to elim-

inate voids that are less than a specified size, and use the unsampled surfaces as estimates of

the missing surfaces if the voxel space is used to create a surface model. Other surface mod-

eling techniques, such as ball-pivoting or Poisson surface reconstruction could also be used

to fill in these small holes. Another potential issue is the shadowing effect in the voxel space.

Unsampled voxel surfaces, particularly in large regions, are not guaranteed to represent actual

surfaces in the scene, as shown in the building shadow (Figure 3.12) and the river pyramid (Fig-

CHAPTER 4. RESULTS AND ANALYSIS 114

ure 4.9). While they may be identified as a single void, it is possible that only portions of these

unsampled surfaces would be visible in any given image, and a method to handle this would

have to be implemented. Unsampled voxels in these regions, where the unsampled surfaces

compose surfaces that are not actually present in the scene, may reproject into the imagery

onto a region that is not the real missing surface. In this case, the local standard deviation that

is computed would not be representative of the missing region. An illustration of this is shown

in Figure ??, where voxels that make up a building shadow are reprojected into the image and

fall partly on the desired missing side of the building, but also partly on the parking lot behind

the building. Due to the reasons presented here, this process was not implemented, but may

warrant future investigation.

It is undeniable that including textureless regions in the identification of future image lo-

cations will have an impact on the predicted locations, particularly if these regions are large

and composed of a significant number of unsampled surfaces. While it is clear that a change

in threshold and/or window size has an impact on the regions that are identified as textureless,

it is difficult to predict the effect that a slight change in threshold would have on the predicted

future image locations. Thus this matter will be investigated further in subsequent results. It

should be noted that this method was designed to identify homogeneous image regions. Spa-

tially repetitive regions, reflective regions, and possibly others will also have textural difficulties

in the SfM workflow, but the standard deviation texture metric will likely not identify such re-

gions. Another method would be to use the visibility analysis, and set a threshold based on the

number of cameras that imaged an unsampled voxel space. The basis of this is that if numerous

images of the region were collected but it was not reconstructed, it is likely a texturally difficult

region. This is less intensive computationally, as the visibility must be computed already, and

will also be explored further in subsequent results.

CHAPTER 4. RESULTS AND ANALYSIS 115

(a) ξ= 4.00 (b) ξ= 3.75 (c) ξ= 3.50

(d) ξ= 3.25 (e) ξ= 3.00 (f) ξ= 2.75

(g) ξ= 2.50 (h) ξ= 2.25 (i) ξ= 2.00

Local Standard Deviation < ξ

Figure 4.16: The local standard deviation was computed for a WAMI image with a window size of 100x100;
the effect of the threshold is shown over a range of thresholds, where local standard deviations less than
ξ are highlighted in green. Note that the river is easily pulled out, and more green regions appear as the
threshold increases.

CHAPTER 4. RESULTS AND ANALYSIS 116

Average Standard Deviation
0 10 20 30 40 50 60 70 80

C
ou

nt
 o

f U
ns

am
pl

ed
 V

ox
el

 F
ac

es

0

1000

2000

3000

4000

5000

6000

7000

8000

(a) Unsampled Voxel Centers

Average Standard Deviation
0 10 20 30 40 50 60 70 80

C
ou

nt
 o

f U
ns

am
pl

ed
 V

ox
el

 F
ac

es

0

1000

2000

3000

4000

5000

6000

7000

8000

(b) Unsampled Voxel Centers Seen by < 3 Views

Figure 4.17: Histogram of the count of unsampled voxel faces as a function of the average local standard
deviation computed from the views in which they were visible. The histogram is shown for all unsampled
voxels (left) and for unsampled voxels seen by 3 or more cameras (right).

(a) Voxel Space Build-
ing with Shadow

(b) Reference Image (c) Reprojected Voxel
Points

Figure 4.18: A building with shadowing effects in the voxel space (a), a reference image (b), and the un-
sampled voxel points reprojected on the image (c), shown in green. This is an example of how unsampled
voxels may reproject onto regions of the image that are not representative of the missing surfaces in the
voxel space.

CHAPTER 4. RESULTS AND ANALYSIS 117

0 10 20 30 40 50 60 70 80 90
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Incident Angle [Degrees]

Pr
ob

ab
ilit

y
of

 O
cc

ur
re

nc
e

in
 R

ec
on

st
ru

ct
io

n

Figure 4.19: Plot of the probability of occurrence of incident angles in the 3D reconstruction using the
WAMI data, captured at 40 degrees off-nadir. The 60 degree cutoff is a function of the PMVS algorithm.

4.3 Identification of Future Image Locations

Once the unsampled voxel centers have been identified, the next step is to use another line-

of-sight analysis to determine how many unsampled voxels could be seen from each potential

imaging location. For the purposes of this analysis, occupied and unsampled voxels are consid-

ered to be opaque. First a discussion of the weighting function is presented, followed by results

for both fixed pointing and fixed stare point sensors.

4.3.1 Weighting Function

As was mentioned in Section 3.3.3, a weighting function can be applied to the contributions of

each unsampled voxel based on the angle of incidence. This is based on the assumption that

grazing angles are not well suited to 3D reconstruction of a surface. Because the optimal inci-

dent angle for surface reconstruction is not intuitive, point cloud data from a 3D reconstruction

was used in an attempt to derive a data-driven weighting function. Each 3D point obtained

from the PMVS point cloud is associated with an estimated surface normal, in addition to the

camera visibility information. Thus for each point, an incident angle was computed for each

camera view in which the point was visible by computing the angle between the estimated sur-

face normal and the incident ray, defined by the camera center and the point. This method

was performed on the WAMI point cloud, and the incident angles were tallied to compute a

probability of occurrence for each angle; the results are shown in Figure 4.19.

CHAPTER 4. RESULTS AND ANALYSIS 118

The results of the probability of occurrence of each incident angle of the WAMI point cloud

at first seem counter intuitive. While the lack of angles approaching 90 degrees (i.e. grazing)

is expected, the peak of the curve would intuitively be expected to be at 0 degrees, as it would

seem that a straight-on view of a surface would be best. However, consider that the WAMI

sensor is looking at an oblique angle, approximately 40 degrees off-nadir and the scene recon-

struction is mostly urban. Surface normals in this environment would be primarily upward

for roof-tops and ground surfaces (dominant Z-component) and horizontal for building sides

(weak Z-component). Considering the 40 degree off-nadir viewing angle of the WAMI sensor,

the peak around 40 degrees makes a little more sense. The cause of the abrupt cutoff at 60

degrees is the result of a threshold in the PMVS process.

The same process was used to derive the probability of occurrence of each incident angle in

a 3D reconstruction using WASP data that was captured at nadir; the results of that are shown

in Figure 4.20. A 3D reconstruction derived from nadir data of an urban scene contains mostly

points on the ground plane and on building rooftops, points on the building sides are notably

missing due to their lack of visibility in the nadir imagery. Using the logic applied to the WAMI

point cloud, the majority of the surface normals in the urban scene should be upward facing

(dominant Z-component). With the expected surface normals and the nadir looking sensor, it

would be expected that 0 degrees would be the incident angle with the highest probability of

occurrence. It is evident in the plot shown in Figure 4.20 that this is not the case, and in fact it is

the angle with the least probability of occurrence when excluding those beyond the 60 degree

cutoff. There is a break in the plot at 45 degrees, where suddenly there is a rapid increase in the

probability of occurrence in the reconstruction from about 45 to 60 degrees. The cause of peak

is unknown. It was initially thought that it may have some significance in relation to the base-

line of the imagery, however considering that the majority of surfaces that are reconstructed

in the WASP point clouds have dominant Z-components and the WASP sensor rays would be

at most ±18 degrees when capturing at nadir, this is more likely a result of incorrect normal

estimations.

The behavior of the incident angles in regard to the WASP data was unexpected, and war-

ranted further investigation. The creation of these maps was based on the assumption that the

estimated surface normals for each point from PMVS was reasonably accurate. Upon further

analysis, it was discovered that this assumption was incorrect. The estimated surface normals

resulting from PMVS are not an accurate representation of the expected surfaces. To illustrate

CHAPTER 4. RESULTS AND ANALYSIS 119

0 10 20 30 40 50 60 70 80 90
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Incident Angle [Degrees]

Pr
ob

ab
ilit

y
of

 O
cc

ur
re

nc
e

in
 R

ec
on

st
ru

ct
io

n

Figure 4.20: Plot of the probability of occurrence of incident angles in the 3D reconstruction using the
WASP data, captured at nadir. The 60 degree cutoff is a function of the PMVS algorithm.

this, the rooftop of the Chase building was extracted from both the WAMI and WASP point

clouds. The surface normals were plotted in conjunction with the points, and the results are

shown in Figure 4.21. It is expected that the rooftop normals would be upward facing, oriented

in the Z-direction with small X and Y components. However, it is evident from the overhead

view that this is not the case. The estimated surface normals do not behave as expected and

do not represent the surface accurately. Based on this information, the incident angle plots,

shown in Figures 4.19 and 4.20 were based on inaccurate surface normals, and do not provide

accurate estimates of the distribution of incident angles. Therefore, the data-derived incident

angle weighting functions will not be used.

Upon further consideration, the distribution of incident angles is dependent on a variety

of factors. As mentioned in the discussion of the results from the WAMI normals, the angle

of incidence distribution is highly dependent on the sensor and look angle. The distribution is

also a function of scene content, as the surface normals in an urban scene will differ from those

in a rural scene. The densification process, PMVS in this case, would also play a role based on

which points are reconstructed. Finally, it is important to consider the requirements for recon-

struction, namely the number of images and the baseline between them. A minimum of three

images is required for reconstruction of a surface. Given one image taken at 0 degrees with

respect to a surface, the other images need to be separated enough to get an accurate triangu-

lation but not so much so that feature detection will fail. Thus there is a complex relationship

to consider between likelihood of reconstruction and the incident angle on a surface. Because

CHAPTER 4. RESULTS AND ANALYSIS 120

(a) WAMI (b) WASP

Figure 4.21: Estimated surface normals from PMVS for each point on the rooftop of the Chase building for
both the WAMI and WASP point clouds. Top: View from directly overhead, down the Z-axis with the X-axis
extending horizontally and the Y-axis extending vertically. Bottom: View from the side, down the Y-axis
with the X-axis extending horizontally and the Z-axis extending vertically. It is expected that the surface
normals would be oriented such that the Z-component dominates (i.e. upward pointing), however as can
be seen, this is not the case. The estimated surface normals from PMVS are highly susceptible to noise and
do not provide an accurate representation of the surface.

CHAPTER 4. RESULTS AND ANALYSIS 121

Incident Angle [Degrees]
0 10 20 30 40 50 60 70 80 90

W
ei

gh
t

0

0.2

0.4

0.6

0.8

1

1.2

Incident Angle [Degrees]
0 10 20 30 40 50 60 70 80 90

W
ei

gh
t

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4.22: Left: Plot of the uniform weights as a function of the angle of incidence. Right: Plot of the
Gaussian weights (σ= 25) as a function of the angle of incidence. A 60 degree cutoff has been employed in
each case.

of the associated complexity, a data-driven weighting function, even one derived with accurate

surface normals, would be unreliable.

For the purposes of this research, two weighting functions will be considered: uniform

weighting and Gaussian weighting. The uniform weighting function will weight all observa-

tions equally, provided that the angle of incidence between the camera and surface is less than

a given cutoff angle to account for grazing effects. The Gaussian weighting function will be

computed with a specified standard deviation, with unity occurring at an incident angle of 0

degrees; a cutoff angle will also be employed. Examples of the weighting functions are shown

in Figure 4.22. A 60 degree cutoff on the incident angle will be used, due to the cutoff that ex-

ists in PMVS. The effects of the different weighting functions will be investigated in subsequent

results.

4.3.2 Fixed Pointing: Nadir

The first configuration that was tested was a sensor located at 10,000ft (nominal height of the

original WAMI collection), with a nadir fixed pointing angle. A subset of the voxel space was

used to reduce computation time while allowing the focus of the future image locations to be

within a central area of interest in the point cloud. The footprint of the voxel space was broken

up at altitude into 25m x 25m blocks, and the number of unsampled voxel centers visible from

each location was computed. Unsampled voxel face centers at the free-unsampled boundaries,

CHAPTER 4. RESULTS AND ANALYSIS 122

Sampled surfaces Unsampled surfaces

Figure 4.23: Orthographic view of the voxel space for reference.

and the results of the potential image location calculations are shown in Figure 4.24, where an

orthographic view of the voxel space has been included for reference in Figure 4.23. Results are

shown for three different texture thresholds (2.0, 5.0, 7.0), where the local standard deviation

was computed from a 100x100 pixel image region.

The circular region toward the lower left was the location of the fixed stare point for the

WAMI dataset, and that is likely why the region is not as densely populated with unsampled

voxel centers. The majority of the unsampled voxel centers are from the homogeneous regions

of the river. Higher concentrations of unsampled voxel centers are found on the right portion

of the scene, which was located on the “outskirts” of the voxel space. As such many of the build-

ings are missing multiple sides and exhibit shadowing effects due to a lack of west-facing views.

This region also has a large number of unsampled voxel faces that were not visible in any cam-

era views, and are therefore not affected by the application of the different texture thresholds.

As expected, this region corresponds to the highest concentration of unsampled voxels that

are visible from the potential image locations, because of the density of the unsampled voxels.

While there are slight differences noticeable in the potential image location maps based on the

number of visible unsampled voxels, particularly in views in which the river would have been

visible, the locations where the maximum number of unsampled voxels were visible was the

same for each threshold. Results were computed using a larger 200x200 window size, and again

the location was the same, even across different thresholds.

CHAPTER 4. RESULTS AND ANALYSIS 123

(a) Missing voxels, ξ> 2.0 (b) Future image locations, ξ> 2.0

(c) Missing voxels, ξ> 5.0 (d) Future image locations, ξ> 5.0

(e) Missing voxels, ξ> 7.0 (f) Future image locations, ξ> 7.0

 ξ ≤ 7 or < 3 views 5 ≤ ξ < 7 2 ≤ ξ < 5

min max Number of Unsampled Voxels Visible

Figure 4.24: Unsampled voxels at free-unsampled boundaries that were seen by less than three cameras, in
addition to unsampled voxels that were seen by 3 or more cameras and had a standard deviation of greater
than 2.0, 5.0, and 7.0 in (a), (c), and (e) respectively. The standard deviation window size was 100x100.
Corresponding heat maps of future aircraft image locations are shown in (b), (d), and (f), where a nadir
pointing angle and aircraft altitude of 10,000ft have been specified. While there are slight differences in the
appearances of the maps, based on how many unsampled voxels were greater than the specified threshold,
the location where the most unsampled voxels were visible was unaffected.

CHAPTER 4. RESULTS AND ANALYSIS 124

Because the predicted optimal location remained unchanged based on the texture thresh-

old, the future image location code was also run using a threshold on the number of cameras

that could see an unsampled voxel. Note that this is computed for visibility purposes, and was

used in preliminary results as a way to identify textureless regions. In this case, unsampled

voxel faces that were visible in more views than the specified threshold are excluded from con-

sideration, where it is assumed that voxels that appeared in numerous previous images will

not benefit from the addition of more imagery. Unsampled voxel face centers used at the free-

unsampled boundaries, and the results of the potential image location calculations are shown

in Figure 4.25. Results are shown for two different thresholds, where unsampled voxels were

visible in four or fewer views, and nine or fewer views.

Again, there are slight differences in the appearances of the maps as the number of un-

sampled voxel centers included in the threshold increases, but the location where the most

unsampled voxels were visible was unaffected, and remained the same as the one computed

using the texture threshold. The fact that the location does not change, regardless of using the

texture metric or just a threshold on the number of views, suggests that perhaps a threshold on

the number of views a voxel was visible in is sufficient criteria for inclusion or exclusion in the

future image location process.

It should be noted that all of the results shown here were computed using a uniform weight-

ing function and a Gaussian weighting function, as shown in Figure 4.22, however there was no

perceivable difference. This is a result of the distribution of normals in the voxel space, where

normals are distributed either vertically or horizontally based on the face of the voxel. The

incident angle, computed between the voxel normal and ray defined by the camera and the

unsampled voxel face center, was computed for each unsampled voxel within the field of view

of a camera for a single pointing location; the resulting histogram is shown in Figure 4.26. The

distribution is distinctly bimodal, with peaks near 0 and 90 degrees. Horizontal unsampled

surfaces have a normal with only a Z-component, and using a nadir-pointing camera, these

angles will fall within the angle of the sensor field-of-view (5 degrees in this case), hence the

peak close to zero. Conversely, vertical surfaces in the voxel space have either an X-component

or a Y-component, and would be approximately 90 degrees different from a nadir pointing an-

gle, where again the distribution is a result of the different angles across the sensor field of view.

With the 60 degree cutoff in the weighting function, vertical surfaces are given weights of 0, and

thus do not contribute to the total of visible voxel faces. The components that do contribute

CHAPTER 4. RESULTS AND ANALYSIS 125

(a) Missing voxels seen by ≤ 4 cameras (b) Future image locations ≤ 4 cameras

(c) Missing voxels seen by ≤ 9 cameras (d) Future image locations ≤ 9 cameras

≤ 4 views 4 < views ≤ 9

min max Number of Unsampled Voxels Visible

Figure 4.25: Unsampled voxels at free-unsampled boundaries that were seen by four or fewer cameras and
nine or fewer cameras are shown in in (a) and (c) respectively. Corresponding heat maps of future aircraft
image locations are shown in (b) and (d), where a nadir pointing angle and aircraft altitude of 10,000ft
have been specified.

CHAPTER 4. RESULTS AND ANALYSIS 126

Incident Angle [Degrees]
0 10 20 30 40 50 60 70 80 90

C
ou

nt

0

50

100

150

200

250

300

350

Figure 4.26: Incident angle histogram computed for a single location with a nadir pointing angle.

Sampled surfaces Unsampled surfaces Visible unsampled surfaces

Figure 4.27: View of the voxel space where voxels that were visible from the indicated location are shown
in blue; voxels shown in orange are indicative of unsampled surfaces that were either not visible or did not
meet the given texture criteria.

are distributed so closely to 0, that the difference between the uniform and Gaussian weighting

functions is negligible. For off-nadir pointing angles, it is expected that these peaks would shift

closer together as the sensor pointing angle moves further off nadir, and thus the effects of the

weighting function may become more noticeable, particularly for a fixed stare point system.

A view of the voxel space is shown in Figure 4.27, where the unsampled voxels that are visi-

ble from the indicated location are shown in blue. The blue voxels are enclosed in the circular

shape of the camera view, and are located on the right side of the scene, as expected.

CHAPTER 4. RESULTS AND ANALYSIS 127

Figure 4.28: Diagram of the shift in the plane space to account for the off-nadir pointing angle.

4.3.3 Fixed Pointing: Off-Nadir

Admittedly, most of the horizontal surfaces in the voxel space that would be visible from nadir

have already been sampled, as indicated in Figure 4.23, and therefore nadir views may not be

the most beneficial for reconstruction purposes. It was noted that a majority of the unsampled

voxels were missing sides of buildings on the eastern portion of the voxel space, where west-

facing sides were reconstructed but east-facing sides were not. The next sensor configuration

that was tested was a sensor located at 10,000ft, but this time with a fixed pointing angle 40 de-

grees off-nadir in the westward-direction (eastern faces will be visible with a westward pointing

angle). This was to mimic the original WAMI collection, flown at 10,000ft and 40 degrees off-

nadir. Again, a subset of the voxel space was used to reduce computation time while allowing

the focus of the future image locations to be within a central area of interest in the point cloud.

The footprint of the voxel space was broken up at altitude into 25m x 25m blocks, shifted east-

ward to account for the off-nadir pointing angle; a diagram of this is shown in Figure 4.28.

The unsampled voxel face centers at the free-unsampled boundaries, and the results of the

potential image location calculations are shown in Figure 4.29. A standard deviation threshold

of 7.0 was used, with a 100x100 window size. This was chosen because it seems to work well

with the given voxel space in the nadir results. The circular camera field-of-view becomes more

oval shaped on the ground at off-nadir angles, and as a result there is a more distinct ovular

shape in the heat mapping results. The results are still skewed to one side, and this is expected

due to the high concentration of unsampled voxels in that portion of the scene.

Again, the uniform and Gaussian weighting functions were tested, and while the returned

CHAPTER 4. RESULTS AND ANALYSIS 128

 ξ ≤ 7 or < 3 views

min max Number of Unsampled Voxels Visible

Figure 4.29: Left: Unsampled voxels at free-unsampled boundaries that were seen by less than three cam-
eras, in addition to unsampled voxels that were seen by 3 or more cameras and had a standard deviation
of greater than 7.0 in (a), where the standard deviation window size was 100x100. Right: A correspond-
ing heat map of future aircraft image locations, where a 40 degree westward off-nadir pointing angle and
aircraft altitude of 10,000ft have been specified.

values differed due to the Gaussian weighting, the results were not perceptibly different and the

predicted maximum between the two only differed by 25m (shifted one block in plane space).

The WAMI sensor being modeled has a field of view of 10 degrees, so the angles off center only

differ by ±5 degrees. Again, because the normal vectors in the voxel space are confined to align

with the axes, this results in a spread of incident angles of only 5 degrees (as shown in Figure

4.26). Changing to an off-nadir pointing vector will shift these peaks toward each other, but will

not have an effect on the spread. Because the normals are distributed so closely together, the

weighting functions have little effect.

A view of the voxel space is shown in Figure 4.30, where the unsampled voxels that are

visible from the indicated location are shown in blue; both a nadir view and westward view

(similar to the predicted camera location) are presented. The unsampled voxels that are visible

confirm that the predicted view encompasses many of the unsampled voxel faces.

4.3.4 Fixed Stare Point

The last sensor configuration to be tested was a fixed-stare point sensor. The aircraft altitude

was defined to be 10,000ft, and the stare point was chosen to be a central point in the scene. The

same subset of the voxel space was used to reduce computation time. The footprint of the voxel

CHAPTER 4. RESULTS AND ANALYSIS 129

(a) Nadir View (b) Westward View

Sampled surfaces Unsampled surfaces Visible unsampled surfaces

Figure 4.30: View of the voxel space where voxels that were visible from the indicated location are shown
in blue; voxels shown in orange are indicative of unsampled surfaces that were either not visible or did not
meet the given texture criteria.

space was tripled and broken up at altitude into 25m x 25m blocks. The results are shown in

Figure 4.31, where the unsampled voxels are shown, scaled relative to the future image location

results.

This is the first time in which the weighting functions have had a significant impact on

the results, as the predicted maximum locations differ depending on the weighting function

used. In both cases, the results are heavily influenced toward those views on the eastern side

of the map, which would have had westward facing pointing angles. This is in agreement with

previous maps, as a majority of the unsampled voxels are found in that portion of the voxel

space. One thing that may seem strange here is that the predicted values seem to increase

continually from left to right. This is a result of the sensor footprint on the ground, and the

effect of expanding area as the pointing angle moves off-nadir. At a nadir pointing angle, the

footprint of the sensor on the ground is circular, as defined in Section 3.3.3. As the pointing

angle moves off nadir, the footprint on the ground becomes larger; this effect is shown in Figure

4.32. With a larger footprint on the ground in the voxel space, more unsampled voxels are

potentially visible, thereby biasing the calculation toward pointing angles that are far off-nadir.

A view of the voxel space is shown in Figure 4.33, where the unsampled voxels that are

CHAPTER 4. RESULTS AND ANALYSIS 130

 ξ ≤ 7 or < 3 views

min max Number of Unsampled Voxels Visible

Figure 4.31: Unsampled voxels at free-unsampled boundaries that were seen by less than 3 cameras, and
those with a standard deviation greater than 7.0 are shown in (a) and (c) respectively, where the relative
size has been scaled to match the corresponding heat maps of future aircraft image locations are shown
with a uniform and Gaussian weighting function in (b) and (d). The sensor was located at 10,000ft with
a central fixed stare point in the scene.

Figure 4.32: Illustration of the effect an off-nadir angle has on the area included in the field-of-view on
the ground. At increased angles, the sensor footprint on the ground is larger. Considering the cost function
is based on the number of unsampled voxels visible from a given viewpoint, this will affect the results of
of a fixed stare point system, giving preference to views with more dramatic angles due to the fact that the
potential visibility is larger.

CHAPTER 4. RESULTS AND ANALYSIS 131

(a) Uniform Weighting (b) Gaussian Weighting

Sampled surfaces Unsampled surfaces Visible unsampled surfaces

Figure 4.33: Left: View of the voxel space where voxels that were visible from the indicated location using
a uniform weighting function are shown in blue. Right: View of the voxel space where voxels that were
visible from the indicated location using a Gaussian weighting function are shown in blue. Voxels shown
in orange are indicative of unsampled surfaces that were either not visible or did not meet the given texture
criteria.

visible from the indicated location are shown in blue; the results using the uniform weighting

function and Gaussian weighting function are presented. The unsampled voxels that are visible

confirm that the predicted view encompasses many of the unsampled voxel faces. A majority of

the unsampled voxels that are visible are the same between the two weighting functions, with

the slight differences being a result of the shifted camera positions.

To mitigate against the bias toward larger off-nadir angles due to their larger footprint area

on the ground, it is recommended that the fixed stare-point configuration be used with a radius.

The radius would be used to indicate a circular flight pattern, and the footprint of the sensor

on the ground would be comparable. Using this method, the best view in the desired circle

could be identified. A radial function could also be used to weight the results, such that there

is higher cost for more severe angles.

CHAPTER 4. RESULTS AND ANALYSIS 132

4.4 Proof of Concept

Unfortunately, as was previously discussed in Section 2.1.5, there are no methods readily avail-

able to assess the accuracy and completeness of a point cloud. Additionally, two point clouds

generated from the same set of input imagery are not guaranteed to contain the same points

due to the way that the point clouds are generated in the 3D workflow. Due to the use of CMVS

in the workflow, some input images are discarded and not used in the final reconstruction with

PMVS, and this process is unpredictable. The choice of which images to include contains a ran-

dom component, such that multiple runs of the same set of input images can result in different

sets of images being chosen, and thus the final point clouds will differ, despite being extracted

from the same initial set of input imagery. There is an option to force inclusion of all input

imagery, however the point clouds that result are poorer in quality, and in some cases contain

significant errors.

Additionally, no method for bundle adjustment or reconstruction exists at this time such

that inclusion of additional imagery does not change the location of points in the results. Meth-

ods for 3D reconstruction often employ use of algorithms such as RANSAC, and the random

component of that can alter the output, including changes to 3D point locations. New images

can also be used to further refine triangulation, which would also change the location of a 3D

point. Because of this, it is not possible to directly compare one point cloud to another. It

may be possible to leverage the sampled and unsampled surface fractions in the voxel space to

determine if a model is more complete with the inclusion of more imagery.

The voxel-processing and prediction of future image locations is not conducive to adding

additional imagery in its current state, due to the constraints enforced. The objective in the

prediction of future image locations is to maximize the number of unsampled voxel faces seen

from specified locations and pointing angles. As a result of this, the predicted location may not

tie into the current dataset if the viewpoint is drastically different. Therefore it is recommended

that future work investigate the development of flight lines using the maps.

For the purposes of this work, the voxel-based processing will be tested by limiting the in-

put imagery in the current 3D workflow. The WAMI data thus far has encompassed the entire

circular flight pattern; in order to test proof of concept, a point cloud was generated by limiting

the input imagery to half of the circle. When only using half of the circular flight pattern, the

input imagery is lacking major vantage points that are necessary to complete a surface model

CHAPTER 4. RESULTS AND ANALYSIS 133

on all sides. The point cloud that was computed using the 3D workflow is shown in Figure 4.34.

A voxel space was created using 2m voxels, and the result is shown in Figure 4.35. A majority of

the views used in the reconstruction were north facing, and the north facing view of the voxel

space shows that many of the surfaces visible from that direction are sampled. Conversely, the

south facing views were removed and as a result were not reconstructed, and the voxel space

shows that many of the surfaces visible from that direction remain unsampled.

Future image locations can be determined using the voxel workflow to see if it predicts

imaging from the side of the point cloud where views were missing, as would be expected.

Nadir and off-nadir pointing angles were tested, using an altitude of 10,000ft in all cases.

The results for the nadir sensor are shown in Figure 4.36. As predicted, the concentration

of views where the most unsampled voxels were visible are located in the northern portion of

the scene and the spread is distributed in an east-west fashion. It appears that there are at least

two distinct local maximums in the scene, indicating that multiple views may be beneficial.

The results for a southward pointing sensor, 40 degrees off-nadir, are shown in Figure 4.37.

Views of the voxels that would be visible from the nadir pointing angle, and southward pointing

angle are shown in Figure 4.38. Many of the north-facing sides of the buildings are indicated

as visible in each of these views, confirming the hypothesis that the predicted image locations

should come from the half of the circle that was eliminated in the 3D reconstruction. Note that

even if the predicted view point was available, adding it to the 3D workflow may not improve

the reconstruction as it may not be tied to the current imagery in a way that features can be

reliably tracked. It is up to the user to make this connection when planning flight lines.

CHAPTER 4. RESULTS AND ANALYSIS 134

(a) Nadir View

(b) South-East Facing View

Figure 4.34: Point cloud computed using the 3D workflow, where the input imagery was from the WAMI
sensor, but was limited to half a revolution so that major vantage points necessary to complete a surface
model were guaranteed to be missing. The blue background was used to highlight the holes in the point
cloud.

CHAPTER 4. RESULTS AND ANALYSIS 135

(a) North Facing View (b) South Facing View

Sampled surfaces Unsampled surfaces

Figure 4.35: Voxel space computed from the point cloud shown in Figure 4.34, using 2m voxels, where all
voxels with points are considered occupied. North and south facing views are presented to illustrate the
effect that only using half a revolution of the WAMI imagery has on the point cloud. Note that most of the
views that were included were north facing views, so there are more sampled surfaces when viewing from
that direction.

 ξ ≤ 7 or < 3 views

min max Number of Unsampled Voxels Visible

Figure 4.36: Left: Unsampled voxels at free-unsampled boundaries that were seen by less than three cam-
eras, in addition to unsampled voxels that were seen by 3 or more cameras and had a standard deviation
of greater than 7.0 in (a), where the standard deviation window size was 100x100. Right: A corresponding
heat map of future aircraft image locations, where a nadir pointing angle and aircraft altitude of 10,000ft
have been specified.

CHAPTER 4. RESULTS AND ANALYSIS 136

 ξ ≤ 7 or < 3 views

min max Number of Unsampled Voxels Visible

Figure 4.37: Left: Unsampled voxels at free-unsampled boundaries that were seen by less than three cam-
eras, in addition to unsampled voxels that were seen by 3 or more cameras and had a standard deviation
of greater than 7.0 in (a), where the standard deviation window size was 100x100. Right: A corresponding
heat map of future aircraft image locations, where a southward 40 degree off-nadir pointing angle and
aircraft altitude of 10,000ft have been specified.

(a) Nadir Pointing (b) 40 Degree Southward Pointing

Sampled surfaces Unsampled surfaces Visible unsampled surfaces

Figure 4.38: Left: View of the voxel space where voxels that were visible from the indicated location using a
nadir pointing angle are shown in blue. Right: View of the voxel space where voxels that were visible from
the indicated location using a southward 40 degree off-nadir pointing angle are shown in blue. Voxels
shown in orange are indicative of unsampled surfaces that were either not visible or did not meet the
given texture criteria.

CHAPTER 4. RESULTS AND ANALYSIS 137

Figure 4.39: Point cloud of downtown Rochester, NY, generated with 23 images from the WASP dataset.

4.5 Additional Datasets

Up to this point, only point clouds derived from the Exelis WAMI data have been presented.

Additional datasets were tested to gain insight into the voxel processing to better understand

the conditions in which it performs well, and those in which it is likely to fail. More information

on the datasets is available in Appendix A.

4.5.1 WASP: Downtown Rochester, NY Dataset

In addition to the WAMI imagery of downtown Rochester, NY, collections of WASP imagery have

also been taken. The WASP sensor is a color sensor, and imagery is collected at nadir. Though

the scene content is the same, the nadir viewpoint is different and could potentially impact the

creation of the voxel space and future image location identification and thus it was important

to study. A point cloud was generated using the 3D workflow and 23 WASP images, and the

point cloud results are shown in Figure 4.39. The major difference in this point cloud is the lack

of points on building sides, as buildings are defined only by their rooftops. This is because the

nadir view does not often capture the sides of buildings, and what is not visible in the imagery

cannot be reconstructed. Additionally, the extent of the point cloud is smaller than that of the

WAMI cloud, and the results are slightly noisier.

CHAPTER 4. RESULTS AND ANALYSIS 138

A voxel space was created using the WASP point cloud, where the voxels were approximately

3m in size. The result is shown in Figure 4.40, where the point cloud has been shown for refer-

ence. Note that from overhead, most of the visible surfaces in the voxel space are sampled, as

these surfaces were visible in the imagery. In the side view, it is evident that not many points

in the point cloud fell on the sides of buildings, and thus those surfaces remain unsampled,

though the ray tracing appears to have done a good job carving out the free space around the

buildings in the scene. The “pyramid” structures that existed in the areas of voids in the WAMI

point cloud are also evident in the WASP data, however they are much larger in this case, and

this is a direct result of the nadir collection angle. The field-of-view of the WASP sensor is at

most ±18 degrees off nadir, resulting in rays that are nearly perpendicular to the ground sur-

face that do not intersect to the same extent as those from an off-nadir collection, therefore

more unsampled space results above a void. This is particularly evident in the river, where

large voids in the point cloud exist. The result here is unsampled surfaces that extend in the

direction of the camera, surrounding the void.

This becomes problematic when determining the visibility of the unsampled surfaces. Be-

cause of the way that the ray-tracing carves out the free space with the nadir view angle, the

surfaces on the free-unsampled boundary surrounding the voids are perpendicular to the cam-

era viewpoints due to the discrete nature of the surfaces in the voxel space. When performing

the visibility analysis for the unsampled voxel faces that surround the void, the perpendicu-

larity indicates that the surface was not visible due to grazing angles. This is independent of

any standard deviation threshold that is set. Because the surfaces were indicated as not visible,

these surfaces are included in the future image location identification stage, and depending on

the size of the voids can significantly influence the results.

Results from the future image locations for a southward pointing sensor, 20 degrees off-

nadir, are shown in Figure 4.41. The pointing angle was chosen such that some building sides

would be visible. Only unsampled voxels that were seen by less than three cameras were used

in the computation; this included voxels on the sides of buildings as well as many of the verti-

cal voxels above the river area. The threshold was set for the visibility of the unsampled voxels,

because the texture metric was not shown to be more accurate at removing regions and using

just the visibility reduced the computational load. A value of 3 was chosen because unsampled

voxels that were visible in fewer than 3 views are guaranteed to be a result of lack of coverage in

the input imagery due to the nature of the 3D reconstruction algorithms used. The voxels that

CHAPTER 4. RESULTS AND ANALYSIS 139

(a) (b)

(c) (d)

Sampled surfaces Unsampled surfaces

Figure 4.40: The voxel workflow was used to create a voxel space using a point cloud derived from nadir
WASP imagery; voxels are approximately 3m. The WASP point cloud is shown in (a) and (c) for reference,
and the voxel space is shown from overhead in (b) and the side in (d).

CHAPTER 4. RESULTS AND ANALYSIS 140

< 3 views

min max Number of Unsampled Voxels Visible

Figure 4.41: Left: Unsampled voxels at free-unsampled boundaries that were seen by less than three cam-
eras. Right: A corresponding heat map of future aircraft image locations, where a southward 20 degree
off-nadir pointing angle and aircraft altitude of 5,000ft have been specified.

would be visible from the indicated location are highlighted in Figure 4.42. While it is indicated

that many of the sides of buildings would be visible from this location and pointing angle, there

are also numerous voxels in the river structure that are identified as visible. Since there are so

many unsampled voxels surrounding the river void, it has a significant influence on the pre-

dicted location. In this case, there were a sufficient number of unsampled voxels elsewhere in

the scene, and the predicted view does include many desirable unsampled surfaces.

4.5.2 WASP: Quarry Dataset

As part of RIT’s SHARE 2012 campaign [87], the WASP sensor collected imagery over a large

rock quarry near Honeoye Falls, NY. More information on the WASP sensor and the datasets is

available in Appendix A. The quarry presents a unique target for 3D reconstruction because it

is mostly rural, and unlike other scenes the 3D geometry is below the ground level, protruding

into the earth rather than extending above it. A point cloud was derived using WASP imagery of

the quarry, collected at nadir; the point cloud is shown in Figure 4.43. The central region of the

quarry has some significant voids, likely due to textural difficulties in the matching process in

regions covered by dense vegetation. The walls of the quarry are also not defined in the point

CHAPTER 4. RESULTS AND ANALYSIS 141

Sampled surfaces Unsampled surfaces Visible unsampled surfaces

Figure 4.42: View of the voxel space where voxels that were visible from the indicated location using a
southward 20 degree off-nadir pointing angle are shown in blue. Voxels shown in orange are indicative of
unsampled surfaces that were either not visible or were visible in three or more camera frames.

cloud because they were not visible in the imagery, or were visible at a very sharp angle.

A voxel space was created using 2.25m voxels, and the result is shown in Figure 4.44. The

sampled surfaces were shown alone to give some context for the shape of the unsampled sur-

faces. The sampled surfaces of the quarry accurately represent the structure that was derived

using the point cloud. The biggest issue with the voxel space shown here is the unsampled sur-

faces, which create tall wall-like shapes around the voids. This effect is also evident around the

actual wall of the quarry, where the unsampled surfaces in the void regions extend from the

lower ground plane on the floor of the quarry to far above the upper ground plane. These ef-

fects are the result of the nadir angle of the cameras used to generate the scene. The ray-tracing

to the points does not carve out the surrounding free space, leaving vertical columns of unsam-

pled voxels. These regions cannot be eliminated with the texture analysis because the vertical

surfaces are not indicated as being visible in any of the images due to the nadir pointing angle,

as was seen with the previous nadir-derived dataset. Because these surfaces far outnumber

the actual unsampled surfaces of interest on the quarry wall, they dominate the future image

identification stage.

CHAPTER 4. RESULTS AND ANALYSIS 142

Figure 4.43: Point cloud of the quarry, generated with WASP imagery that was collected as part of the
SHARE 2012 campaign [87].

(a) Sampled Surfaces (b) Sampled and Unsampled Surfaces

Sampled surfaces Unsampled surfaces

Figure 4.44: Quarry voxel space, created with a set of WASP images and 2.25m voxels.

CHAPTER 4. RESULTS AND ANALYSIS 143

< 3 views

min max Number of Unsampled Voxels Visible

Figure 4.45: Left: Unsampled voxels at free-unsampled boundaries that were seen by less than three cam-
eras. Right: A corresponding heat map of future aircraft image locations, where a southward 40 degree
off-nadir pointing angle and aircraft altitude of 5,000ft have been specified.

Results from the future image locations for a southward pointing sensor 40 degrees off-

nadir that would capture the walls below ground in the quarry, are shown in Figure 4.45. Again,

only unsampled voxels that were seen by less than three cameras were used in the computation.

The unsampled voxels were dominated by the false surfaces surrounding voids in the point

clouds that were a result of textureless regions. This is evident in the view of the voxel space,

showing the voxels that would be visible from the indicated location in Figure 4.46. The quarry

wall is also identified as visible, but this is likely a result of its placement relative to the other

unsampled voxels. In this case, the undesired sampled surfaces dominated the image location

identification stage.

It may be possible to implement a process to identify these regions in nadir point clouds so

that they do not influence the future image location identification stage. Hagstrom [88], who

derived voxel spaces using LIDAR data, noted that when the voxel resolution is near its limit,

there are often small and random unsampled voxels in the surrounding open space. A noise

removal process was implemented to deal with this effect, where unsampled voxels above the

highest surface in a column were changed to be free space. If no surface was present, the closest

surface level from a nearby column was used instead. This would need to be adapted to handle

SfM point clouds, where much larger voids are common.

CHAPTER 4. RESULTS AND ANALYSIS 144

Sampled surfaces Unsampled surfaces Visible unsampled surfaces

Figure 4.46: View of the voxel space where voxels that were visible from the indicated location using a
southward 40 degree off-nadir pointing angle are shown in blue. Voxels shown in orange are indicative of
unsampled surfaces that were either not visible or were visible in three or more camera frames.

While goals of the modern computing era are often to automate everything, it should be

noted that manual removal of such regions would be easier than automating this, and the cost

may make that worthwhile. By allowing a user to identify regions in which the large walls are

present, the problematic areas could be removed from consideration and the predicted image

locations would see immediate improvement. This could be implemented in such a way that

only a few clicks are required for user input, and warrants investigation in future work.

4.5.3 CorvusEye: Downtown Dataset

The final set of imagery that was tested was another downtown Rochester, NY dataset, collected

with Exelis’ CorvusEye sensor. The CorvusEye sensor is a newer sensor developed by Exelis

that is another wide area motion imagery sensor, similar to the original WAMI sensor, but it

provides RGB imagery instead of panchromatic. More information and sample images from

the CorvusEye sensor can be found in Appendix A. The dataset that was used was collected at

10,000ft with a fixed stare point, flying in a circular motion in a persistent surveillance mode. A

set of 10 images were used to develop a point cloud, covering less than a quarter rotation of the

circular flight path. The resulting point cloud is shown in Figure 4.47.

The images that were used in the reconstruction were collected with an eastward pointing

CHAPTER 4. RESULTS AND ANALYSIS 145

Figure 4.47: Point cloud of downtown Rochester, NY, generated with 10 images from the CorvusEye dataset.

angle, so when viewing the point cloud from the east the buildings are well sampled and the re-

sults look very dense. However, other vantage points were missing and this left significant voids

in the point cloud which are evident when looking from other angles. Side views of the point

cloud are shown in Figure 4.48. As can be seen, rooftops and westward facing sides of buildings

were reconstructed, but the remaining three sides of the buildings were not reconstructed in

most cases. Though similar to the WAMI point cloud, this presented a slightly different test

case for the voxel-based workflow.

A voxel space was created using a central subset of the scene using 2m voxel resolution. The

result is shown in Figure 4.49, where the voxel space is shown from the side with a north looking

view. This was to highlight the unsampled surfaces surrounding the river as well as the unsam-

pled shadows that surrounded the buildings. The shadows on the buildings were expected, as

they were seen in both of the previous WAMI point clouds derived from oblique imagery, and

their presence was a result of the ray tracing as shown in Figure 3.12. The structure in the river

however is different than that seen previously. In the WAMI point clouds and resulting voxel

spaces, the large homogeneous regions of the river had pyramid-like structures of unsampled

surfaces in the voxel space, as explained by Figure 4.10. In this case, because the views used

CHAPTER 4. RESULTS AND ANALYSIS 146

(a) East Facing View

(b) North Facing View

Figure 4.48: Point cloud computed using the 3D workflow, where the input imagery was from the Corvus-
Eye sensor, but was limited to approximately a quarter revolution so that major vantage points necessary
to complete a surface model were guaranteed to be missing.

to reconstruct the CorvusEye point cloud were all from similar directions, there were no rays

coming from different vantage points to sample the free space. This resulted in a large region

of free space extending from the river to the top of the voxel space in the direction of the cam-

eras. These large regions of unsampled voxels are similar to those that were seen in the nadir

WASP datasets, both in the downtown and quarry regions. If not properly removed, they will

significantly impact the results due to the large number of unsampled surfaces that compose

the regions.

The unsampled surfaces that were seen by more than three cameras were suppressed from

consideration in the future image identification stage. This process did remove some of the

surfaces in those river regions, but did not remove all of them which would be ideal. In the

nadir derived voxel spaces from the WASP data, the unsampled surfaces were not removed

properly due to the grazing angle threshold. In this case, it is more likely that the surfaces

were not removed because the ray-tracing encountered unsampled voxels along the path and

CHAPTER 4. RESULTS AND ANALYSIS 147

Sampled surfaces Unsampled surfaces

Figure 4.49: CorvusEye Downtown voxel space, created with a set of 10 CorvusEye images and 2m voxels,
where the view is looking North.

the unsampled voxels are assumed to be opaque because it is not known whether or not they

contain surfaces. Future image location maps were computed for a nadir pointing angle and

a westward pointing angle, 40 degrees off-nadir; the resulting maps are shown in Figures 4.50

and 4.51 respectively.

In each case, the predicted location is centrally located such that the entire footprint of

the sensor would have fallen on the voxel area, and the number of unsampled voxels visible

falls off toward the edges of the map. From the maps themselves, it is difficult to determine if

the predicted views are correct. The scene is dominated by unsampled voxels that compose

building shadows, and these regions will be visible from the predicted locations, as shown in

Figure 4.52.

Because there were so many unsampled voxels in the scene that were true unsampled sur-

faces, the predicted image locations using either pointing angle produce views in which a large

number of these unsampled voxel surfaces would be visible. Had the scene been composed of

more false unsampled surfaces, as was the case with the Quarry dataset, the result may have

been different. The results from the CorvusEye point cloud, in addition to those generated with

the WASP point clouds, indicate that more testing of the voxel-based workflow is necessary in

future work.

CHAPTER 4. RESULTS AND ANALYSIS 148

< 3 views

min max Number of Unsampled Voxels Visible

Figure 4.50: Left: Unsampled voxels at free-unsampled boundaries that were seen by less than three cam-
eras. Right: A corresponding heat map of future aircraft image locations, where a nadir pointing angle
and aircraft altitude of 10,000ft have been specified.

< 3 views

min max Number of Unsampled Voxels Visible

Figure 4.51: Left: Unsampled voxels at free-unsampled boundaries that were seen by less than three cam-
eras. Right: A corresponding heat map of future aircraft image locations, where a westward 40 degree
off-nadir pointing angle and aircraft altitude of 10,000ft have been specified.

CHAPTER 4. RESULTS AND ANALYSIS 149

(a) Nadir Pointing Angle (b) Westward 40 Degrees Off-Nadir

Sampled surfaces Unsampled surfaces Visible unsampled surfaces

Figure 4.52: View of the voxel space where voxels that were visible from the indicated location using a
nadir pointing angle (a) and using a westward 40 degree off-nadir pointing angle(b) are shown in blue.
Voxels shown in orange are indicative of unsampled surfaces that were either not visible or were visible in
three or more camera frames.

d d d

The results and analysis presented here confirms that the voxel-based workflow can suc-

cessfully predict locations from which unsampled surfaces are visible. However, tests with the

additional datasets indicate that future work may be necessary to fine-tune the workflow such

that it is capable of handling other types of data. It is possible that large unsampled voxel re-

gions that are obvious errors due to ray-tracing will need to be removed based on user input

prior to predicting an image location, as this could significantly improve the results of the pre-

dicted lcoations. Despite that, the voxel-based analysis has been shown to capture the concept

of free space in a way that has not been done, providing more information about the recon-

struction than was previously available in the original point cloud format.

Chapter 5

Conclusions

Voids in point clouds derived from multiple-view imagery exist as a result of texturally difficult

areas, occlusion of portions of the scene, and a lack of coverage in the input imagery. Tradi-

tional surface reconstruction and hole filling algorithms are not well suited for SfM derived

point clouds of city-wide scenes, often resulting in holes in the model or poor estimations of

the surfaces in the void areas. The is due to the fact that most of the voids are complex, and

are composed of multiple intersecting surfaces. In cases where voids are a result of a lack of

coverage, the reconstructions will benefit from the inclusion of more imagery such that more

points will be reconstructed in the void areas. A voxel-based approach has been presented to

partition the 3D volume, taking advantage of the idea of free space, such that voids can be eas-

ily identified. Multiple line-of sight analyses are then used to exploit the information contained

in the voxel space such that voids resulting from texturally difficult areas can be distinguished

and potential future image locations that have a clear view of the voids can be extracted. The

biggest strength of the voxel workflow is its ability to capitalize on the idea of free space and

use that to build a voxel model. The workflow excels when using point clouds generated from

oblique imagery with properly sized voxels, as the free space is adequately carved out, and fu-

ture image locations are easily identified using a ray tracing analysis.

150

CHAPTER 5. CONCLUSIONS 151

5.1 Voxel-Based Visibility Analysis

While identifying voids in a 3D point cloud can be challenging, converting the point cloud to

a voxel space provides a simple method to locate voids as they are manifested in the voxel

space as unsampled voxels. The voxel space generation algorithm was tested on both real and

synthetic datasets. The ground truth DIRSIG dataset was used to verify the results of the voxel

workflow to confirm it was performing as expected. The synthetic truth data made it possible

to generate voxel spaces from a single camera vantage point (something that would not be

possible using a traditional 3D workflow). The truth data made it possible to test the voxel

space on a more intuitive basis, resulting in confidence in the process used to generate the

voxel spaces.

A voxel space was then generated from a 3D reconstruction using real-world imagery from

the WAMI dataset, and the process behaved as expected. Using the WAMI data, the effect of res-

olution on the voxel space was examined by generating multiple voxel spaces using the same

input point cloud at different voxel resolutions. The results of this indicated that smaller is not

better in regards to voxel size, as there is some minimum resolution that the point cloud can

support. As the voxel size is decreased past this resolution, spurious voxels begin to appear

and the model is lost. Additionally, as the voxels grow in size, some detail information on the

surfaces of the reconstruction is lost. The voxel size is crucial to subsequent steps in the voxel

workflow, as using a voxel size too small will result in undersampling the voxel space and an

influx of unsampled surfaces will be present. Conversely, a voxel size that is too large will elim-

inate fine details in the scene, but this may not be as critical depending on the application.

At this time, it is up to the user to define the proper voxel size as there is no straightforward

method to automate the process.

A similar analysis was performed to test the effect of the probability of free space threshold,

used to classify the voxels into the ternary system: occupied, free, and unsampled. Unsampled

voxels in the space are not affected by the probability of free space threshold, because they con-

tain neither points nor rays. The majority of the voxels are either unsampled or only contain ray

interactions. This is due to the fact that voxels with point interactions define a single surface,

and the majority of voxels lie underneath this surface (unsampled) or above this surface (free).

As the threshold used for the probability of free space decreases, the number of unsampled

surfaces in the voxel space increases. The effect of this was studied visually and it was noted

CHAPTER 5. CONCLUSIONS 152

that many of the sampled surfaces that are lost as a result of the reduction in threshold are

converted to unsampled surfaces without much effect on the shape of the model. The increase

in unsampled surfaces would have a negative impact on the future image location identifica-

tion, and therefore it was determined that all voxels with point interactions would be classified

as occupied for the purposes of this work. It is possible that this may be a limitation in point

clouds with excessive noise, but the effect could be mitigated by using a noise reduction filter

as part of pre-processing before creating the voxel space.

In areas with large voids, such as the river or buildings in which only one side was recon-

structed, shadowing effects were noted in the unsampled voxels. Due to the lack of points, the

free space in these regions was not sufficiently carved out, and the oblique nature of the rays

associated with the WAMI dataset resulted in a pyramid like structure in the river, and an ap-

parent shadow on buildings. This effect was also present in the nadir imagery from the WASP

sensor that was tested, however the representation in voxel space was different due to the an-

gles and nature of the ray tracing. In the nadir imagery, holes resulted in taller pyramid like

structures for small holes, and large holes resulted in more of a wall effect. This became prob-

lematic in both the void identification and identification of future image locations calculated

on some of the nadir datasets.

5.2 Void Identification

It was noted that the boundary voxels in the voxel space contain the most pertinent informa-

tion, and those voxels that lie on the free-unsampled boundary are representative of the un-

sampled surfaces in the model. By identifying these voxels, a preliminary estimate of areas of

the point cloud that contain voids is obtained, and gives a basis for computation of the future

image location mapping. However, many of the unsampled voxels have already been imaged

by multiple cameras and thus they are not likely to benefit from the inclusion of more imagery

in the 3D workflow. These types of voids exist in texturally difficult areas that failed to generate

feature correspondences, and it is important to distinguish these voids from those that are a

result of a lack of coverage, as including texturally difficult areas could negatively impact the

prediction of future image locations.

A line-of-sight analysis was used to determine the visibility of the unsampled voxels from

the cameras used in the reconstruction. This is necessary as there is no visibility information

CHAPTER 5. CONCLUSIONS 153

associated with the unsampled voxels because by definition they lack points. Next, the unsam-

pled voxels were reprojected into the original images in which they were visible so that the local

image texture could be analyzed. Two texture metrics were tested: a local average image gradi-

ent and a local standard deviation. Local standard deviation was chosen as the texture metric

because it identified potentially homogeneous regions and was computationally efficient. The

local standard deviation metric is affected by the choice of window size and threshold, and this

can change the number of unsampled voxels in the voxel space that are used to predict future

image locations. Unsampled voxels that were visible in less than three views were always in-

cluded, regardless of their local standard deviation metric. This is because parameters used in

the 3D workflow require 3 views for reconstruction, and therefore those voxels with less than 3

views are guaranteed not to be reconstructed.

The WAMI point cloud was dominated by unsampled voxels that were a result of lack of

coverage. While different window sizes and thresholds were tested, it was found that as long

as the threshold removed most of the unsampled regions, the prediction of the optimal image

location was unaffected. It was also determined that a threshold on the number of views with

good visibility could also be used to eliminate texturally difficult regions. When looking for

voids that are due to a lack of coverage, the visibility information may be sufficient, without the

need to compute a texture metric. The visibility is computed for each unsampled voxel face

prior to computing the texture metric, so this could potentially reduce computational efforts.

Additionally, using a visibility threshold can catch voids that are a result of spatially repetitive

textures, in addition to the homogeneous regions indicated by the current texture metric.

There were some cases where the void identification and suppression performed poorly,

thus causing the future image location stage to fail. This was particularly evident in nadir point

clouds with large voids, because the ray tracing resulted in “walls” of unsampled voxels sur-

rounding the voids that extended to the top of the voxel space. The unsampled voxel faces that

composed these walls were determined to be not visible in any of the cameras, due to the fact

that the surface normals were perpendicular to the camera viewing angle and were indicated to

be grazing angles. Because they were indicated as “not visible” the texture metric had no effect

and did not suppress them. As a result, these unsampled voxels were included in the future

image location stage, and results were heavily weighted by these areas due to the large extent.

This phenomena was also seen in some of the oblique point clouds, depending on which im-

ages were included in the reconstruction. This emphasizes the importance of properly carving

CHAPTER 5. CONCLUSIONS 154

out the free space surrounding the surfaces, because failure can happen in subsequent stages.

5.3 Future Image Location Identification

Finally, another line-of-sight analysis was used to create a map of potential future image loca-

tions. These maps indicate how many of the voxels on the free-unsampled boundary (that are

not suppressed in the previous step) could potentially be imaged from each aircraft position

with a particular pointing angle. Areas that could see the most unsampled voxels were identi-

fied as potential image locations, though a full map over the area was provided. Current results

constrain the maps to two degrees-of-freedom, by holding the aircraft altitude constant, using

a circular camera field-of-view, and by holding either the pointing angle constant or defining

a fixed stare point. For each location and defined pointing angle, the number of unsampled

voxels that are visible is computed, weighted by a uniform or Gaussian weighting function with

defined cutoffs to exclude grazing angles; this is the cost function used in the analysis. The 25m

resolution presented here was very fine, and the spacing could be increased to reduce compu-

tation time without significantly influencing the results.

The predicted future image location with the maximum number of unsampled voxel faces

visible was constant for a variety of combinations of window size and threshold (parameters of

the texture metric) for the downtown WAMI dataset. This is because the scene was dominated

by voxels that were seen by fewer than three views, and these voxels are included regardless of

the texture metric. In cases where the voids are not dominated by voxels that are due to a lack

of coverage, the voxel maps will differ.

Three different sensor configurations were tested: (1) fixed pointing at nadir, (2) fixed point-

ing off-nadir, and (3) fixed stare-point, in which the stare point is centrally located in the scene.

In addition, these were tested with both uniform and Gaussian weighting functions. Both the

nadir and off-nadir fixed pointing systems behaved as expected, predicting viewpoints in which

unsampled voxels were visible. In each case, it was noted that the weighting functions had a

minimal effect due to the distribution of the surface normals in the voxel space and the field-

of-view of the sensor. The fixed stare-point system did not perform as well. Due to the nature of

the cost function trying to maximize the number of unsampled voxel faces that are visible, the

fixed stare-point system always pushed for steeper angles. This is because the circular field-of-

view of the camera is larger on the ground at steeper angles, and therefore has the possibility

CHAPTER 5. CONCLUSIONS 155

of imaging more unsampled voxels. As such, it is recommended that the fixed stare-point be

used with a fixed radius or a radial weighting function, so the comparisons between the area

imaged on the ground are similar. This was the only case in which the weighting function had a

significant effect, and that is a result of the changing pointing angle across the field. It was not

evident from the results whether one weighting function is better than another.

Using the camera location and pointing angle with the predicted best viewpoint, the voxels

that were visible from that viewpoint were computed and displayed for visual analysis. In the

case with the WAMI point cloud, derived from oblique imagery, each of the predicted views

captured unsampled surfaces of interest in the scene, confirming that the predicted location

could potentially be used to reduce the number of voids in a 3D reconstruction. Additional

datasets were tested as well, and in each case unsampled voxel faces were indicated to be visi-

ble from the predicted location. As mentioned previously, in some cases these were voxels that

should have been suppressed because they surrounded regions that were void due to textu-

rally difficult areas. In the case where such voxels dominate the scene, some sort of manual

intervention may be necessary to indicate and remove these false unsampled surfaces.

While potential imaging locations were identified, no subsequent analysis was performed

to determine whether inclusion of these images resulted in a superior reconstruction, due to

limitations in being able to enforce inclusion of specific imagery in the 3D workflow. In identi-

fying the future image locations, there is no consideration of past image locations (those used

in the original 3D reconstruction), thus there is no guarantee that the predicted location will be

easily tied to the 3D reconstruction.

5.4 Limitations

This workflow does have several limitations and it would be remiss not to acknoweledge them.

Creation of the voxel space is dependent on the input point cloud provided, and as such, the

results obtained can only be as good as the input data. A noisy point cloud will result in a

similarly noisy voxel space. The user defined voxel size is crucial to the creation of a voxel

space. Using a voxel size not well-suited to the input point cloud may result in an influx of

unsampled surfaces due to undersampling the voxel space, which in turn would negatively

impact the results of the void identification and future image mapping.

The voxel workflow is more likely to fail when using point clouds derived from nadir im-

CHAPTER 5. CONCLUSIONS 156

agery, particularly those that have large voids that are enclosed in the scene. This is because

the ray tracing does not adequately carve out the free space, because of the lack of information

in the region, and the result is large wall-like structures that surround the void. Because these

unsampled voxels are perpendicular to the nadir view, the visibility analysis identifies them as

not visible in the imagery, due to grazing angles, and as a result they are not removed in the

textureless feature removal. If these unsampled voxels make up a majority of the unsampled

voxels in the scene, as was the case with the WASP quarry data, they will heavily influence the

future image location identification, and this effect is undesirable. In scenes where these vox-

els compose a smaller portion of the unsampled voxels, such as the WASP downtown data, the

future image location identification may still identify desired viewpoints. Manual removal of

these regions based on user defined input could significantly improve the results.

Finally, the biggest limitation is that the predicted future image location from which the

most voxels are visible is not guaranteed to be tied in any way to the current 3D reconstruction.

From the half circle of the WAMI data, it is evident that the predicted viewpoint would be vastly

different from those included in the original reconstruction. The user will have to find a way

to tie the predicted location to the imagery that has already been used so that features can

be reliably matched, thereby increasing the odds for an improved reconstruction. This would

be done by including intermediary imagery between the previous locations and the predicted

maximum location. It is possible that the provided maps could be used to do this so as to

maximize the unsampled voxels that are seen on the chosen path.

Chapter 6

Future Work

There are many areas within this work that could be expanded and improved upon for future

voxel-based analysis of point clouds. Listed here are some improvements to the processing

methods that were not implemented in the current voxel workflow, as well as other potential

applications.

6.1 Generating Point Clouds

The results of the voxel-based workflow presented here are directly related to the quality of

the input point cloud(s) used to generate the voxel space. The area of 3D reconstruction from

imagery is rapidly expanding, and the techniques used here to generate point clouds (Section

2.1.7) are admittedly no longer state-of-the-art. Recent innovations may be able to provide bet-

ter point cloud reconstructions for input to the voxel-based workflow. There are three areas that

show potential for immediate exploration: feature extraction, densification, and geo-accurate

transformation.

A 3D reconstruction from imagery is dependent on the initial feature extraction to estimate

the camera pose. While SIFT is a widely used feature detection and extraction scheme, there are

numerous other feature detectors and descriptors that should be explored. Some possibilities

include: SURF (Speeded Up Robust Features) [8], FAST (Features from Accelerated Segment

Test) [9], MSER (Maximally Stable Extremal Regions) [10], GLOH (Gradient Location and Ori-

entation Histogram) [11], DAISY [12], and ASIFT or Affine-SIFT [13].

157

CHAPTER 6. FUTURE WORK 158

In addition to the initial feature extraction, the densification process is also something that

could change. While CMVS/PMVS are widely used, probabilistic voxel modeling [22] and semi-

global image matching (SGM) [23] have also shown promise for point cloud densification. The

only criteria for the voxel-based workflow is that the visibility of the points (i.e. the cameras

that were used to reconstruct a point) are available in addition to the points themselves. With-

out the visibility information, the free voxels in the voxel space cannot be identified. The sparse

point clouds resulting from bundle adjustment could also be used in the voxel-based process,

depending on the application since the density of the point cloud has a direct impact on the

voxel resolution. Improving upon and/or changing the densification process could also elim-

inate some of the randomness that is associated with the current 3D workflow, and that could

be beneficial in further testing and validating the voxel-based process.

Lastly, the geo-accurate transformation used in the current workflow is not the most ac-

curate of the current transformations available, as discussed in Section 2.1.4. While a geo-

accurate transform is not a requirement of the process, having the world-coordinate axes and

the point cloud coordinate axes differ by a rotation can make visualization of the voxel space

a challenge, and the future image location processing assumes that the X Y plane in the voxel

space is parallel to the plane in which the future image positions are located. Additionally, if the

objective is to determine optimal positions for new image collection, then the accuracy of the

voxel space becomes important. Improvements to the geo-accuracy of the point cloud will be

reflected in the voxel space, and could further improve or refine the predicted optimal imaging

locations. Without a geo-accurate point cloud, a principle component analysis could be used

to obtain the three dominant orientations to align the ground plane of the point cloud to the

X −Y axis in the voxel space.

6.2 Improving Scalability and Computational Efficiency

There are several areas in which the scalability and computational efficiency of the voxel space

code could be optimized and improved upon. As written, the voxel map code requires a signif-

icant amount of memory. The memory requirements for a voxel map are directly related to its

size and resolution. In some cases, the resolution of the voxel space was limited due to the large

memory requirements. Additional optimizations could be implemented to improve memory

management. Significant improvements could also be made to optimize the run time for voxel

CHAPTER 6. FUTURE WORK 159

map creation. Though fast voxel-traversal algorithms were implemented, the ray-tracing is still

computationally intensive and contributes to long processing times. The ray-tracing process

lends itself to parallelization, as the results could eventually be combined to form the com-

pleted voxel map.

Another area to consider for possible improvements is in the identification of potential

future image locations. The voxel-based workflow currently considers all voxel faces on the

free-unsampled boundary, provided they are not from texturally difficult regions. It may be

beneficial to explore using only a subset of these unsampled voxel faces, particularly in voxel

maps with a significant portion of voxels on the free-unsampled boundary. Subsets could be

determined by merging clusters of faces that have identical surface normals, and associating a

weight with each cluster based on the number of points it represents. This could prove to be

particularly useful for real time operations.

6.3 Dealing with Texturally Difficult Regions

When testing additional datasets, one of the significant issues raised was the performance of

the voxel workflow in texturally difficult regions. This issue was particularly evident in nadir-

derived point clouds (WASP), as well as point clouds that were derived from imagery captured

at similar vantage points that did not capture all regions of the scene (CorvusEye). In these

caases, the ray tracing does not adequately carve out the free space in regions of the voids. In

the case of large voids, this results in unsampled voxels that extend through the entire voxel

space, resulting in failure in subsequent steps. In the workflow presented here, boundaries are

used to identify holes, and these regions can create large unsampled boundaries within the

scene. A visibility analysis is then performed in an effort to suppress voxels that were visible

in multiple images and may have been a result of texturally difficult regions. This visibility

analysis is likely to fail in some cases, as was shown with some of the datasets presented.

Future work should investigate methods to remove these obvious regions from the unsam-

pled voxel faces prior to performing the future image location prediction so that they do not

influence the output. Though automation of the process would be ideal, it may be easier to

have the user indicate these regions through a visual analysis because they would be very ob-

vious to a viewer.

The texture metric used in the voxel processing was implemented to suppress unsampled

CHAPTER 6. FUTURE WORK 160

voxel faces that were a result of homogeneous regions from influencing the determination of

future image locations. Inclusion of more imagery in the process will never be able to eliminate

the unsampled voxel faces that are a result of texturally regions, due to the way that the point

clouds are generated using the particular 3D workflow that was used here. It is possible that

a shape from shading method, such as the one presented by Saponaro et. al. [42], could be

used to generate points in these regions, and thus reduce some of the unsampled voxel faces.

Another option would be to use a different densification process. A method like semi-global

matching, where the objective is to triangulate every pixel in the image, may provide addi-

tional points in the textureless regions where PMVS failed to generate any. It is possible that

the generation of points would be sufficient such that there would not be a need to identify

the textureless regions, and that step of the voxel workflow could be eliminated. If the goal is

to construct a model with no unsampled surfaces, then exploration of techniques that can be

used to estimate surfaces in the textureless regions is warranted.

6.4 End-to-End Testing of Additional Datasets and Flight Patterns

Several datasets were tested through the process of developing the voxel-based workflow, how-

ever future work should include processing more point clouds, particularly those that with dif-

ferent features. The workflow should be taken end-to-end with multiple datasets in order to

test the impact of other flight patterns on the development of the voxel space. It is imperative

to test different flight paths, removing different portions of the input imagery to determine the

impact on the voxel space and predicted image locations. This will be beneficial in determining

scenarios in which the workflow can recover what is missing, as well as determining limitations

of the workflow.

6.5 Expanding Sensor Positions

The sensor positions presented in this work were limited to fixed pointing angle or fixed stare

point configurations in order to constrain the problem to something manageable. As such,

the open parameters were limited to X and Y . Expanding the parameters for possible aircraft

locations, within reason of what an aircraft is capable of performing, could lead to improved

performance.

CHAPTER 6. FUTURE WORK 161

6.6 Developing Flight Lines

In the voxel workflow presented in this research, the primary objective was to determine a po-

sition where the most unsampled voxels could be seen. This work was based on the assump-

tion that including more images into the 3D workflow of previously unseen areas would result

in fewer voids. It is important to recognize that including a single image may or may not be

beneficial, depending on the positions of the other cameras. If the new image is sufficiently

different from the initial set, there may not be correspondences to match between the images

and no way to tie it into the reconstruction. This work left the way to get to that “ideal” image

location up to the end user, leaving significant areas for future work.

The next step in this process could ultimately involve using the maps developed to deter-

mine the optimal image location to develop flight lines for an aircraft, such that multiple im-

ages would be taken along the flight line and the chances for an improved reconstruction in-

crease dramatically. An example of this is depicted in Figure 6.1, where the sum of the positions

across both horizontal and vertical flight lines were computed, and the predicted flight line is

indicated in each direction. It is also possible that multiple image locations will be predicted,

indicated by multiple local maximums in the predicted map, and flight lines could be created

to tie the locations together.

By not restricting the aircraft to traditional flight lines, it may be possible to optimize a flight

plan such that more unsampled voxel faces could be imaged. This could also be used to reduce

the amount of flight time necessary to collect the required imagery, thereby reducing costs.

6.7 Real-time Applications

As presented here, the future image locations could be used to search an image database for the

corresponding image, or to design new flight plans for recollecting data. However, the desired

image may not be contained in a database, and image recollection is not always a possibility,

depending on the application and area of interest.

In future implementations, it would be beneficial to use some sort of reconstruction pro-

cess that can build up a scene incrementally in flight. From there it may be feasible to simul-

taneously build the voxel space, such that it can be leveraged to predict future image locations

based on the current location of the aircraft. Being able to predict optimal camera locations

CHAPTER 6. FUTURE WORK 162

Figure 6.1: An example of how the potential future image location map can be used to develop flight lines.
The predicted horizontal and vertical flight lines are shown, where the plots show the relative sum number
of unsampled voxel faces that would be visible across horizontal flight lines (right) and vertical flight lines
(bottom).

in real time opens up the possibility of redirecting an aircraft in flight to obtain imagery from

those locations in an attempt to fill in the missing data in the point clouds to obtain a complete

model.

6.8 Using the Voxel Model as a Surface Model

The voxel model was used here as the foundation to predict future image locations, but it could

be leveraged for other applications as well. As was stated previously, 3D point clouds are not

directly usable in modeling applications, but rather the point clouds are converted to surface-

based models. Accurate surface-based models derived from imagery could be used to auto-

matically generate scenes in DIRSIG and used for more realistic synthetic image generation

and modeling, as was explored by Nilosek [89].

Using the voxel faces themselves to create a surface model, as was done for visualizations in

this work, introduces a stair-step artifact. Techniques to extract isosurfaces from scalar fields,

such as marching cubes (Section 2.3.5) or dual contouring (Section 2.3.6), may be used to mit-

igate the stair-step effect and achieve a smoother surface. It may also be beneficial in some

cases, when the voxel resolution is near its limit, to perform noise removal such that the small

CHAPTER 6. FUTURE WORK 163

and random unsampled voxels in open space can be removed.

Assuming a nearly complete model with minimal unsampled surfaces, the next logical step

would be to assign material attributes to the surface, such as color. The color associated with

the point cloud is lost in the voxelization process, and thus the final voxel surfaces have no

associated color. Imagery can be used to color the voxel surfaces, as was explored by Hagstrom

[88], or hyperspectral imagery can be used to give more accurate material properties to the

surface for use in DIRSIG, as was explored by Nilosek [89].

6.9 Rendering a Volumetric Model

The voxel space was generated with a probability of free space, or conversely a probability of

occlusion. A threshold was implemented to classify the voxels using a ternary system into free,

occupied, and unsampled voxels. The 3D model visualizations were then made using opaque

versions of the models because it simplified the workflow and allowed for easier comparisons

between models. However, this does not utilize the probability of free space parameter to its full

potential. Another path to explore would be that of volumetric rendering, where the probability

of free space could be equated to an estimate of transmission and voxels could then be rendered

as partially transmissive. One potential issue with this is the unsampled voxels, as a decision

would have to be made regarding their transmission in the model.

6.10 Fusing Multiple Modalities

There has been significant interest in registering point clouds from different modalities, chiefly

SfM-based and LIDAR-based point clouds. The voxel-based modeling used here has been

shown to work with LIDAR data, provided that the points of origin are available with the LI-

DAR data [88]. Assuming that an SfM point cloud and LIDAR point cloud have been properly

registered, the two could be combined to form a voxel space. As LIDAR is primarily collected at

NADIR angles, the points from an SfM point cloud could be used to fill in some of the missing

surfaces oriented perpendicular to the LIDAR collection. Additionally, the LIDAR data could be

used to improve the quality of the voxel map in texturally difficult regions that do not generate

SfM points in the current 3D workflow.

Appendices

164

Appendix A

Data

The details of the datasets presented in this work are described here. Real datasets used for

testing were collected with the Exelis WAMI sensor, the Exelis CorvusEye sensor, and the RIT

WASP sensor. The WAMI and CorvusEye datasets were captured in a persistent surveillance

mode with fixed stare points, and the WASP dataset was collected with a fixed pointing angle at

nadir. A synthetic dataset, generated with DIRSIG for testing purposes, is also presented.

A.1 WAMI

Security challenges for large scale events have unique requirements such as the need to view

large scale areas simultaneously, the need to watch continuously over large time frames with

the ability to look back in time, the need to provide imagery to multiple users simultaneously,

and the need to be non-intrusive are just a few. Changing needs for security and surveillance re-

quired development of a new system, which led to Exelis developing the Wide Area Motion Im-

agery (WAMI) system, capable of providing wide area persistent surveillance. While the WAMI

acronym is being used here to refer to a specific imaging system, it should be noted that it is

also used in the imaging community as a generic descriptor for wide-area imaging systems.

Exelis’ WAMI system has five visible cameras, positioned to achieve a wide field-of-view, in

addition to four infrared sensors with corresponding fast steering mirrors. The sensor is de-

signed to provide 24-hour surveillance through the visible or infrared sensors. Detailed speci-

fications for the WAMI sensor are provided in Table A.1.

165

APPENDIX A. DATA 166

Table A.1: Specifications for the Exelis Wide Area Motion Imagery (WAMI) system. *Note that focal length
provided is an average focal length.

Specification Visible Infrared
Wavelength 0.5µm 4µm
Resolution 4872 x 3248 1024 x 1024
Pixel Pitch 7.4µm 18µm
Focal Length* 125mm 195mm

Exelis provided 453GB of image data from a WAMI collect over downtown Rochester, NY.

Image collection occurred August 12-13, 2010, and includes a variety of visible and infrared

data. The provided images were converted from NITF to JPEG to make them compatible with

the SfM workflow used at RIT. In addition to the imagery, position and orientation information

were captured at a rate of 60Hz and this information was also provided. A subset of visible

images spanning approximately a four minute time frame was carved out for processing. This

subset was captured in an orbital fashion with a seemingly fixed stare point. The flying altitude

was 3000m, with a nominal declination angle of 40 degrees, and a frame rate of 2Hz. Raw image

data from the 5 visible sensors is shown in Figure A.1.

APPENDIX A. DATA 167

Figure A.1: Raw image data from the 5 visible sensors on the Exelis WAMI sensor.

APPENDIX A. DATA 168

A.2 CorvusEye 1500C

Exelis introduced the CorvusEye 1500 series in 2014. CorvusEye is another wide-area airborne

surveillance system. The system was designed primarily for law enforcement, military, bor-

der patrol, and first responders, but could easily be applied to other areas. CorvusEye uses a

commercial off-the-shelf approach to reduce costs and is smaller and lighter than previous sys-

tems (15 inches, 83lbs), providing an affordable, capable option for domestic and international

markets. The system can be used on both manned and unmanned airborne platforms, and is

capable of monitoring 3 kilometer region.

The CorvusEye 1500C has a visible color sensor for daytime applications, while the Corvus-

Eye 1500CM has an integrated visible color and mid-wave infrared sensor for both daytime

and nighttime applications. For the purposes of this research, the visible color imagery is the

focus. There are four cameras, each 6600×4400 pixels, which can be combined to form a 116

megapixel mosaic. There are 120 pixels of overlap between the sensors. Images are collected at

a frame rate of 2Hz. GPS/INS information is available in the image metadata.

Exelis provided 1.78TB of image data from multiple CorvusEye collections. The image col-

lections included the I390-I490 interchange flown at 10,000ft, downtown Rochester, NY flown

at 10,000ft and 5,000ft, and the RIT campus flown at 15,000ft, 10,000ft, and 5,000ft. Sample

imagery from the downtown collection, flown at 10,000ft, is shown in Figure A.2.

For more information about the Exelis CorvusEye sensor, visit http://www.exelisinc.

com/solutions/corvuseye1500/Pages/default.aspx.

http://www.exelisinc.com/solutions/corvuseye1500/Pages/default.aspx
http://www.exelisinc.com/solutions/corvuseye1500/Pages/default.aspx

APPENDIX A. DATA 169

2
3

0
1

Figure A.2: Raw imagery from the 4 sensors of the CorvusEye sensor flown at 10,000ft over downtown
Rochester, NY. There is 120 pixels of overlap between the cameras. The diagram below indicates the cam-
era number in the configuration. Cameras 1 and 3 are mounted upside down, which is indicated in the
metadata.

APPENDIX A. DATA 170

Figure A.3: Sample WASP image from the downtown Rochester, NY dataset.

A.3 WASP

The RIT Wildfire Airborne Sensor Program (WASP) imaging platform, developed in the Digital

Imaging and Remote Sensing Laboratory in the Chester F. Carlson Center for Imaging Science

at RIT, was originally developed to detect and monitor wildfires. However in recent years its

purpose has expanded into a variety of other scientific applications, including 3D reconstruc-

tion. The WASP platform is composed of four sensors: visible/near infrared (VNIR), short-wave

infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR) [90]. For the pur-

poses of this research, only the VNIR imagery was used. The VNIR imagery has a resolution of

4000x2672 pixels.

The WASP sensor was flown over downtown Rochester, NY in manner so as to capture ap-

proximately 80% forward overlap and 90% side overlap in imagery, with the intention of use in

SfM processing algorithms for the purposes of 3D reconstruction [91]. This provided a dense

collection of nadir imagery over the center of Rochester, with a GSD of approximately 0.3m. A

sample WASP image from the downtown collect is shown in Figure A.3.

As part of the SpecTIR Hyperspectral Airborne Experiment (SHARE) 2012 data collection

campaign [87], imagery of a single large quarry near Honeoye Falls, NY was captured with the

WASP sensor. The site was selected as an opportunity target due to its size and shape, as well

as the unique challenge it presented to 3D reconstruction. In most scenes, the structure of the

scene is above ground, but the quarry presented an interesting below ground target. The extent

of the quarry is shown in Figure A.4, and sample WASP images of the quarry are shown in A.5.

APPENDIX A. DATA 171

Figure A.4: Image of the extent of the single large quarry near Honeoye Falls, NY, courtesy of Google Maps.

Figure A.5: Sample WASP images from the single large quarry near Honeoye Falls, NY captured as part of
the SHARE 2012 campaign.

APPENDIX A. DATA 172

A.4 DIRSIG

It is difficult to quantitatively compare the performance and output of structure from mo-

tion algorithms. The multi-view Middlebury dataset [29] provides calibrated imagery and cor-

responding mesh models designed specifically for evaluating the performance of multi-view

stereo algorithms, but the simple figurines used do not present the same challenges that might

be encountered using aerial imagery. Because aerial application of Structure-from-Motion al-

gorithms is becoming more commonplace, it was determined that the community could ben-

efit from an aerial dataset complete with accompanying ground truth.

The Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool provides a unique

opportunity to build such a dataset. DIRSIG is a synthetic image generation application de-

signed to produce broad-band, multi-spectral, and hyper-spectral simulated imagery in the

visible through thermal infrared regions of the spectrum, with additional capability to produce

polarimetric, RADAR, and LiDAR imagery [92]. It is a ray tracing model based on first-principles

physics sub-models, such as Bi-directional Reflectance Distribution Function (BRDF) predic-

tions, sensor models, and atmospheric models. The modeled components are combined and

integrated radiance images can be produced for an arbitrary number of band passes.

The data set was simulated with a capture date and time of August 12, 2010, 18:00.00 GMT.

Megascene 1, a synthetic DIRSIG scene modeled after an area north east of Rochester, was used

[93]. A multi-story, building was added to the scene to provide additional height variation.

The imaging system was modeled as a simple multi-band framing array featuring an RGB focal

plane, with each band featuring a Gaussian spectral radiance response, and a panchromatic

band with the spectral radiance response of WorldView-2. The focal length was 125.09mm.

The detector featured a 1200×800 array, with each pixel being square and 32µm in size. The

simulated flight path of the sensor was circular with a fixed stare point in the central portion

of the scene at an altitude of approximately 800m above ground and a nominal declination

angle of 40 degrees. The sampling rate for the data set was 2Hz and images were captured for

210s, resulting in a 420 image data set. The design parameters for the simulation were designed

to achieve a similar ground resolution to the WAMI sensor and mimic some of its properties,

however the simulation is not intended to be a synthetic replica of the WAMI sensor. Sample

images are shown in Figure A.6.

In addition, each radiance image is accompanied by a truth image produced by DIRSIG.

APPENDIX A. DATA 173

(a) RGB (b) Panchromatic

Figure A.6: Sample images from the DIRSIG synthetic dataset.

Adaptive sampling was used to ensure radiometric fidelity, however it was determined that

an average position (X,Y,Z) over the rays was not advantageous for this application. Consider

casting rays for a pixel that falls on the edge of a structure as is shown in Figure A.7; it is possible

that the pixel does not line up exactly with the edge of the structure and therefore some rays

may hit the structure and some may just pass it. The average of these rays will result in a point

that does not lie on either surface that was intersected by the rays, therefore adding invalid

surface points to the truth point cloud. To mitigate this, a minimum and maximum range value

is reported for every pixel. This ensures that the points in the point cloud and their respective

normals correspond to actual points in the scene, rather than an average point.

For this particular data set, information such as the minimum range, maximum range,

(X,Y,Z) hit coordinates for the minimum and maximum range, (X,Y,Z) normal components for

the minimum and maximum range and material IDs for the minimum and maximum range are

available. Note that the minimum and maximum range will be the same for rigid solid objects

such as buildings, but will differ on the edges of buildings and in areas with dense vegetation

due to the adaptive sampling methods employed in DIRSIG. Sample images of the hit coordi-

nates are shown in Figure A.8, and a sample 3D point cloud made from the hit coordinates is

shown in Figure A.9.

This data set is unique in that it provides a 3D location and normal vector for every pixel

in every image and camera location and pointing information is known. The data set was pre-

sented at the SPIE Optics and Photonics conference [94] and the full data set was released to the

APPENDIX A. DATA 174

A

B

C

Figure A.7: Illustration of the casting of rays for a single pixel. One ray intersects the building at point A
and one ray intersects the ground at point B. The average of the two rays, point C, is not on any structure
in the scene and therefore is not valid truth data. Note that adaptive sampling in DIRSIG uses more rays,
the two ray case was just drawn for illustrative purposes.

(a) X hit (min range) (b) Y hit (min range) (c) Z hit (min range)

Figure A.8: DIRSIG truth data showing the (X,Y,Z) hit coordinates for the minimum range in a single scene.

Figure A.9: Sample point cloud made using the (X,Y,Z) hit coordinates from a single image frame.

APPENDIX A. DATA 175

community and is available for download at dirsapps.cis.rit.edu/3d-dirsig-truth/.

dirsapps.cis.rit.edu/3d-dirsig-truth/

Appendix B

Code

This appendix presents the software written in support of this thesis to develop the voxel based

workflow. The code is written in C++, though there are several other helper scripts written in

various languages. It should be noted that memory requirements for this software are depen-

dent on the voxel size chosen in combination with the extent of the point clouds. This software

also makes use of the OpenCV library [95], which is widely used in the community and available

for a variety of platforms.

B.1 SfM Workflow

The voxel workflow was developed using the results of the 3D SfM workflow used at RIT, dis-

cussed in Section 2.1.7, as the input results. A detailed tutorial on the Structure from Motion

workflow is available in [89] or online at http://dirsapps.cis.rit.edu/3d-workflow/?q=

3d-workflow. A set of images should be run through the workflow using the RunProcess.sh

script with the a, g , and k flags set. The a flag runs SIFT/Bundler/CMVS/PMVS, and the g flag

runs Gtransform. Gtransform is used in this case to rectify the SfM point cloud such that the

XY plane in the local ENU (East-North-Up) coordinate system is parallel to the coordinate sys-

tem of the point cloud. Check to make sure this is the case before running the voxel workflow.

Note that the k flag prevents running the cleanup process, keeping all the output of SiftGPU,

Bundler, CMVS/PMVS, and Gtransform; some of this output is required for the voxel workflow.

176

http://dirsapps.cis.rit.edu/3d-workflow/?q=3d-workflow
http://dirsapps.cis.rit.edu/3d-workflow/?q=3d-workflow

APPENDIX B. CODE 177

After running the SfM workflow, the following directory structure is created:
/

bundle
logs
pmvs

models
pos
trans

models
txt

txt
visualize

results

The voxel workflow uses the PMVS options file (~/pmvs/option-0000), the PMVS patch file

(~/pmvs/models/option-0000.patch), the Gtransform point cloud (~/pmvs/trans/models/option-0000-trans.ply),

and the Gtransform camera matrices (found in ~/pmvs/trans/txt/). Prior to using the voxel

workflow, the output Gtransform point cloud must be converted from binary to ascii, such that

the new file is labeled as ~/pmvs/trans/models/option-0000-trans-ascii.ply. Addition-

ally, the camera matrices in the txt files need to be converted to the PMVS format using the

cleanTrans.sh script. Lastly, a voxels folder needs to be created in the working directory.

Note that functions have also been developed to use PMVS or DIRSIG point clouds as input

to the voxel workflow. In the case of PMVS input, the indicated voxel size will not be in standard

meters, but rather measured against the relative scale of the point cloud. Using a DIRSIG point

cloud requires a separate file with the (X ,Y , Z) positions of the camera separated by spaces.

In the current state, the voxel-workflow is not designed to handle PMVS clusters that result in

multiple point clouds, but modification to do so should be relatively straightforward.

B.2 Creating the Voxel Space

A binary, voxelMap, has been made to run voxel space creation. Generating the voxel space

requires 3 input parameters: the path to the top level directory in the workspace, the element

size of a voxel, and the threshold for the probability of free space. The path to the top level

directory is the path to the SFM workspace that was discussed previously in B.1.

The voxel size will impact the memory requirements and processing time. It is recom-

APPENDIX B. CODE 178

mended that the user start with a larger voxel size and work to smaller sizes to determine the

best resolution for the dataset. Voxels are cubic in nature. In the case of a GTRANS point cloud,

the units are more intuitive in meters (assuming units of meters were used in GTRANS). If us-

ing a PMVS point cloud, determining the proper voxel size is less intuitive and may take a few

attempts.

The probability of free space threshold is the threshold that determines the occupied and

free classifications. A value of 1.0 is recommended such that all voxels with points are classified

as occupied voxels. Noisy point clouds may require an adjustment of this parameter.

The C++ code is run from the build directory with 2m voxels and a 1.0 probability as follows:

$. / voxelMap / f u l l /path/ to /SFM/ directory / 2.0 1.0

The code will generate the following output:

• ~/voxels/voxels.txt

• ~/voxels/voxels_free.hdr

• ~/voxels/voxels_free.img

• ~/voxels/voxels_occupied.hdr

• ~/voxels/voxels_occupied.img

• ~/voxels/voxels_transmission.hdr

• ~/voxels/voxels_transmission.img

• ~/voxels/voxels_structure.ply

• ~/voxels/voxels_missing.ply

• ~/voxels/voxels_centers.ply

Detailed descriptions of the output files can be found in Appendix C.

APPENDIX B. CODE 179

B.3 Selecting a Subspace

To eliminate the walls that likely appear around the extent of the point cloud, selection of a sub-

space is recommended. A binary, subspace, has been created to save the subspace, requiring

the following 8 parameters:

1. Voxel input file (full path recommended).

2. Basename of the output file (full path recommended).

3. Element size of a voxel.

4. Threshold for probability of free space (1.0 recommended).

5. Minimum X -coordinate.

6. Maximum X -coordinate.

7. Minimum Y -coordinate.

8. Maximum Y -coordinate.

The file paths are self-explanatory, and the voxel size and probability of free space thresh-

old were described previously. The new input requirements here are the minimum and maxi-

mum coordinate values to use that will define the bounding box of the voxel subspace. An easy

method to chose the location values is to open the free space img file in ENVI, and view the

bands, where increasing band number is increasing in Z space. A band from the middle of the

voxel space, where building structures can be easily recognized is best suited for this purpose.

Note that the origin is in the top left. The cursor location/value feature can be used to pick out

a minimum point (top left) and a maximum point (bottom right). The x and y coordinates will

define the inputs.

The C++ code is run from the build directory with 2m voxels and a 1.0 probability as follows:

$. / subspace / f u l l /path/ to / voxels / f u l l /path/ to /subspace/basename

2.0 1.0 minX maxX minY maxY

The voxel subspace will save the same files as the original voxel space creation, but with the

basename defined in the function input.

APPENDIX B. CODE 180

B.4 Predicting Future Image Locations

The last step in the process is to use the voxel space to predict image locations from which

voxels will be visible. The two inputs that are required are the path to the current folder in

the workspace where the PMVS files are contained, and the full path to the voxel subspace

file. Because the number of parameters associated with the future image location prediction

was so large, they were not made to be inputs, rather they are located at the beginning of the

main function where they are clearly identified. Changing the parameters requires the user to

recompile the code. The parameters for the image location predictions are as follows:

1. Texture parameters:

Window Size - window size for standard deviation computation in image texture

metric (single parameter, window is square).

Standard Deviation Threshold - average standard deviations computed in the local

window less than the specified threshold are considered texturally difficult and not used

Number of Cameras Threshold - voxels present in more views than the threshold

are considered texturally difficult and not used.

2. Camera and Angle Parameters:

Camera angle - defines the circular field of view of the camera, computed as the

inverse tangent of half the number of pixels on the sensor in the smallest dimension by

the number of focal pixels [radians].

Grazing Angle - angles greater than the specified threshold are considered grazing

angles [radians].

3. Plane Map Parameters:

Block Size - linear spacing between potential locations [meters].

Altitude - flying altitude [meters].

Pointing - unit vector that specifies the pointing direction of the sensor.

Stare - boolean variable indicating if a fixed stare point is to be used; if true, the

pointing variable is the location of the stare point in the scene.

APPENDIX B. CODE 181

Uniform or Gaussian weighting functions can be used in the plane mapping, and that

can be changed in the code as well. The output, /voxels/planeMap.txt, is a space delim-

ited text file, where the dimensions correspond to the number of potential locations in the

X and Y dimensions and the values are the number of unsampled voxels visible in that lo-

cation, scaled by the weighting function. The X Y Z plane locations are saved as a PLY file

(/voxels/positions.ply), where the normals are indicative of the pointing vector. Also

output are PLY files that can be used to visualize the voxels that were visible from the predicted

maximum location: /voxels/missing_voxels_visible.ply and /voxels/missing_voxels_not_visible.ply.

B.5 Summary

1. Run the SfM workflow using sh RunProcess.sh -agk

2. Convert the Gtransform ply from binary to ascii, where the ascii file is ~/pmvs/trans/models/option-

0000-trans-ascii.ply

3. Convert the camera matrices to the proper format using sh cleanTrans.sh in the ~/p-

mvs/trans/txt folder

4. Make the voxels folder ~/voxels

5. Generate the voxel space using the voxelMap binary.

6. Select a subset of the voxel space using the subspace binary.

7. Generate future image location maps using the planeMap binary.

8. Remove duplicate vertices from the PLY files using Meshlab to reduce file size.

9. Generate visualizations in Blender if desired.

Appendix C

Data Formats and Handling

The following presents a detailed description of the file formats used throughout the voxel

workflow.

C.1 Voxel Space File Format

The voxel space is saved as several output files. Given a general basename for the voxel space,

the following files are created:

• basename.txt - text file containing properties of the voxel space

• basename_free.hdr - ENVI header file

• basename_free.img - Binary image data for the free voxels

• basename_occupied.hdr - ENVI header file

• basename_occupied.img - Binary image data for the occupied voxels

• basename_transmission.hdr - ENVI header file

• basename_transmission.img - Binary image data for the probability of free space

The properties of the voxel space stored in the basename.txt file are the element size (double),

origin (double, double, double), and the number of elements (int, int, int). An exam-

ple file is shown for reference:

182

APPENDIX C. DATA FORMATS AND HANDLING 183

ElementSize: 0.02

Origin: -4 -3 -5

Numel: 301 351 51

The free and occupied data in the voxel space are stored as a flat-binary raster file (.img

extension) with an accompanying ASCII header file (.hdr extension), using ENVI conventions.

More information on the ENVI header format can be found at http://www.exelisvis.com/

docs/ENVIHeaderFiles.html. The data is 16-bit unsigned integers, stored as a binary stream

of bytes in band sequential (BSQ) order. The probability of free space computation is also writ-

ten out in a similar manner, but the data is 64-bit double-precision floating-point values. The

data was written out this way so that it could be easily read back into the voxel workflow, thereby

eliminating the need to recompute the voxel space, and also so that ENVI could be used as a

simple visualization tool such that each XY plane in the voxel space could be viewed as an im-

age band.

C.2 PLY Output Files

In addition to the binary data files that are created, PLY files are also used for visualization of

the voxel space. More information on the polygon (PLY) file format can be found at http:

//paulbourke.net/dataformats/ply/. Two files are created to represent the known and

unknown surfaces in the scene, called basename_structure.ply and basename_missing.ply re-

spectively. Each of the files contains the points that make up the faces in addition to the faces

themselves. For computational efficiency, four points and one face were written out for each

boundary face. The resulting faces are unique, but there is redundancy in the points them-

selves as the boundary faces share points. The duplicate vertices can be removed using a filter

in Meshlab (F i l ter s > C l eani ng andRepai r i ng > RemoveDupli catedV er tex) to reduce

file size [50]. A tutorial is provided in Appendix D detailing how to use the two surface PLY files

to make figures as they appear in this document.

http://www.exelisvis.com/docs/ENVIHeaderFiles.html
http://www.exelisvis.com/docs/ENVIHeaderFiles.html
http://paulbourke.net/dataformats/ply/
http://paulbourke.net/dataformats/ply/

APPENDIX C. DATA FORMATS AND HANDLING 184

C.3 Plane Map File Format

The plane maps are written out as space delimited text files, where the output value is the

weighted number of unsampled voxel faces that were visible from each location in the plane

map. The number of samples on a line corresponds to the number of samples in the plane map,

and similarly the number of lines corresponds to the number of lines in the plane map. This

was done for simplicity. The plane maps can be loaded into Matlab as a matrix using the load

command, and displayed as a figure after scaling. Figures in this document were generated

using the ‘jet’ colormap feature of Matlab.

Each entry in the output matrix in the text file corresponds to a specific location and point-

ing angle in the plane map. In the case of a fixed-pointing sensor, the pointing is the same for

each location, but the pointing will change for a fixed-stare sensor. Locations of the imagery

can be computed using the properties of the plane map, or they can be written out as a PLY file,

where the pointing is included as the normal vector for each point.

Appendix D

Tutorial: Creating Voxel Visualizations

with Blender

Many of the figures in this document were created using Blender [79]. The following tutorial

details the specifics of how these figures were created using shortcuts available. Note that some

of the commands documented here require a three-button mouse and a numeric keypad. This

tutorial was created using Blender version 2.72.

D.1 Generalized Procedure

The following is a generalized list of the steps a user goes through to visualize the voxel space

and generate images in Blender. More details regarding each step are available in D.2.

1. Open a new project in Blender. Delete objects in the start-up file if necessary.

2. Change the engine to ’Cycles Render’.

3. Import the PLY files generated by the voxel workflow: basename_structure.ply and base-

name_missing.ply.

4. Pan and zoom if necessary to make the model visible in the viewing window.

5. Check clipping to ensure the entire model will be visible.

185

APPENDIX D. TUTORIAL: CREATING VOXEL VISUALIZATIONS WITH BLENDER 186

6. Attribute materials to each PLY object, using the ’Ambient Occlusion’ material type.

RGB triplet used for structure surfaces: (0.8, 0.8, 0.8)

RGB triplet used for missing surfaces: (1.0, 0.25, 0.0)

7. Change the background color if desired. White was used for the models presented in this

document, RGB triplet (1.0, 1.0, 1.0).

8. Render the model.

9. Add a camera if desired.

10. Render the image through the camera if desired.

The reader is advised that this tutorial is only intended to introduce users to Blender navi-

gation and tools such that it would be possible to make figures for the voxel space. Blender has

numerous capabilities that are not discussed in detail here and more information and tutori-

als are available at https://www.blender.org/support/. This tutorial also mentions some

Blender hot-keys, and more information on the hot-keys is available at http://download.

blender.org/documentation/BlenderHotkeyReference.pdf.

https://www.blender.org/support/
http://download.blender.org/documentation/BlenderHotkeyReference.pdf
http://download.blender.org/documentation/BlenderHotkeyReference.pdf

APPENDIX D. TUTORIAL: CREATING VOXEL VISUALIZATIONS WITH BLENDER 187

Figure D.1: Delete an object in Blender by right clicking to select the
object and then using the delete key.

Figure D.2: Change ‘Blender
Render’ to ‘Cycles Render’.

D.2 Detailed Actions

Deleting Objects

To delete these objects from the scene, right-click on an object to select it, and use the delete

key to remove it (note on a Mac, function-delete must be used). This is shown in Figure D.1,

and this process can be applied to any object. Note that the start-up file can be modified so

that it does not automatically load objects, and this is recommended if the user will be making

multiple figures.

Cycles Render

Change the engine from ‘Blender Render’ to ‘Cycles Render’ (top middle of the Blender inter-

face), as shown in Figure D.2. This is an easy step to forget, and can be changed later in the

process. If still in ‘Blender Render’ mode, some of the screens shown in this tutorial will appear

differently.

Import PLY Files

Files are imported by selecting F i l e > Impor t > St an f or dPLY as shown in Figure D.3. This

must be done for each file. As Blender does have some difficulty with larger file sizes, it is rec-

ommended that the user remove the duplicate vertices using Meshlab (or similar), as discussed

in Appendix C, before loading the files into Blender.

APPENDIX D. TUTORIAL: CREATING VOXEL VISUALIZATIONS WITH BLENDER 188

Figure D.3: Import a PLY file in Blender.
Table D.1: Navigating in Blender with a three-button mouse.

Task Control Sequence
Zoom Scroll button zooms in/out.
Rotate Click and hold scroll button, drag to rotate.

Move/Shift While holding shift, click and hold the scroll button, drag to move.

Navigation in Blender

Depending on the scale of the point cloud, it may not be visible immediately after import,

requiring the user to zoom out to view it. General navigational tips, including zoom, rotation,

and shifting, are given in Table D.1. In addition, methods to change the viewpoint more easily

using a numeric keypad are presented in Table D.2.

APPENDIX D. TUTORIAL: CREATING VOXEL VISUALIZATIONS WITH BLENDER 189

Table D.2: Changing viewpoints in Blender with the numeric keypad.

Number View
0 Camera view
1 View looking down the Y-axis
3 View looking down the X-axis
5 Orthographic view
7 View looking down the Z-axis

Clipping Issues

If the PLY is not visible, even after zooming out, there may be a clipping problem. When in

the main window in object mode, the ‘n’ key is Blender hot-key that can be used to bring up

the Number Panel. The number panel shows the location, rotation, and scaling of the active

object; the clip end parameter can be modified to extend the viewing. The active object can be

selected by right clicking, or by selecting it from the list on the right side of the screen, as shown

in Figure D.4.

Material Attribution

To attribute a material to an object, the object must be selected. Select the basename_structure.ply

file to be the active object using the menu on the right, shown in Figure D.4. Click on the ma-

terial tab to add a new material, as shown in Figure D.5. Change the surface type to Ambient

Occlusion. If this looks completely different, check to make sure that the engine being used

at the top is the Cycles Render engine, as this step is easy to forget. For the figures generated

in this document, an RGB triplet of (0.8, 0.8, 0.8) was used for the known structure surfaces.

Repeat this process with the basename_missing.ply file selected. The RGB triplet used for the

surfaces here was (1.0, 0.25, 0.0).

Render the Model

To view the model as rendered, change the object mode from solid to rendered as shown in

Figure D.6. If desired, the background color can also be changed in the world-tab, as shown in

Figure D.7. Note that this only affects the rendered view.

APPENDIX D. TUTORIAL: CREATING VOXEL VISUALIZATIONS WITH BLENDER 190

Figure D.4: Select an active object. Figure D.5: Add a material

Figure D.6: Change the object mode to rendered to view
the model.

Figure D.7: Change the world
background color.

APPENDIX D. TUTORIAL: CREATING VOXEL VISUALIZATIONS WITH BLENDER 191

Figure D.8: Camera parameter menu, which can be used to set clipping and change to an orthographic or
perspective camera.

Adding a Camera Object

A camera can also be added to the scene if desired. This is recommended if it is necessary

to be able to recreate images of the voxel space from the same viewpoint, as was done to see

the effect of voxel resolution and the effect of the probability of free space threshold. This is

done by selecting Add > C amer a, and the numeric panel (n-key) can be used to change the

position and orientation of the camera. Note that a nadir camera is obtained with the X, Y, and

Z rotations set to 0. The 5 key on the numeric keypad will change to the camera view. This view

is useful to move the camera so that the model is visible in the frame. Again, clipping can be a

problem and may render the object not visible from the camera view. With the camera object

active, and the camera tab selected on the right menu, the clipping can be extended so that the

model is visible, as shown in Figure D.8.

An orthographic camera is often easier to move and check the viewpoint relative to the

model. To set the size of the orthographic camera, set the scale equal to the largest dimension of

the voxel model (this can be determined in the numeric panel when the basename_structure.ply

object is active). Finally the camera resolution and number of samples in preview/render mode

can be set as shown in Figures D.9 and D.10 respectively. Higher sampling rates take longer to

render, but achieve a better looking model. A value of 50 is recommended.

APPENDIX D. TUTORIAL: CREATING VOXEL VISUALIZATIONS WITH BLENDER 192

Figure D.9: Change the camera resolution. Figure D.10: Change the sampling.

Render an Image

Rendering an image through the camera view can be achieved using the F12 key, or by selecting

Render > Render Imag e. The rendered image can be saved by using the F3 key or by selecting

Imag e > Save AsImag e.

Bibliography

[1] Ying-mei Wei, Lai Kang, Bing Yang, and Ling-da Wu. Applications of structure from mo-

tion: A survey. Journal of Zhejiang University SCIENCE C, 14(7):486–494, 2013.

[2] David G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, 2004.

[3] Hans P Moravec. Rover visual obstacle avoidance. In Proceedings of the 7th International

Joint Conference on Artificial Intelligence, volume 2, pages 785–790, 1981.

[4] Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey Vision

Conference, volume 15, page 50, 1988.

[5] Tony Lindeberg. Feature detection with automatic scale selection. International Journal

of Computer Vision, 30(2):79–116, 1998.

[6] Andrew Witkin. Scale-space filtering: A new approach to multi-scale description. In Inter-

national Conference on Acoustics, Speech, and Signal Processing, volume 9, pages 150–153.

IEEE, 1984.

[7] Krystian Mikolajczyk and Cordelia Schmid. Indexing based on scale invariant interest

points. In Proceedings of the 8th International Conference on Computer Vision, volume 1,

pages 525–531. IEEE, 2001.

[8] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. In

Computer Vision–ECCV 2006, pages 404–417. Springer, 2006.

193

BIBLIOGRAPHY 194

[9] Edward Rosten and Tom Drummond. Fusing points and lines for high performance track-

ing. In IEEE International Conference on Computer Vision, volume 2, pages 1508–1515.

IEEE, 2005.

[10] Michael Donoser and Horst Bischof. Efficient maximally stable extremal region (MSER)

tracking. In IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion, volume 1, pages 553–560. IEEE, 2006.

[11] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of local descriptors.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):1615–1630, 2005.

[12] Engin Tola, Vincent Lepetit, and Pascal Fua. DAISY: An efficient dense descriptor applied

to wide-baseline stereo. IEEE Transactions of Pattern Analysis and Machine Intelligence,

32(5):815–830, May 2010.

[13] Jean-Michel Morel and Guoshen Yu. ASIFT: A new framework for fully affine invariant

image comparison. SIAM Journal on Imaging Sciences, 2(2):438–469, 2009.

[14] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography. Communications

of the ACM, 24(6):381–395, 1981.

[15] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision.

Cambridge University Press, 2nd edition, 2003.

[16] Duane C. Brown. A solution to the general problem of multiple station analytical stereo

triangulation. Technical report, RCA-MTP, 1958.

[17] Manolis I. A. Lourakis and Antonis A. Argyros. SBA: A software package for generic sparse

bundle adjustment. ACM Transactions on Mathematical Software, 36(1):Article 2, March

2009.

[18] Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo tourism: exploring photo col-

lections in 3d. In ACM Transactions on Graphics (TOG), volume 25, pages 835–846. ACM,

2006.

BIBLIOGRAPHY 195

[19] Noah Snavely, Steven M Seitz, and Richard Szeliski. Modeling the world from internet

photo collections. International Journal of Computer Vision, 80(2):189–210, 2008.

[20] Yasutaka Furukawa, Brian Curless, Steven M Seitz, and Richard Szeliski. Towards internet-

scale multi-view stereo. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1434–1441. IEEE, 2010.

[21] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview stereopsis.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8):1362–1376, 2010.

[22] Thomas Pollard and Joseph L Mundy. Change detection in a 3-d world. In Computer Vision

and Pattern Recognition, pages 1–6. IEEE, 2007.

[23] Heiko Hirschmuller. Accurate and efficient stereo processing by semi-global matching

and mutual information. In Computer Vision and Pattern Recognition, 2005. CVPR 2005.

IEEE Computer Society Conference on, volume 2, pages 807–814. IEEE, 2005.

[24] Derek J Walvoord, Adam J Rossi, Bradley D Paul, Bernie Brower, and Matthew F Pellechia.

Geoaccurate three-dimensional reconstruction via image-based geometry. In SPIE De-

fense, Security, and Sensing, page 874706. International Society for Optics and Photonics,

2013.

[25] Noah Snavely. Bundler: Structure from motion (SfM) for unordered image collections.

http://phototour.cs.washington.edu/bundler/, 2009.

[26] J.Chris McGlone. Manual of Photogrammetry. American Society for Photogrammetry and

Remote Sensing, 2013.

[27] Andreas Wendel, Arnold Irschara, and Horst Bischof. Automatic alignment of 3d recon-

structions using a digital surface model. In 2011 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops, pages 29–36. IEEE, 2011.

[28] Chun-Po Wang, Kyle Wilson, and Noah Snavely. Accurate georegistration of point clouds

using geographic data. In 3DTV-Conference, 2013 International Conference on, pages 33–

40. IEEE, 2013.

http://phototour.cs.washington.edu/bundler/

BIBLIOGRAPHY 196

[29] Steven M Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard Szeliski. A

comparison and evaluation of multi-view stereo reconstruction algorithms. In IEEE Con-

ference on Computer Vision and Pattern Recognition, volume 1, pages 519–528. IEEE, 2006.

[30] Frank Neitzel and J Klonowski. Mobile 3d mapping with a low-cost uav system. Int. Arch.

Photogramm. Remote Sens. Spat. Inf. Sci, 38:1–6, 2011.

[31] David Crandall, Andrew Owens, Noah Snavely, and Dan Huttenlocher. Discrete-

continuous optimization for large-scale structure from motion. In Computer Vision and

Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 3001–3008. IEEE, 2011.

[32] Brance P Hudzietz and Srikanth Saripalli. An experimental evaluation of 3d terrain map-

ping with an autonomous helicopter. In Conference on Unmanned Aerial Vehicle in Geo-

matics, 2011.

[33] Anestis Koutsoudis, Blaž Vidmar, George Ioannakis, Fotis Arnaoutoglou, George Pavlidis,

and Christodoulos Chamzas. Multi-image 3d reconstruction data evaluation. Journal of

Cultural Heritage, 15(1):73–79, 2014.

[34] David Nilosek, Derek J Walvoord, and Carl Salvaggio. Assessing geoaccuracy of struc-

ture from motion point clouds from long-range image collections. Optical Engineering,

53(11):113112–113112, 2014.

[35] Sameer Agarwal, Noah Snavely, Ian Simon, Steven M Seitz, and Richard Szeliski. Building

rome in a day. In Computer Vision, pages 72–79. IEEE, 2009.

[36] Erin Ontiveros, Carl Salvaggio, Dave Nilosek, Nina Raqueño, and Jason Faulring. Evalu-

ation of image collection requirements for 3d reconstruction using phototourism tech-

niques on sparse overhead data. In SPIE Defense, Security, and Sensing, volume 8390,

pages 83900K–1, 2012.

[37] Changchang Wu. SiftGPU: A GPU Implementation of Scale Invariant Feature Transform

(SIFT). http://cs.unc.edu/~ccwu/siftgpu/, 2007.

[38] David Nilosek. Geo-accurate dense 3D point extraction. http://dirsapps.cis.rit.

edu/3d-workflow/, 2014. Version 2.0.

http://cs.unc.edu/~ccwu/siftgpu/
http://dirsapps.cis.rit.edu/3d-workflow/
http://dirsapps.cis.rit.edu/3d-workflow/

BIBLIOGRAPHY 197

[39] Map image of Rochester, NY. Retrieved on December 3, 2012 from Http://maps.google.

com.

[40] Rochester-NY-skyline.jpg. http://linkagesrochester.org/drupal/node/29.

[41] Andrea Vedaldi and Brian Fulkerson. VLFeat. http://www.vlfeat.org/.

[42] Philip Saponaro, Scott Sorensen, Stephen Rhein, Andrew R Mahoney, and Chandra Kamb-

hamettu. Reconstruction of textureless regions using structure from motion and image-

based interpolation. In Image Processing (ICIP), 2014 IEEE International Conference on,

pages 1847–1851. IEEE, 2014.

[43] Herbert Edelsbrunner and Ernst P Mücke. Three-dimensional alpha shapes. ACM Trans-

actions on Graphics (TOG), 13(1):43–72, 1994.

[44] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva, and Gabriel Taubin.

The ball-pivoting algorithm for surface reconstruction. Visualization and Computer

Graphics, IEEE Transactions on, 5(4):349–359, 1999.

[45] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruction.

In Proceedings of the fourth Eurographics symposium on Geometry processing, 2006.

[46] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface

construction algorithm. In ACM Siggraph Computer Graphics, volume 21, pages 163–169.

ACM, 1987.

[47] Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual contouring of hermite data.

In ACM Transactions on Graphics (TOG), volume 21, pages 339–346. ACM, 2002.

[48] Nina Amenta, Marshall Bern, and Manolis Kamvysselis. A new voronoi-based surface re-

construction algorithm. In Proceedings of the 25th annual conference on Computer graph-

ics and interactive techniques, pages 415–421. ACM, 1998.

[49] Qian-Yi Zhou and Ulrich Neumann. 2.5 d dual contouring: a robust approach to creating

building models from aerial lidar point clouds. In Computer Vision–ECCV 2010, pages

115–128. Springer, 2010.

Http://maps.google.com
Http://maps.google.com
http://linkagesrochester.org/drupal/node/29
http://www.vlfeat.org/

BIBLIOGRAPHY 198

[50] Meshlab. http://meshlab.sourceforge.net/.

[51] Hong-Tzong Yau, Chuan-Chu Kuo, and Chih-Hsiung Yeh. Extension of surface reconstruc-

tion algorithm to the global stitching and repairing of stl models. Computer-Aided Design,

35(5):477–486, 2003.

[52] Jean-Daniel Boissonnat. Geometric structures for three-dimensional shape representa-

tion. ACM Transactions on Graphics (TOG), 3(4):266–286, 1984.

[53] M Gopi, Shankar Krishnan, and Cláudio T Silva. Surface reconstruction based on lower

dimensional localized delaunay triangulation. In Computer Graphics Forum, volume 19,

pages 467–478. Wiley Online Library, 2000.

[54] Matthew Bolitho, Michael Kazhdan, Randal Burns, and Hugues Hoppe. Parallel poisson

surface reconstruction. In Advances in Visual Computing, pages 678–689. Springer, 2009.

[55] Xiang Li, Wangen Wan, Xiao Cheng, and Bing Cui. An improved poisson surface recon-

struction algorithm. In Audio Language and Image Processing (ICALIP), 2010 International

Conference on, pages 1134–1138. IEEE, 2010.

[56] David Levin. The approximation power of moving least-squares. Mathematics of Compu-

tation of the American Mathematical Society, 67(224):1517–1531, 1998.

[57] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and Clau-

dio T Silva. Computing and rendering point set surfaces. Visualization and Computer

Graphics, IEEE Transactions on, 9(1):3–15, 2003.

[58] Ravikrishna Kolluri. Provably good moving least squares. ACM Transactions on Algorithms

(TALG), 4(2):18, 2008.

[59] Gaël Guennebaud and Markus Gross. Algebraic point set surfaces. In ACM Transactions

on Graphics (TOG), volume 26, page 23. ACM, 2007.

[60] A Cengiz Öztireli, Gael Guennebaud, and Markus Gross. Feature preserving point set sur-

faces based on non-linear kernel regression. In Computer Graphics Forum, volume 28,

pages 493–501. Wiley Online Library, 2009.

http://meshlab.sourceforge.net/

BIBLIOGRAPHY 199

[61] Evgeni V Chernyaev. Marching cubes 33: Construction of topologically correct isosurfaces.

Institute for High Energy Physics, Moscow, Russia, Report CN/95-17, 42, 1995.

[62] Sarah FF Gibson. Constrained elastic surface nets: Generating smooth surfaces from bi-

nary segmented data. In Medical Image Computing and Computer-Assisted Interventa-

tion?MICCAI?98, pages 888–898. Springer, 1998.

[63] Peter Liepa. Filling holes in meshes. In Proceedings of the 2003 Eurographics/ACM SIG-

GRAPH symposium on Geometry processing, pages 200–205. Eurographics Association,

2003.

[64] Jianning Wang and Manuel M Oliveira. Filling holes on locally smooth surfaces recon-

structed from point clouds. Image and Vision Computing, 25(1):103–113, 2007.

[65] James Davis, Stephen R Marschner, Matt Garr, and Marc Levoy. Filling holes in complex

surfaces using volumetric diffusion. In 3D Data Processing Visualization and Transmis-

sion, 2002. Proceedings. First International Symposium on, pages 428–441. IEEE, 2002.

[66] J Verdera, V Caselles, M Bertalmio, and G Sapiro. Inpainting surface holes. In Image Pro-

cessing, 2003. ICIP 2003. Proceedings. 2003 International Conference on, volume 2, pages

II–903. IEEE, 2003.

[67] Tao Ju. Robust repair of polygonal models. ACM Transactions on Graphics (TOG),

23(3):888–895, 2004.

[68] Andrei Sharf, Marc Alexa, and Daniel Cohen-Or. Context-based surface completion. In

ACM Transactions on Graphics (TOG), volume 23, pages 878–887. ACM, 2004.

[69] M Flood. Asprs guidelines: Vertical accuracy reporting for lidar data. Amer. Soc. Pho-

togram. Remote Sens. LiDAR Committee. Ver, 1, 2004.

[70] Thomas K Peucker, Robert J Fowler, James J Little, and David M Mark. The triangulated

irregular network. In Amer. Soc. Photogrammetry Proc. Digital Terrain Models Symposium,

volume 516, page 532, 1978.

BIBLIOGRAPHY 200

[71] Sorin C Popescu and Kaiguang Zhao. A voxel-based lidar method for estimating crown

base height for deciduous and pine trees. Remote Sensing of Environment, 112(3):767–

781, 2008.

[72] Ulla Pyysalo, Juha Oksanen, and Tapani Sarjakoski. Viewshed analysis and visualization of

landscape voxel models. In 24th International Cartographic Conference, Santiago, Chile,

2009.

[73] Shaun R Levick, Gregory P Asner, Ty Kennedy-Bowdoin, and David E Knapp. The rela-

tive influence of fire and herbivory on savanna three-dimensional vegetation structure.

Biological Conservation, 142(8):1693–1700, 2009.

[74] Muge Mutlu, Sorin C Popescu, Curt Stripling, and Tom Spencer. Mapping surface fuel

models using lidar and multispectral data fusion for fire behavior. Remote Sensing of En-

vironment, 112(1):274–285, 2008.

[75] Theodore C Yapo, Charles V Stewart, and Richard J Radke. A probabilistic representation

of lidar range data for efficient 3d object detection. In Computer Vision and Pattern Recog-

nition Workshops, pages 1–8. IEEE, 2008.

[76] Gary A Haas. Three-dimensional change detection with the use of an evidence grid. Tech-

nical report, DTIC Document, 2006.

[77] Shea Hagstrom, David Messinger, and Scott Brown. Feature extraction using voxel aggre-

gation of focused discrete lidar data. In SPIE Defense, Security, and Sensing, pages 76840X–

76840X. International Society for Optics and Photonics, 2010.

[78] Shea Hagstrom and David Messinger. Line-of-sight analysis using voxelized discrete lidar.

In SPIE Defense, Security, and Sensing, pages 80370B–80370B. International Society for

Optics and Photonics, 2011.

[79] Blender, version 2.68a. http://www.blender.org/.

[80] Alberto Elfes. Using occupancy grids for mobile robot perception and navigation. Com-

puter, 22(6):46–57, 1989.

http://www.blender.org/

BIBLIOGRAPHY 201

[81] Don Murray and James J Little. Using real-time stereo vision for mobile robot navigation.

Autonomous Robots, 8(2):161–171, 2000.

[82] Noah Snavely. Bundler User’s Manual.

[83] Yasutaka Furukawa. Documentation - PMVS.

[84] John Amanatides, Andrew Woo, et al. A fast voxel traversal algorithm for ray tracing. In

Proceedings of EUROGRAPHICS, volume 87, pages 3–10, 1987.

[85] Amy Williams, Steve Barrus, R Keith Morley, and Peter Shirley. An efficient and robust

ray-box intersection algorithm. In ACM SIGGRAPH 2005 Courses, page 9. ACM, 2005.

[86] Robert M Haralick, Karthikeyan Shanmugam, and Its’ Hak Dinstein. Textural features for

image classification. Systems, Man and Cybernetics, IEEE Transactions on, (6):610–621,

1973.

[87] DIRS Laboratory. SHARE 2012: SpecTIR hyperspectral airborne experiment 2012. http:

//www.rit.edu/cos/share2012/.

[88] Shea T Hagstrom. Voxel-based LIDAR analysis and applications.

[89] David R Nilosek. Analysis and exploitation of automatically generated scene structure

from aerial imagery.

[90] DIRS Laboratory. Wildfire airborne sensor program (wasp). http://lias.cis.rit.edu/

projects/wasp.

[91] David Nilosek, Erin Ontiveros, and Carl Salvaggio. 3D-rochester image and lidar dataset

for point cloud reconstruction and processing algorithms. http://dirsapps.cis.rit.

edu/3d-rochester/.

[92] Digital Imaging and Remote Sensing Laboratory, Rochester, NY. The DIRSIG User’s Man-

ual, 2013.

[93] Emmett J Ientilucci and Scott D Brown. Advances in wide-area hyperspectral image simu-

lation. In AeroSense 2003, pages 110–121. International Society for Optics and Photonics,

2003.

http://www.rit.edu/cos/share2012/
http://www.rit.edu/cos/share2012/
http://lias.cis.rit.edu/projects/wasp
http://lias.cis.rit.edu/projects/wasp
http://dirsapps. cis.rit.edu/3d-rochester/
http://dirsapps. cis.rit.edu/3d-rochester/

BIBLIOGRAPHY 202

[94] Katie N Salvaggio and Carl Salvaggio. Automated identification of voids in three-

dimensional point clouds. In SPIE Optical Engineering+ Applications, pages 88660H–

88660H. International Society for Optics and Photonics, 2013.

[95] OpenCV: Open source computer vision software. http://opencv.org/.

http://opencv.org/

	Introduction
	Research Goals
	Objectives
	Scope and Limitations
	Contributions to Knowledge

	Background
	Structure from Motion
	Image-to-Image Correspondences
	Bundle Adjustment
	Dense Stereo Matching
	Geoaccurate Transformation
	Accuracy and Completeness
	Datasets
	Software

	Voids in Point Clouds
	Lack of Coverage
	Texturally Difficult Regions

	Surface Reconstruction
	Alpha Shapes
	Ball-Pivoting
	Poisson Surface Reconstruction
	Moving Least Squares
	Marching Cubes
	Dual Contouring

	Hole Filling
	LIDAR
	Quality Metrics
	LIDAR Derived Geometry

	Methodology
	Visibility Analysis
	Surface-Based Models
	Voxel-Based Models
	Incorporating Ray Origins
	Voxel Classification

	Void Identification
	Voxel Boundaries
	Distinguishing the Type of Void

	Future Image Location Identification
	The Backward Approach
	The Forward Approach
	Cost Function
	Constraints
	Sensor Positions

	Voxel-Based Workflow

	Results and Analysis
	Voxel-Based Visibility Analysis
	Validation of Approach with DIRSIG Data
	Generation of Voxel Spaces from Image-Derived Point Clouds
	Investigation of Voxel Space Parameters

	Identification of Voids in the Voxel Space
	Visibility Analysis
	Texture Analysis

	Identification of Future Image Locations
	Weighting Function
	Fixed Pointing: Nadir
	Fixed Pointing: Off-Nadir
	Fixed Stare Point

	Proof of Concept
	Additional Datasets
	WASP: Downtown Rochester, NY Dataset
	WASP: Quarry Dataset
	CorvusEye: Downtown Dataset

	Conclusions
	Voxel-Based Visibility Analysis
	Void Identification
	Future Image Location Identification
	Limitations

	Future Work
	Generating Point Clouds
	Improving Scalability and Computational Efficiency
	Dealing with Texturally Difficult Regions
	End-to-End Testing of Additional Datasets and Flight Patterns
	Expanding Sensor Positions
	Developing Flight Lines
	Real-time Applications
	Using the Voxel Model as a Surface Model
	Rendering a Volumetric Model
	Fusing Multiple Modalities

	Appendices
	Data
	WAMI
	CorvusEye 1500C
	WASP
	DIRSIG

	Code
	SfM Workflow
	Creating the Voxel Space
	Selecting a Subspace
	Predicting Future Image Locations
	Summary

	Data Formats and Handling
	Voxel Space File Format
	PLY Output Files
	Plane Map File Format

	Tutorial: Creating Voxel Visualizations with Blender
	Generalized Procedure
	Detailed Actions

	Bibliography

