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Abstract

The majority of image quality studies have been performed on systems with con-

ventional aperture functions. These systems have straightforward aperture designs and

well-understood behavior. Image quality for these systems can be predicted by the General

Image Quality Equation (GIQE). However, in order to continue pushing the boundaries of

imaging, more control over the point spread function of an imaging system may be neces-

sary. This requires modifications in the pupil plane of a system, causing a departure from

the realm of most image quality studies. Examples include sparse apertures, synthetic

apertures, coded apertures and phase elements. This work will focus on sparse aperture

telescopes and the image quality issues associated with them, however, the methods pre-

sented will be applicable to other non-conventional aperture systems.

In this research, an approach for modeling the image quality of non-conventional aper-

ture systems will be introduced. While the modeling approach is based in previous work, a

novel validation study will be performed, which accounts for the effects of both broadband

illumination and wavefront error. One of the key image quality challenges for sparse aper-

tures is post-processing ringing artifacts. These artifacts have been observed in modeled

data, but a validation study will be performed to observe them in measured data and to

compare them to model predictions. Once validated, the modeling approach will be used

to perform a small set of design studies for sparse aperture systems, including spectral

bandpass selection and aperture layout optimization.
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Chapter 1

Introduction

Predicting the image quality of a proposed or theoretical imaging system that uses an

unconventional aperture is a difficult and unsolved problem. In the remote sensing com-

munity, this problem is of the utmost importance, as new imaging systems require both

sizable monetary and time investments. These conditions are further exacerbated when

considering space-based systems, such as WorldView 3, which had a 10-year $3.55 billion

development budget [de Selding, 2010]. As remotely-sensed images were originally ana-

lyzed exclusively by humans, a task-based image quality metric was a viable approach.

The National Image Interpretability Rating Scales (NIIRS) metric is one such system. In

this system, an image may be ranked NIIRS 0 to NIIRS 9 depending on the analysis tasks

that may be performed on that image. For instance, in order to obtain a NIIRS 6 rating

on a visible image, an analyst must be able to identify a spare tire on a medium-sized

truck [Leachtenauer, 1996]. While this system is viable, it requires a human to perform

analysis tasks and thus introduces subjectivity. As computational resources have become

abundant and remote sensing systems have made the switch to digital sensors, human

involvement in image analysis has decelerated, while automated computational analysis

has become increasingly popular. As such, keeping the human in the quality analysis loop

for tasks now performed by computers is both inefficient and undesirable. In order to

eliminate subjectivity and gain the ability to perform sophisticated design optimizations

based on a quality metric, it would be desirable to have a predictive image quality metric

that was based purely off of the design parameters of the system.

While the NIIRS system works well for predicting image quality in its use cases, it
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is not a completely general image quality metric. Rather, image quality is determined

by the ability of a remotely-sensed image to perform the task at hand. For instance, the

majority of the NIIRS criteria involve the ability of images to provide military intelligence.

However, if the task was instead land cover classification, the criteria for image quality

would be much different. In this case, spectral resolution and signal-to-noise ratio would

be more significant compared to ground sample distance. As these examples might sug-

gest, the problem becomes increasingly difficult when the system under consideration is

either multispectral or hyperspectral. While the issues with creating a perfectly generic

image quality metric are likely insurmountable, NIIRS has shown that making a metric

specifically tailored to a task is an effective tactic. This philosophy will be a driving factor

behind the structure of the aperture design framework introduced in this research.

To perform trade space analyses when designing imaging systems, it is desirable to

express the image quality metric in terms of the system’s design parameters. In the case

of NIIRS, an effort was made to do just this. A regression analysis was performed to express

the anticipated NIIRS rating of images produced by a novel system in terms of parameters

such as ground sample distance, edge response and signal-to-noise ratio [Leachtenauer

et al., 1997]. This expression is known as the General Image Quality Equation (GIQE).

The form of GIQE 4 is given as

NIIRS = 10.251− a · log10(GSD) + b · log10(RER) + c ·H − d · G

SNR
(1.1)

where GSD is the ground sample distance, RER is the relative edge response, H is the

edge overshoot due to sharpening, G is the gain of the sharpening filter, SNR is the

signal-to-noise ratio of the image and a, b, c and d are linear weighting coefficients. If

the GIQE is examined, it is clear that there are three factors that correlate with image

quality: resolution, post-processing and noise. The a coefficient, which corresponds to the

resolution term, has the largest weight, implying that resolution is the most important of

these three factors.

Like the NIIRS system itself, the GIQE is a useful tool with some notable limitations.

Due to its nature as a regression fit, there are inherent limits on its utility. Primarily,

the fit is only valid over the domain of the input variables that was spanned by the input

data set. As such, if new designs are created that push the “edges” of traditional optical
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design, their resulting system parameters may fall outside the domain of the data set used

to fit the GIQE. In this region, the fit may be unstable and the functional relationships

may be incorrect. This limits the types of systems that can be analyzed. In addition

to the domain of input variables, the choice of input variables also limits the utility of

the GIQE. While the system parameters in the GIQE were sufficient to characterize the

image quality of the systems used to fit the function, novel systems may have additional

or different parameters that govern their performance. For instance, if the majority of the

data set used to fit the GIQE were from imaging systems with monolithic apertures, then

the GIQE might not be the best tool to predict the performance of sparse or segmented

aperture systems. As will be examined extensively in this research, changing the shape of

the aperture results in drastic changes in the appearance of the output image. Since the

post-processing of these types of systems is more complicated, artifacts other than edge

overshoot can arise in the output image, which further degrade image quality. So, while

these systems can be characterized in terms of relative edge response, edge overshoot and

filter gain, there is no guarantee that the functional relationship established by GIQE

holds for non-conventional apertures.

As was previously mentioned, the GIQE indicates that the resolution of an imaging

system is the dominant predictor of the ultimate quality of its images. While resolution

in the GIQE is measured in terms of ground sample distance, the true nature of resolu-

tion is more complex and must be understood when analyzing systems with non-circular

apertures. Under the Rayleigh resolution criterion, resolution is defined in terms of two

identical point sources. As these point sources are brought closer together, there will

come a point at which they will be indistinguishable from a brighter, single point source

positioned directly between the two point sources. This situation is illustrated in Figure

1.1. The distance between these two point sources at which this confusion occurs is the

resolution limit of that system. The Rayleigh criterion states that this resolution limit is

directly determined by the size of the point spread function (PSF) of the imaging system,

or the amount of blur it introduces [Goodman, 2005]. The size of the system’s PSF can

be determined by a large number of parameters; some of these parameters are controllable

by the designer of the imaging system, while others are unavoidable.

In conventional optical imaging systems, the resolution of the image is theoretically
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Figure 1.1: An illustration of the Rayleigh resolution criterion

limited by diffraction. Other factors, such as optical aberrations, detector sampling rates

and atmospheric scattering, may also be limiting factors in imaging resolution. However,

in the absence of all other factors, the conventional imaging system can never hope to

achieve resolution greater than the diffraction limit for a single exposure. For an imaging

system with a circular aperture function, the angular resolution limit of incoherent incident

radiance due to diffraction is given by

θmin = 1.22
λ

D
[radians] (1.2)

where λ is the wavelength of the light being imaged and D is the diameter of the aperture

of the imaging system. For applications that are imaging on a focal plane, this expression

can be reformulated to give the resolution in terms of distance on the focal plane. This is

done by using the focal length, f , of the system,

∆xmin = 1.22
λf

D
= 1.22λ(F#) [m] (1.3)

where F# = f/D is the F-number of the system. Examining these equations yields sev-

eral conclusions. All things being equal, a system imaging at a shorter wavelength, should

achieve better resolution. Similarly, a system with a larger aperture should have better res-
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olution than a system with a smaller aperture. Given that resolution has been determined

to be the dominant factor in image quality, it also stands to reason that the larger system

will have better image quality, assuming the other terms in the GIQE can be held constant.

Practically speaking, holding focal length constant while increasing the diameter leads

to a surface with increased thickness and sag. This often leads to an increase in the amount

of optical aberration present in the optics, which can degrade image quality. In addition to

an increase in aberration, larger apertures also come at the expense of the overall weight,

volume and cost of the imaging system. For a traditional system, the cost tends to scale

by at least the square of the diameter [AWMA and SPIE, 1996] While this is a problem for

ground-based imaging systems, it is a prohibitive issue for space-based imaging systems,

as launch vehicles can only take a given amount of mass and volume into space. Thus,

until optics for space-based imaging systems can be fabricated and assembled in space,

imaging systems will have to operate under a mass and volume constraint. This gives rise

to the challenge of balancing the resolution of space-based systems against the mass and

volume of the system. Ignoring the enclosures, electronics and other satellite components,

this challenge is equivalent to maximizing the amount of resolution obtained from a given

amount of glass or volume.

Achieving greater spatial resolution under mass and volume constraints is the moti-

vation for the design of sparse aperture and synthetic aperture systems. The research

described here will focus on the design and performance modeling of such systems. Per-

formance modeling will occur in both the physical and computational domains. Compu-

tational modeling is desirable, as the performance of a large number of systems can be

evaluated without constructing any optical components. However, in order to build trust

in the computer model and base design decisions upon its output, validation experiments

must be run. In this research, a small-scale sparse aperture system will be constructed in

the laboratory for performing model validation. This system will be used to both validate

intermediate outputs of the model, as well as artifacts that occur in the final imagery

obtained from sparse aperture systems.



Chapter 2

Objectives

This chapter will outline the top-level objectives of this research and indicate the contri-

butions of these objectives. As was mentioned in Chapter 1, this research will focus on

the problem of sparse aperture image quality, specifically in a remote sensing situation.

That is, the sparse aperture system will be focused at infinity and the input to the system

will be polychromatic incoherent illumination. Given this imaging situation, the research

proposed here will focus on two main efforts. The first of these is to perform a labora-

tory validation study of the sparse aperture system modeling methodology summarized

in Chapter 4. Validation of monochromatic sparse aperture point spread functions have

been attempted before, however, this research will aim to build upon previous studies.

The main components of this research are:

• Design a laboratory optical system that can be used to simulate a sparse aperture

system. This system should be able to:

– Simulate a system with negligible wavefront error.

– Introduce small amount of wavefront error in a characterizable manner

– Provide controllable or characterizable broadband illumination to the imaging

system.

– Provide a mechanism by which to measure the system modulation transfer

function.

– Provide a mechanism by which extended scene analysis may be performed.

• Construct the designed laboratory system.

7
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• Perform validation experiments on a sparse aperture system that can be replicated

in the computer model.

– Isolate the MTF contributions due to the aberrated pupil function.

– Verify the predicted existence of post processing artifacts in observed imagery.

This validation study offers a number of advantages over existing studies. Previous studies

have focused on measuring the monochromatic point spread function of a sparse aperture

system. This study will also allow for the inclusion of spectral effects and wavefront error.

This will allow a system designer to greater explore a larger portion of the sparse aperture

design space using a validated model. The OTF validation experiment will be described

in Chapter 5. In addition, this system will allow for the introduction of extended scenes

into the system. Simulation of sparse aperture imagery in previous studies has indicated

the possibility of unpleasant image artifacts due to post-processing. This research will

allow for the verification of these artifacts in real imagery. The methods and results of

this study will be presented in Chapter 6.

Once the modeling methodology has been validated, it can be used to predict the

performance of theoretical sparse aperture systems. Thus, it can be a useful tool in

trade studies involving sparse aperture system design. For example, if reconnaissance

applications are being targeted, a ∆NIIRS study, like the one presented in [Garma, 2015],

could be performed with the model’s imagery predictions. Alternatively, if an automated

analysis, such as crop coverage classification, is the targeted application, modeled imagery

can be used as test data to assess the performance of a proposed telescope design. In

this research, two design problems will be investigated: subaperture layout and spectral

bandpass selection. These studies will both serve as demonstrations of how the validated

model can be used to aid in design studies. However, because sparse aperture image quality

is not yet a well-understood problem, these demonstrations are intended as starting points,

and not as authoritative conclusions on optimal sparse aperture system design. The main

components of this research are:

• Create a subaperture layout optimization algorithm.

• Validate the functionality of the algorithm by replicating previous work in sparse

aperture design based on optimization.
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• Use the layout optimization algorithm to design apertures that overcome or are more

resistant to the issues present in sparse aperture remote sensing systems. These

include:

– The anisotropic nature of sparse aperture optical transfer functions.

– The presence of ringing artifacts as a result of post-processing filters.

• Identify the effects of spectral knowledge on sparse aperture image quality after

post-processing.

• Analyze the effects of narrow bandpass designs and broad bandpass designs on image

quality under different spectral knowledge levels.

• Design and execute a laboratory experiment to validate expected spectral behavior

in a simple imaging scenario.

The methods and results of the optimization study will be presented in Chapter 7. Due

to the similarity of the analysis, the spectral bandpass results will be presented alongside

the artifact validation results in Chapter 6.



Chapter 3

Background

This chapter will lay out the theory behind the prediction of the performance of imaging

systems with non-conventional aperture functions. In order to fully understand the mod-

eling of these systems, theory will be presented on the majority of the imaging chain. The

main differences for non-conventional aperture systems are confined to light acquisition

and image processing. However, a full knowledge of the imaging chain is necessary to

construct an accurate image quality model. A reader interested in further imaging chain

analysis in the context of remote sensing is referred to [Schott, 2007].

The theoretical modeling approach taken will rely heavily on the linear systems theory

for image formation [Gaskill, 1978]. This approach allows for the use of convolution to

model the degradation of imagery due to diffraction, aberrations and image motion. This

framework also allows for the introduction of noise into the system and the derivation of

the linear filters to apply in post-processing image enhancement. Aberration theory is also

necessary to understand the various effects other than diffraction that can degrade image

quality. The radiometry associated with such an imaging system will also be introduced.

10
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3.1 Linear Systems in Imaging

Original Input Original Output

Scaled and Shifted Input Scaled and Shifted Output

O

O

Figure 3.1: Illustration of linearity and shift invariance

Under the common assumption that an imaging system is both linear and shift invariant,

linear systems theory may be used to predict the performance of that system. If we assume

that the imaging process is some operator, O, then the process is linear if

O{a · f1[x, y] + b · f2[x, y]} = a · O{f1[x, y]}+ b · O{f2[x, y]} (3.1)

where a and b are scalars and fn[x, y] is an input to the imaging system. The imaging

operator O is said to be shift invariant if

g[x, y] = O{f [x, y]} =⇒ g[x− x0, y − y0] = O{f [x− x0, y − y0]}

where x0 and y0 are scalar constants. This property is illustrated in Figure 3.1. As shall

be seen later, the assumption of linearity and shift invariance is normally invalid across

the entire image plane, however, it can be made over small portions of the image plane

and thus linear systems theory can be used in a piecewise manner over the image plane

to predict the performance of an imaging system.

Given that a system is both linear and shift invariant (LSI), the imaging operator, O,
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may be characterized as a convolution. If the input to the system is a point source of

light, represented as a Dirac delta function, then the output predicted by the convolution

will be the convolution kernel for the imaging system, h[x, y]. Since this kernel describes

the image of a point source, it is termed the Point Spread Function (PSF) of the imaging

system. The performance of the imaging system is then characterized in an LSI region by

g[x, y] =

∞∫

−∞

∞∫

−∞

h[α, β] · f [x− α, y − β] dα dβ (3.2)

= f [x, y] ∗ h[x, y] (3.3)

When dealing with imaging system modeling, these convolutions are often computed in

the frequency domain through the use of the Fourier transform operator, F , defined as

F [ξ, η] = F {f [x, y]} =

∞∫

−∞

∞∫

−∞

f [x, y]e−2πi(ξx+ηy) dx dy (3.4)

The advantage of utilizing the frequency domain is that convolutions, which are computa-

tionally expensive to evaluate in the spatial domain, can be evaluated as simple element-

wise multiplications in the frequency domain, due to the Fourier convolution theorem

[Easton, 2010]. Thus,

g[x, y] = f [x, y] ∗ h[x, y] = F−1 {F {f [x, y]} · F {h[x, y]}} (3.5)

where F−1 is the inverse Fourier transform, defined as

f [x, y] = F−1 {F [ξ, η]} =

∞∫

−∞

∞∫

−∞

F [ξ, η]e+2πi(ξx+ηy) dξ dη (3.6)

This property is useful due to the existence of the Fast Fourier Transform (FFT), an algo-

rithm to evaluate the Fourier transform in O(n log n), or log-linear, time. Since evaluating

the two forward and one inverse transform all take log-linear time and the element-wise

multiplication is a O(n), or linear time, operation, the entire evaluation is a log-linear,

O(n log n), computation, where n is the number of pixels in the image. On the other hand,

if two arrays of size n need to be convolved in the spatial domain, one array needs to be
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shifted to be centered at every element of the other array and the two then need to be

multiplied and summed at every shift. This results in a quadratic, O(n2), time process.

Thus, for reasonably large arrays, the frequency domain evaluation will be more efficient

than the spatial domain evaluation. An example of this tradeoff is given in Figure 3.2.
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Figure 3.2: Example of the computation time curves for O(n log n) vs O(n2) algorithms.
Precise values of n and computation time depend on the implementation.

Given the Fourier transform and the convolution theorem, the imaging relationship

given in Equation 3.3 can be re-expressed as

G[ξ, η] = F [ξ, η] ·H[ξ, η] (3.7)

where H[ξ, η] is the Fourier transform of the system’s PSF. This term is commonly referred

to as the Optical Transfer Function (OTF) of the imaging system. This formulation of

the imaging problem is highly advantageous for imaging system modeling when using the

Imaging Chain approach.

While Equation 3.7 is very simple, it does not take into account noise in the system.

Noise is inherent in every imaging situation. Shot or photon noise is inherent due to the

Poisson nature of arriving photons and noise is also added by the detection mechanisms
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of the system. Linear systems theory often makes the simplifying assumption that noise

is additive and independent of the signal, so that Equation 3.7 may be rewritten as

G[ξ, η] = F [ξ, η] ·H[ξ, η] +N [ξ, η] (3.8)

While this assumption is invalid due to photon noise, it is only utilized when deriving a

linear image restoration filter, as will be discussed later. As a result, the final image quality

is sub-optimal due to this assumption and a better, non-linear, restoration procedure may

exist.

3.2 The Imaging Chain Approach

As seen in Figure 3.3, the Imaging Chain approach looks at the imaging process as a series

of steps. The process begins at the light source and then considers interactions with the

object of interest and its surroundings. Light then continues to interact with the environ-

ment until some of it reaches the imaging system’s light collection apparatus. Once light

is collected, it must be detected by the imaging system and converted into a measurable

signal. This signal is then processed to produce a final image. This final image may then

be displayed and perceived by an end user or automatically analyzed by a computer.

Source Object Collection Detection Processing

Display Perception

Analysis

Figure 3.3: The Imaging Chain approach breaks down the imaging process into a series
of links with limited interactions.

Each of these steps in the imaging chain is not perfect and has the potential to degrade

or change the signal. For instance, light transport in the object link might blur the signal

due to atmospheric scattering. It can also lower the signal level due to absorption. In this

research, the focus will be on optical systems in the collection link. These can also blur the

signal through diffraction or aberrations. Detection systems will also degrade the signal.
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Modern digital detectors have a pixel footprint, or a rectangular region over which photons

are integrated. This is a blurring and sampling function of the light distribution that was

imaged onto the detector and thus a signal degradation. Once images are captured, image

enhancement algorithms are performed on the image, again changing the signal, although

ideally not a degradation. The Imaging Chain approach ties nicely into the linear systems

approach described in the previous section if linear shift invariant assumptions are made

on each of the steps. In this case,

G[ξ, η] =

(∏

i

Hi[ξ, η]

)
· F [ξ, η] (3.9)

where Hi[ξ, η] is the OTF produced by each step in the imaging process. Note that each

link in the imaging chain is complex and can contain multiple steps.

Since light-object interactions are invariant with respect to the design of passive imag-

ing systems, this research will be focusing on the light collection, detection and processing

steps. Every optical component in an imaging system has the ability to degrade the sig-

nal and thus each optical element has its own OTF. The detector also has an associated

OTF. In addition to the sampling footprint, pixel crosstalk, or signal leakage, can further

complicate the OTF of an imaging detector. Finally, signal post-processing, when done

with linear filters, also have associated OTFs. The cascading of multiple OTFs, described

in Equation 3.9, will be used extensively in the modeling of complex optical systems.

3.3 Propagation of Light to the Entrance Pupil

Before describing how an optical system will degrade image quality due to both diffraction

and optical aberrations, it is necessary to examine how the signal gets to the optical

system. This problem has been explored in depth in the remote sensing literature and the

approach taken by [Schott, 2007] will be used in this research. Optical transfer functions

are applied to the signal between the system’s pupil planes and as such, the problem of

how light propagates to the system’s entrance pupil is of interest here. It has been shown
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that for a Lambertian object, this radiance distribution can be approximated as

L(λ) = Es,exo(λ) cosσ′τ1(λ)τ2(λ)
ρ(λ)

π
+ ε(λ)Lemis(λ, T )τ2(λ) + FEds(λ)τ2(λ)

ρ(λ)

π

+FEde(λ)τ2(λ)
ρ(λ)

π
+ (1− F )[Lbs(λ) + Lbe(λ)]τ2(λ)ρ(λ)

+Lus(λ) + Lue(λ) (3.10)

In this equation, Es,exo represents the exoatmospheric solar irradiance, σ′ is the solar

angle with respect to the target, τ1 is the transmission from the top of the atmosphere to

the target, τ2 is the transmission from the target to the imaging system, ρ is the diffuse

target reflectance, ε is the target’s emissivity, Lemis is the blackbody radiance due to the

target’s temperature, T , F is the sky fraction of the hemisphere above the target, Eds is

the reflected downwelled irradiance, Ede is the emitted downwelled irradiance, Lbs is the

average radiance reflected by non-sky background, Lbe is the average emitted radiance from

non-sky background, Lus is reflected upwelled radiance and Lue is the emitted upwelled

radiance.

Es,exo

⌧1

�0

F

Eds

⌧2

Lus

L

Lbs

Figure 3.4: Illustration of the components of reflected sensor-reaching radiance.

Equation 3.10 gives the spectral radiance distribution reaching the imaging system due

to reflection and emission. However, if the imaging system only detects in the visible to
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shortwave infrared spectral regions, thermal emission is negligible, yielding,

L(λ) =
(
Es,exo(λ) cosσ′τ1(λ) + FEds(λ)

) ρ(λ)τ2(λ)

π
+(1− F )Lbsτ2(λ)ρ(λ) + Lus (3.11)

The components of this equation are visualized in Figure 3.4. In these equations, the

transmission terms, downwelled irradiance and upwelled radiance are all atmospheric terms

that need to be modeled. Traditionally, this is done using an atmospheric models, such as

MODTRAN [Berk et al., 1989]. The sky fraction and average background radiance terms

depend on the scene structure around the target. The radiance field reaching the front of

the system predicted by Equation 3.11, represents the ideal image that can be obtained

through the imaging system. Given that no imaging system can perfectly replicate this

radiance field, the degration effects of the optical system on image quality must now be

examined.

3.4 Diffraction-Limited Imaging

z

E(x, y, 0) E(x, y, z) E0(x, y, z) E(x, y, z + f)

f

p(x, y)

Figure 3.5: Imaging through a perfect lens with a finite aperture
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As was alluded to in the Imaging Chain section, each optical element in a system will

degrade the quality of the image. Every optical component, even one made perfectly to

specification, will degrade the signal due to the fact that it has a finite size. The finite

size of the optic results in diffraction effects, which blur the light distribution. An optic

which degrades the signal primarily due to its diffraction effects and not any imperfections

in the optic itself is termed diffraction-limited. To see the effects of this, an example of a

finite lens with perfect focusing ability will be examined. This is shown in Figure 3.5. In

this figure, the light distribution at the object plane, z = 0, is shown as an off-axis point

source, the light then propagates over a long distance z to the lens. As derived in [Easton,

2010], Fresnel diffraction is used to propagate the light to the lens and from the lens to

the image plane. The aperture function attenuates the wavefront at the aperture plane.

The expression for the final electric field at the image plane is actually a convolution with

the input signal, where the impulse response is given by,

ĥ

[
x, y; z1 =

(
1

f
− 1

z0

)−1
]
∝ P

[
x

λz1
,
y

λz1

]
(3.12)

where P is the Fourier transform of the pupil function. This is an important observation;

in the absence of all other aberrations, the degradation in image quality by an optic is

determined by the shape of the aperture function. However, this expression operates on the

electric field of the light, which is not directly measurable by modern imaging detectors.

Instead these detectors measure exposure, i.e. irradiance integrated over a finite time

interval. Irradiance is defined as the time average of the squared magnitude of the electric

field. So, in this case, the PSF due to diffraction, normalized to unit area, is given by

h

[
x, y; z1 =

(
1

f
− 1

z0

)−1
]

=
1

k

∣∣∣∣P
[
x

λz1
,
y

λz1

]∣∣∣∣
2

(3.13)

k =

∞∫∫

−∞

∣∣∣∣P
[
x

λz1
,
y

λz1

]∣∣∣∣
2

dx dy (3.14)

The OTF due to diffraction is then given by

H

[
ξ, η; z1 =

(
1

f
− 1

z0

)−1
]

=
1

k
· p[−λz1ξ,−λz1η] F p[−λz1ξ,−λz1η] (3.15)



3.4. DIFFRACTION-LIMITED IMAGING 19

where the F operator signifies the autocorrelation operation and p is the spatial domain

pupil function.

(a) Aperture function (b) Diffraction-limited PSF (c) Diffraction-limited MTF

(d) 1D-profile of the PSF (e) 1D-profile of the MTF

Figure 3.6: Diffraction-limited imaging performance of a circular aperture.

3.4.1 Symmetric Aperture Functions

The performance predicted by the diffraction-limited assumption applies equally to sys-

tems with symmetric and non-symmetric aperture functions. As many non-symmetric

designs utilize multiple symmetric designs as “building blocks”, it is useful to examine the

behavior of symmetric apertures. The simplest symmetric aperture is the unobstructed

circular aperture. According to Equation 3.14, the associated diffraction-limited PSF is

given by the squared magnitude of the Fourier transform of the circle function. As shown

in Figure 3.6, this is given by the “Airy Disk” pattern, also known as a squared Bessel

Sinc function [Easton, 2010].
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While the circular aperture is a simple case, it is not always practical to build space-

based telescopes with a circular aperture. Many of these telescopes instead have a sec-

ondary focusing mirror that blocks the central portion of the primary mirror, as occurs

in the Cassegrain design, shown in Figure 3.7. Since the secondary mirror blocks some

rays from entering the system, it introduces a central obscuration into the aperture func-

tion. This obscuration has little effect on the low- or high-frequency values of the MTF,

however, it does cause a dip in the mid-frequency response of the system. In the spatial

domain, the peak of the PSF has been reduced in magnitude. More energy is also in the

secondary peaks than in the case of the unobstructed circular aperture. These effects can

be seen in Figure 3.8.

Figure 3.7: The Cassegrain telescope design
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(a) Aperture function (b) Diffraction-limited PSF (c) Diffraction-limited MTF

(d) 1D-profile of the PSF (e) 1D-profile of the MTF

Figure 3.8: Diffraction-limited imaging performance of an obstructed circular aperture.

3.4.2 Non-symmetric Aperture Functions

The aperture functions discussed in the previous section were all symmetric about the

origin and have been widely studied. However, the same analysis can be applied to systems

that do not have this symmetry. These non-symmetrical systems have the potential to

have useful imaging capabilities, such as obtaining more resolution using the same or lesser

amounts of glass. Figure 3.9 shows the MTF and PSF associated with a Tri-arm 9 sparse

aperture design. The Tri-arm design is commonly seen in sparse aperture studies, such as

[Fiete et al., 2002]. This is due to its proven effectiveness through its use in the Very Large

Array radio telescope (VLA) in Socorro, NM [Napier et al., 1989]. Figure 3.10 shows the

MTF and PSF associated with the Golay-6 design. This design was theorized in [Golay,

1971] and gives optimal frequency coverage and MTF compactness. The Golay-6 design

will be heavily in the laboratory experiments in this research.
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(a) Aperture function (b) Diffraction-limited PSF (c) Diffraction-limited MTF
(contrast-stretched)

Figure 3.9: Diffraction-limited imaging performance of a Tri-arm 9 design.

(a) Aperture function (b) Diffraction-limited PSF (c) Diffraction-limited MTF
(contrast-stretched)

Figure 3.10: Diffraction-limited imaging performance of a Golay-6 design.

This sparse aperture design exhibits some characteristics not shown in the symmetric

apertures. Since the aperture function is non-symmetric, the PSF and MTF are also

non-symmetric. This means that the resolution limit will vary based on the object’s

orientation. The MTF of the symmetric apertures seen in the previous section were

monotonically decreasing with increasing spatial frequency. This is not the case, however,

with this sparse aperture design, as the MTF shows multiple peaks. Each peak arises when

two of the Cassegrain-style sub-apertures overlap in the calculation of the autocorrelation

function. Since the Tri-arm 9 design is an array of identical sub-apertures, the sifting
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property of the Dirac delta function can be used to reformulate the pupil function,

p[x, y] =

N∑

i=1

psub[x− xi, y − yi] (3.16)

= psub[x, y] ∗
N∑

i=1

δ[x− xi, y − yi] (3.17)

where psub is the aperture function of the sub-aperture, (xi, yi) is the center position of

the ith sub-aperture and N is 9 in this case. The diffraction limited OTF is then given

by equation 3.15.

OTF =
1

k
psub[−λz1ξ,−λz1η] ∗

N∑

i=1

δ[−λz1ξ − xi,−λz1η − yi] ∗

p∗sub[−λz1ξ,−λz1η] ∗
N∑

i=1

δ[−λz1ξ + xi,−λz1η + yi]

=
1

k
(psub[−λz1ξ,−λz1η] F psub[−λz1ξ,−λz1η]) ∗
N∑

i=1

N∑

j=1

δ[−λz1ξ − xi + xj ,−λz1η − yi + yj ] (3.18)

This result shows that the diffraction-limited OTF of a sparse aperture design, composed

of identical sub-apertures, is given by the sum of shifted copies of the diffraction-limited

OTFs of the sub-apertures, which is why sparse aperture OTFs often exhibit secondary

peaks.

3.5 Aberration Theory

Simply considering the diffraction due to the shape and size of the optics is not sufficient to

accurately predict their performance. The assumption of diffraction-limited performance

can be made only for optics that have been precisely constructed and aligned. Image

degradations that occur from imperfections in the construction or alignment of the optical

systems not due to diffraction are termed aberrations. In an ideal imaging scenario, wave-

fronts converge spherically to infinitesimal points. Deviations from this ideal wavefront

are the cause of these aberrations, as shown in Figure 3.11.
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Image Point

Image Plane

Optimal Wavefront

Actual Wavefront

Figure 3.11: Deviations from a spherical wavefront result in aberrations

In the case of perfect imagery, the wavefront error is zero for all points along the wave-

front. However, wavefront error tends to be non-zero and gets larger as the distance away

from the optical axis increases. Just as the radiance field entering an optical system is

a four-dimensional function, the wavefront aberration function is also four-dimensional.

That is, it depends on both the two-dimensional coordinates on the aperture and the

incoming direction. Equivalently, if there is a defined object plane, wavefront aberration

depends on both aperture coordinates and object coordinates. This is illustrated with a

sample aperture in Figure 3.12.

In the case of a circularly symmetric system, the dimensionality can be reduced by

one. Since the aperture is circularly symmetric, the aberration is constant with respect

to object orientation, so only the case of an axis-aligned object needs to be considered.

Then, due to the symmetry, the aberration is dependent on the radius in aperture space,

ρ and the cosine of the angle from the object’s axis to the ray intersection on the aperture

plane, cosφ. Under these conditions, aberration can only take on a limited number of

forms, which are given up to fourth-order terms in Table 3.1. Some example wavefront

error functions are shown in Figure 3.13.
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(x, y)

(x0, y0)

Figure 3.12: Wavefront aberration is a four-dimensional function, depending on the in-
coming ray direction and intersection coordinates on the aperture

The wavefront aberration function represents the change in optical path length based

on the entrance location and angle of the optical path through the optical system. So, the

aperture function can be re-expressed at a given object plane location, as

p[x, y, x′, y′] = |p[x, y, x′, y′]|e2πiW (x,y,x′,y′) (3.19)

where |p[x, y, x′, y′]| is the mask of the aperture, generally a binary “zero-and-one” function

[Goodman, 2005]. It can be used to give the transmission through the optics for every

optical path, however, a constant transmission is normally assumed and applied later.

Note that the relationship between this complex aperture function, also known as the

pupil function, and the OTF of the system still holds, as per Equation 3.15. So, the

system’s OTF now depends on the location in the object plane. Due to this dependence,

the degraded image can no longer be computed as a simple convolution. However, the

problem is still tractable if it is assumed that the wavefront error can be approximated by

a piecewise constant with respect to location on the object plane or its conjugate location

on the image plane. This gives rise to regions on the image plane that share a system
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Spherical

Tilt X Tilt Y Defocus

Coma X Coma Y

Astigmatism 0/90

Astigmatism 45

Figure 3.13: Example instantiations of wavefront aberrations. Brightness is proportional
to optical path length error.

OTF, termed isoplanatic regions.

Table 3.1: Aberrations for circularly symmetric optical systems

Aberration Wavefront Error W (h, ρ, cosφ)

Piston Error W000, W200h
2, W400h

4

Defocus W020ρ
2

Tilt W111hρ cosφ
Spherical W040ρ

4

Coma W131hρ
3 cosφ

Astigmatism W222h
2 cos2 φ

Field Curvature W220h
2ρ2

Distortion W311h
3ρ cosφ

3.6 Propagation of Light to the Sensor

After accounting for signal degradations by the optics due to aberration and diffraction,

the radiance field given by Equation 3.10 then needs to be propagated to the detector.
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As the previous sections have stated, there is a blurring effect that occurs between the

entrance pupil and the exit pupil. In an isoplanatic region, this blurring can be evaluated

as a convolution. In order to convert radiance reaching the exit pupil to irradiance on the

detector, the G-Number (G#) is used.

G#(λ) =
1 + 4(f/#)2

πFτ(λ)
(3.20)

where f/# is the system F-Number, F is the system’s fill factor, or the fraction of the

pupil area that is transmissive, and τ is the transmission spectrum of the optics. The fill

factor term is normally omitted in systems with circular apertures as it is equal to one,

however, it must be included in systems with sparse apertures. The spectral irradiance on

the detector in an isoplanatic region is then given as,

Edet(x, y, λ) =
Lsource(x, y, λ) ∗ h(x, y, λ)

G#
(3.21)

where h(x, y, λ) is the point spread function given as the inverse Fourier transform of the

OTF given in Equation 3.15. It should be noted that while it is not explicitly noted in the

equations, Lsource and thus Edet are random variables, due to photon noise. That is, they

are actually Poisson variables, where the predicted radiometric value is both the mean

and variance.

If it is assumed that the detector acts linearly at the input signal level, then the signal

in volts for a given pixel on the detector is given as

Svolt(x, y) = Adtint

∫ ∞

0
Edet(x, y, λ)R(λ) dλ+N(x, y) (3.22)

where Ad is the area of the pixel, tint is the integration time of the detector and R(λ) is

the responsivity spectrum of the detector and N(x, y) is the noise added by the detec-

tor. N(x, y) consists of all detector-generated noise sources, including dark current and

read noise. Modern digital detectors have an analog-to-digital converters which convert a

voltage from the signal in electrons to a digital count that gets recorded to form the final

image. This will be examined in the detector modeling section in the next chapter.
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3.7 Image Enhancement

As was seen in Figure 3.9, a sparse aperture function can result in an OTF that has

support, i.e. energy, over a wide range of frequencies, even if the magnitude at those

frequencies is relatively low. If the noise in the system is also relatively low, then the

images produced by these systems are good candidates for image enhancement. Inverse

filtering is the operation of trying to undo the process of a convolution, retrieving the input

signal. Using an additive noise model and a convolution to model image degradation, the

output image spectrum is given by

G[ξ, η] = F [ξ, η] ·H[ξ, η] +N [ξ, η] (3.23)

The goal of inverse filtering is to recover F as closely as possible. Since noise is un-

known and convolution is almost always a non-invertible operator, the problem must be

approached as a minimization of some error between the original object and the recon-

structed image. A common error metric is the sum of the squared error. That is, the

reconstructed image, f̂ , satisfies

argmin
f̂

N∑

y=1

M∑

x=1

(f [x, y]− f̂ [x, y])2 (3.24)

This problem is complicated by the fact that in an imaging situation, neither the object

nor its spectrum is known. However, it can be shown that, given the assumption that

the noise and signal are statistically independent, the minimum squared error can be

minimized by the following filter function, known as the Wiener filter. [Easton, 2010]

W [ξ, η] =
1

H[ξ, η]

|F [ξ, η]|2
|F [ξ, η]|2 + |N [ξ, η]|2 (3.25)

This equation can then be re-expressed in its more common form

W [ξ, η] =
H∗[ξ, η]

|H[ξ, η]|2 + |N [ξ,η]|2
|F [ξ,η]|2

(3.26)

An example of the Wiener filter is shown in Figure 3.14. This filter looks similar to that

of a naive inverse filter, with the addition of the noise to signal power spectrum ratio in
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the denominator. The effect of this term is to make the filter act as an inverse filter at

frequencies where the signal-to-noise ratio is high and as a noise suppressor at frequencies

where the signal-to-noise ratio is low. This overcomes the primary downfall of the naive

inverse filter, which is the boosting of noise at spatial frequencies with low signal-to-noise

ratios.
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Figure 3.14: An example of a Wiener filter with a constant noise spectrum

As can be seen in Equation 3.26, the transfer function in the numerator is a complex

function. This is advantageous as the transfer function of optical systems is often complex

due to wavefront aberrations. If these wavefront aberrations have been characterized for

a system, the system’s complex transfer function can be input into the Wiener filter in

order to compensate for these aberrations. This can be very useful in the case of sparse

aperture systems. Small aberrations can result in the disappearance of some of the peaks

in the system’s OTF. Using the unaberrated OTF in the Wiener filter would result in

inverse filtering at these frequencies. Since the aberrations eliminated the signal at those

frequencies, the unaberrated Wiener filter would simply boost noise and introduce ringing

artifacts, degrading the resulting image.

The Wiener filter, while minimizing the squared error, can often be impractical to use.

The largest issue is that the power spectrum of the object is almost always unknown. A

number of approaches can be taken here. If the noise power spectrum is known or ap-
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(a) γ = 0.1 (b) γ = 0.01 (c) γ = 0.001

Figure 3.15: Examples of constrained least-squares restoration filters for a circular aper-
ture. Notice that as γ decreases, higher frequencies are increasingly boosted.

proximated, the output image spectrum can be used as an approximation of the object

spectrum. The filter can then be iterated, updating the image spectrum after each itera-

tion. This is known as the iterative Wiener-Helstrom filter [Schott, 2007]. Another option

is to simply use a constant value for the noise-to-singal term. The option used in this

research was a constrained least-squares variant of the Wiener filter. [Reddi, 1978]

F̂ [ξ, η] = W [ξ, η] ·G[ξ, η] =
H∗[ξ, η]

|H[ξ, η]|2 + γ · |S[ξ, η]|2 ·G[ξ, η] (3.27)

Instead of simply using a constant in the denominator, a local image smoothness term

is added to the denominator. This term S[ξ, η] is the transfer function of a Laplacian

convolution kernel. This term is modulated by a tunable scalar, γ that can be used to

adjust the amount of inverse filtering or blurring that occurs as a result of the filter.

The effect of this parameter on the restoration filter is shown in Figure 3.15. Optimal

determination of this parameter is difficult, but depends on the noise present in the output

image and the use case of the output image. For instance, the value of γ that is optimal

for human perception at a given noise level might differ from the optimal value of γ if

the image were to be used for some automated processing. In practice, the value of γ is

empirically tuned for the given imagery to give an optimal output. For low noise inputs,

γ tends to be less than one. As γ increases beyond one, the inverse filter becomes more

of blurring operation to suppress noise than a sharpening filter.
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Modeling Approach
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Figure 4.1: A flowchart visualization of the modeling approach to produce raw sensor-
reaching irradiance.

This chapter will explain the approach taken to model optical systems with non-conventional

aperture functions, applying the theory presented in the previous chapter. A graphical

overview of the first half of the model is given in Figure 4.1. In this figure, the process

31
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of obtaining the irradiance field incident on the detector is shown. The process by which

this is converted into a final image is illustrated in Figure 4.2.
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Isoplanatic 
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Figure 4.2: A flowchart visualization of the modeling approach to produce a final restored
image.

Each element in these flowcharts will be examined in detail in the subsequent sec-

tions. In summary, there are two stages to the model that require input: imaging and

restoration. When imaging, a spectral radiance image at the entrance pupil of the system

is required. This can come from a number of sources, but in this research it is either

generated by the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model

[Schott et al., 1992], or produced from a binary pattern with a constant illumination func-

tion. Photon noise is modeled and added to the input image in both cases. This spectral

radiance image is then degraded using a series of optical transfer functions. The first is

the spectrally-varying optical transfer function due to the aberrated optics of the system,

which will require user input. The first input is a binary mask, which represents the shape

of the sparse aperture array. The second input is the wavefront error at each point on the

aperture. As was mentioned in Chapter 3, the wavefront error can vary with both posi-

tion on the aperture and position on the image plane, which results in a four-dimensional

functions. The model allows for this behavior through the use of isoplanatic regions and

isoplanatic interpolation. After degradation by the optics, the image is then degraded

with transfer functions due to the footprint of the detector, jitter in the optical system
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and smear due to linear motion over the integration time, all of which are assumed to be

constant over the spectral dimension.

Once degraded, the signal is spectrally summed over the bandpass(es) of the detector

and degraded by the addition of detector noise, giving an approximation of Equation 3.22,

or the raw image that was detected by the imaging system. This image is then processed by

a restoration filter to produce the final restored image. This restoration filter is produced

from knowledge of the aperture shape and an approximation of the wavefront error across

the aperture, as it may be impractical to precisely measure this error once the system has

been deployed. This inverse filtering can also be applied in a spatially-varying manner, if

off-axis aberration in the system can be characterized.

4.1 Previous Work

Sparse aperture arrays have had a long history in both radio astronomy, infrared astron-

omy and optical physics. In 1970, a sparse aperture telescope for use in the long-wave

infrared was being designed by [Meinel, 1970]. The problem of layout optimization also

has a long history, with [Golay, 1971] designing aperture configurations to give desirable

MTF characteristics. More recently, research has picked up into modeling and creating

sparse aperture telescopes for remote sensing purposes. Unlike previous research into the

topic, the area of interest here is in the visible to near-infrared region of the electromag-

netic spectrum. This is a more challenging problem, as alignment tolerances scale with

wavelength, resulting in the need for optical systems with an extreme amount of precision.

[Fiete et al., 2002] from the Eastman Kodak Company have performed a number of image

quality studies exploring the trade spaces of sparse aperture design. Confining analysis

to three well-known sparse aperture designs (Tri-arm 9, Golay 6 and annulus), their work

analyzed the tradeoff of fill factor and integration time, finding that integration time had

to be increased by a factor in the range of 1/F 2 to 1/F 3, depending on aperture design.

This conclusion agreed with the conclusion of [Fienup, 2000], who found the 1/F 3 factor

for the annulus design. Fiete et. al. also defined an “effective diameter” for a sparse

aperture’s MTF as the geometric mean of the minimum and maximum diameter of the

MTF. Their work showed that NIIRS and GIQE were not applicable to sparse aperture

designs.
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[Breckinridge et al., 2008] built upon this work even further, looking at more optical

designs and low-contrast imaging situations. In such situations, they found the exponent

in the integration time versus fill factor tradeoff could reach 4 or 5 depending on contrast

level and subaperture layout. The large effects of signal-to-noise ratio on the imaging

parameters of sparse aperture systems in this work also strengthen the argument against

using GIQE for sparse aperture imagery. In the GIQE, SNR is weighted relatively lightly

compared to spatial resolution and the SNR levels of the conventional imagery used to fit

the GIQE were obtained with a much shorter integration times than would be required in

a sparse system.

The model outlined in the chapter introduction is the result of several research projects.

The original model was introduced by [Introne et al., 2005]. In this work, the three well-

known sparse aperture designs from [Fiete et al., 2002] were extensively analyzed using

the modeling approach. This work also established the importance of using polychromatic

simulation in sparse aperture modeling, showing that a grey-world assumption was not

sufficient for image quality studies with these systems. This work was extended by [Block,

2005], who examined the spectral issues of sparse aperture imaging in more detail. This

work conducted a sensitivity study to examine the nature of spectral artifacts that arise

due to inverse filtering in a panchromatic system. The findings of these works are the

primary focus of the validation study proposed in this research.

The modeling approach originally developed by Introne is not confined to sparse aper-

ture systems. As [Zelinski and Schott, 2009] showed, the approach was also practical for

modeling systems with synthetic apertures, such as the James Webb Space Telescope.

This work also showed that the model was not only capable of handling rigid aberrations

(piston, tip, tilt), but also aberrations due to warping of mirrors that can happen in fold-

able synthetic apertures. This work also noted that the NIIRS scale and GIQE were not

ideal image quality metrics for exotic apertures, agreeing with the conclusion of Fiete et.

al.. Instead, a more task-based approach was adopted for modeling quality. Specifically,

a multispectral motion detection algorithm was used as a benchmark for image quality,

where various changes were evaluated based on their effects on the results of the algorithm.

Finally, this approach of task-based image quality was brought back to the realm of sparse
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apertures by [Smith, 2012]. In this work, target detection was used as the benchmark

algorithm with comparative analysis performed on monolithic, Tri-arm 9 and hexagonal

synthetic apertures.

All of the above works were confined to computer modeling of sparse aperture perfor-

mance. [Chung et al., 2002] from the Massachusetts Institute of Technology have built

a ground-based three-element sparse aperture telescope, called ARGOS. They have pub-

lished an analysis of how the PSF degrades with alignment error and a cost analysis.

Unfortunately, the cost of the system is in the hundreds of thousands of dollars, making

their design impractical for a laboratory model validation study as proposed here. Ad-

ditionally, no images from the telescope have been published. [Zhou et al., 2009] from

Beijing University of Technology have constructed a low-cost laboratory setup utilizing

masks to simulate sparse apertures. This setup is the one from which the setup in this

research draws the most inspiration. Their setup utilizes refractive lenses (and thus has a

limited spectral range) and has limited control over wavefront error, two factors this work

will attempt to improve upon. Additionally, their study did not perform quantitative com-

parison to modeled PSF/OTFs and was limited to the three well-known configurations.

This works aims to expand upon both of these areas.

4.2 Radiance Image

As was described in Section 3.3, there are many terms that contribute to the radiance

distribution that reaches the entrance pupil of an imaging system. In a remote sensing

application, one has to consider direct solar illumination, diffuse illumination from the

sky and energy scattered into the line of sight, amongst other terms. If infrared radiation

is being examined, emitted radiation must also be considered. In order to model how a

potential system will perform, realistic synthetic imagery needs to be generated using the

theory presented.

The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model has been

in development for over 20 years to fill this task [Schott et al., 1992]. This model uses ray

tracing to model light transport from first-principles. The DIRSIG model functions over

a large range of wavelengths and modalities and will be used around the visible and near-
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530 nm 810 nm
Figure 4.3: Sample bands of a DIRSIG-generated hyper spectral input to the model

infrared spectrum in this research. In order to produce high-fidelity images, the model

needs to incorporate a lot of information about the scene. Some of these inputs include

spectrally-attributed scene geometry, atmospheric conditions, scene thermal information

and weather history. The technical details and intricacies of the model are out of the scope

of this research, however, an interested reader is referred to the DIRSIG documentation

(http://www.dirsig.org/docs/new/) for more details. In this research, the role of DIRSIG

is to model the radiance distribution at the entrance pupil of the imaging system that we

wish to model, that is, it is providing the Lsource(x, y, λ) term in Equation 3.21. Some

example bands from a DIRSIG scene are given in Figure 4.3.

The radiance image, Lsource(x, y, λ), that is modeled by DIRSIG is a three-dimensional

data source. It has two spatial dimensions and one spectral dimension, similar to a hy-

perspectral data cube. The model can be set up to vary the resolutions in all three of

these dimensions. Since the DIRSIG model already performs spatial integration inside

of a pixel through the use of adaptive sampling, the spatial resolution can be set to the

size of the detector without any worry of introducing aliasing into the system, provided

sufficient spatial oversampling was specified when generating the scene.

The resolution of the spectral dimension, however, can be more complicated to de-

termine. Remote sensing systems have a very diverse set of output bands that might

be modeled. For instance, panchromatic bands can have bandpasses that span the en-
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(a) Center: 550 [nm], FWHM: 1.5 [nm] (b) Center: 550 [nm], FWHM: 150 [nm]

Figure 4.4: Illustration of the effects of wavelength on the diffraction-limited performance
of a Tri-arm 9 sparse aperture design.

tire visible range, while hyperspectral systems can have bandpasses that span only a few

nanometers. Thus, the spectral resolution of the input radiance image should be depen-

dent on the bandpasses that are going to be modeled and should always be higher than the

bands being modeled. As was shown in Equation 3.15, the optical transfer function due

to diffraction is highly dependent on wavelength. As such, the degradation of the signal

can vary significantly over a panchromatic or multispectral band. This effect is illustrated

in Figure 4.4 for a Tri-arm 9 sparse aperture for a band centered around 550 nanometers

with a full-width, half-max (FWHM) of 150 nanometers in comparison to the same band

with a FWHM of 1.5 nanometers.

As can be seen in Figure 4.4, the spectral change in OTF over the bandpass is very

significant. For this sparse aperture design, all of the peaks in the periphery of the OTF

have been blurred over. As will be seen later, this presents challenges for applying inverse

filtering to the raw image. However, in terms of configuring DIRSIG, Figure 4.4 should

make it apparent that spectral oversampling is necessary for high-fidelity modeling of the

performance of these systems. In practice, samples every 10 nanometers yield a high-

quality estimate for a panchromatic bandpass.
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4.3 Aberrated Optics OTF

Under normal operating conditions, the optics of a sparse aperture system provide the pri-

mary degradation of image quality. As such, the modeling approach for this degradation

should be as accurate as possible. The inputs to the model that facilitate this model-

ing are the aperture mask that defines the unaberrated pupil function and the wavefront

error at each point on the aperture. These inputs are given as two-dimensional images.

This representation carries some inherent assumptions. As was illustrated in Figure 3.12,

wavefront error is a four-dimensional quantity. The aperture mask is representative of the

transmission through the optics along every optical path, which is also four-dimensional.

Due to the large object distances present in remote sensing situations, the field of views of

these systems tend to be very small. Thus, within an isoplanatic region of the image plane,

the transmission and wavefront error are assumed to be constant with respect to incoming

ray angle. This assumption is closely tied to that of local linearity and shift-invariance,

allowing the computation of image degradation as a convolution.

Given the assumption that the aperture mask and wavefront error can be expressed

as two-dimensional quantities, the complex pupil function can be expressed as

p[x, y] = |p[x, y]|e2πiW (x,y) (4.1)

where |p[x, y]| is the aperture mask and W (x, y) is the wavefront error, in waves. Note

that there is an implicit spectral dependence here, as the waves unit on W (x, y) is given

in terms of some reference wavelength, λ0. The wavelength dependence is made explicit

below,

p[x, y, λ;λ0] = |p[x, y]|e2πiW (x,y)
λ0
λ (4.2)

This form of the equation explicitly shows that wavefront error becomes less of an issue

as wavelength increases, although diffraction increases to work against this effect. Once

this complex pupil function has been constructed for an isoplanatic region in the image,

it can be used to predict the image degradation based on the optics through the use of

Equation 3.15.
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(a) Piston/tip/tilt wavefront error (b) Aberrated MTF: 0.1 waves RMS

(c) Aberrated MTF: 0.25 waves RMS (d) Aberrated MTF: 0.5 waves RMS

Figure 4.5: Illustration of the effects of wavefront error (piston, tip, tilt) on the MTF of
a Tri-arm 9 sparse aperture design.

Figure 4.5 shows an example of how wavefront error can degrade the OTF of a sparse

aperture configuration. As can be seen, the OTF quickly degrades with wavefront RMS

error. Once the wavefront RMS error exceeds a tenth of a wavelength, there is significant

degradation in the periphery of the OTF. For a more detailed analysis of how the MTF

degrades with wavefront error, the reader is referred to [Introne, 2004].
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(a) PSFs are allowed to vary over the field of view (b) Interpolation weights for each field point in the final
image. Weights are shown on a linear 0-1 grayscale.

Figure 4.6: Off-axis aberrations are modeled by degrading with OTFs computed at several
field points and interpolating the results into one final degraded image.

While Figure 4.5 showed how aberrations, such as piston, tip or tilt can degrade OTF

performance, these aberrations are invariant with respect to incoming ray angle. Off-axis

aberrations, such as coma or astigmatism, do not share this invariance and as such, vary

over the field of view of the system. As was previously mentioned, in this modeling ap-

proach, wavefront error was approximated as a constant within an isoplanatic region. In

order to account for this, the model has the ability to adapt the aberrated optics OTF over

the field of view. As is shown in Figure 4.6, the image is split up into a number of radial

and angular zones. An OTF is then computed in each zone and used to degrade the image.

After the rest of the degradation pipeline is performed, the degraded images from each

isoplanatic region are then used to approximate the final image through interpolation.

Bilinear interpolation in polar space is used to derive the interpolation weights. An ex-

ample of the interpolation weights are shown in Figure 4.6 (b). With this approach, the

number of angular and radial zones are user-defined parameters that trade off accuracy

with run-time. In this research, 3 radial and 6 angular zones were used.
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4.4 Detector Sampling OTF

Unlike a theoretical mathematical sampling, modern imaging detectors are constructed to

integrate signal over a finite area. As such, the recorded pixel value is representative of

an averaging across the pixel’s footprint on the object. In the modeling approach for this

research, it will be assumed that pixels are rectangular and have a constant responsivity

across their light sensitive areas. With these assumptions, the pixel sampling process can

be modeled as (ignoring scale factors),

Sdet[x, y] ∝
(
RECT

[
x

xp
,
y

yp

]
∗ Edet[x, y]

)
· COMB

[
x

px
,
y

py

]
(4.3)

where, xp and yp are the dimensions of the light-sensitive pixel regions and px and py

are the pixel pitches in both dimensions. This equation assumes due to the nature of the

COMB function that the light sensitive area is centered in the pixel. This is not a prob-

lematic assumption in this research, however, as it will be assumed that px = py = xp = yp,

meaning that the pixels are square and have a fill factor of one.

With the modeling approach and assumptions just given, the effect of detector sam-

pling can be summarized in an optical transfer function (OTF). Given Equation 4.3, the

degradation to the signal is given as a convolution with a RECT function, representing

the pixel averaging. As such, the corresponding OTF is given by,

OTFdet[ξ, η] = SINC[xpξ, ypη] =
sin(πxpξ)

πxpξ

sin(πypη)

πypη
(4.4)

An example of the detector sampling OTF is given in Figure 4.7. As can be seen, the

effect of detector sampling is relatively minor, when compared to the effect of the optics.

In this example, the optical Q of the system was equal to 2. The quantity Q is used in

remote sensing to describe the relation between diffraction-limited resolution and detector

resolution of a system [Fiete, 1999]. It is given by

Q =
λ · F#

p
(4.5)

As can be seen from the figure, the case of Q = 2 means that the limiting resolution of

the diffraction-limited optics matches with the Nyquist sampling rate of the detector.
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Figure 4.7: Detector sampling OTF in relation to the diffraction-limited circular aperture
for a Q = 2 system.

Applying the detector sampling OTF makes sense if the model is using radiance data

of a higher resolution than that of the modeled detector. However, the normal input to

the model is a DIRSIG-generated synthetic image at the detector resolution. As described

in the DIRSIG manual, multiple samples are used in determining the radiance reaching

each pixel in the system. To do this, multiple strategies may be used. A regular grid of

samples in each pixel may be taken and then averaged to give the pixel’s radiance value.

Another strategy used is adaptive sampling, which utilizes a number of samples randomly

cast into a set of sub-pixels. Adaptive sampling then monitors how the radiance estimate

converges and terminates the sampling process once the estimate has met some convergence

condition. Both of these strategies aim to simulate the detector footprint, which is the

same thing the detector sampling OTF is doing to the continuous light distribution on

the sensor. As such, it does not make sense to apply the detector sampling OTF in the

case of synthetic imagery generated at the modeled detector’s resolution, as that would

be applying the averaging effect twice.

4.5 Detector Jitter OTF

The previous section discussed how averaging occurred within a pixel’s footprint on the

ground. However, imaging systems have a finite integration time and over that time the

pixel’s footprint can move. In order to apply the effects of jitter as an optical transfer
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function, it must be a linear and shift invariant effect. This can be justified by assuming

that the detector itself is rigid and jitter comes from the platform that the imaging system

is attached to, such as a satellite or airplane. As such, the jitter is constant across the

detector and the resulting blur can be described as a point spread function.
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Figure 4.8: An example of a jitter path (σj = 0.1 pixels)

The jitter of any specific platform can vary greatly. For instance, different engines

on airplanes can result in different power spectrums of vibration. Vibrations from other

instruments on the same satellite can also be potential jitter sources. Precise jitter mod-

eling for a given platform is not the focus of this research, so the model developed simply

generated a jitter pattern from a power spectrum. If a specific platform was of interest,

its vibration power spectrum could be inserted to get more precise results.

The approach taken in this research to model blur due to jitter was to subdivide the

integration time into discrete timesteps and determine the offset due to jitter at each

timestep. Given a power spectrum |J(f)|2 for jitter, the square root was taken to find

the magnitude of jitter at each frequency and a random phase can be attached. The

inverse Fourier transform will then give an offset for each timestep. In this research, all

optical components are rigidly mounted to the same optical table, so jitter will be small
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and approximately Gaussian. As a result, random numbers from a Gaussian distribution

were used for the phase and 1/f was used as the power spectrum. The resulting offset

pattern was scaled in each dimension to match a user-provided standard deviation σj , in

pixel dimensions. An example instantiation of a jitter pattern is given in Figure 4.8.

(�x,�y)

1 ��x
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�

y

Figure 4.9: Overlap between a displaced pixel due to jitter and the original pixel

In order to translate the generated jitter path into an OTF, a point spread function

must be generated. If the pixel’s footprint moves by an offset of (∆x, ∆ y), as shown

in Figure 4.9, than the normalized overlap area between the pixel’s new footprint and its

old footprint is given by (1−∆x)(1−∆y). The remainder of the pixel’s footprint is split

between the three neighboring pixels in the original detector space. This example is for

pixel shifts of less than one pixel, however, the same idea holds for larger shifts, in that

the overlapping area needs to be computed between the shifted pixel and the four pixels

in the original grid that the shifted pixel now overlaps. These four overlapping areas now

form the point spread function for the corresponding time step in the integration time. If

this procedure is repeated for each timestep and the resulting point spread functions are

averaged together, an aggregate point spread function for jitter can be derived. The Fourier
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transform of this will give the jitter OTF that can be applied as an image degradation in

the model. Examples of the resulting MTFs are given in Figure 4.10.
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Figure 4.10: Examples of MTFs generated by the jitter modeling procedure. σj values are
in units of pixels.

4.6 Smear OTF

The previous section described how blur is introduced due to random jitter of the imaging

platform. In addition to jitter, there is also deterministic image motion on most remote

sensing systems. Both aerial and satellite based systems need to maintain a velocity in

order to maintain flight and orbit, respectively. As such, due to the finite integration time

of image collection, the detector footprints will be moving linearly on the ground, thus

blurring in the direction of flight. This effect is termed smear.

In this research, the imaging platform will be assumed to have a constant altitude.

During the image capture process, the platform will be assumed to move with a constant

velocity, (vx, vy). The speed is then given by v =
√
v2
x + v2

y . Over the integration time,

tint, the sensor will move a distance of tintv. Assuming the constant velocity, the blur can

be modeled as a RECT function of that width oriented in the direction of motion. The
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OTF due to smear is given by the Fourier transform of this blur, given as,

OTFsmear = SINC[vtintξ] (4.6)

In this case, the ξ frequency is still spatial frequency, however, it is frequency in the di-

rection of motion, and not the x-direction, as has been the case in the rest of this document.

Some examples of smear OTFs are given in Figure 4.11. In this example, the integration

time was 25 microseconds, the pixel pitch was 7.5 microns and the velocity varied. The

velocities were 1-dimensional in the y-direction, so the displacements are computed and

given in the legend as ∆y values in units of pixels.
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Figure 4.11: Examples of MTFs generated by image smear. ∆y values are in units of
pixels.

In addition to smear in the primary track direction, cross-track smear can also be

introduced by platform motion. Aircraft roll and active pointing systems are two prime

examples of mechanisms that can introduce cross-track smear. For aircraft roll, if the

velocity of motion in this dimension is available, the image degradation can be approxi-

mated with the same MTF expression derived for the primary track direction. However,
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image motion due to cross-track roll is technically non-linear, as it changes the angle of

projection for each pixel onto the ground. Since this is not present in the laboratory

setup in this research, it will not be addressed here. Active pointing systems can be used

on framing systems to mitigate smear, but create non-linear smear that varies across the

field-of-view. While these systems would be useful for sparse aperture framing systems,

the blur introduced is not unique to sparse aperture systems. So, existing smear models

for active pointing systems may be applied to sparse aperture systems without any issues

and only the linear smear model will be used here for simplicity’s sake.

4.7 Detected Image

After applying all of the processing just described, an accurate estimate of the degraded

spectral radiance distribution, or Lsource in the numerator of Equation 3.21, has been

computed. This radiance distribution now needs to be converted into detector response.

In order to perform this conversion, the user needs to provide a specification for the

detector being used. The specification is described in Table 4.1.

Table 4.1: User-provided parameters for the modeled detector

Parameter Description Unit

QEb(λ) Quantum efficiency spectrum for each band unitless
p Spacing between detector pixels meters
Fdet Fill factor of the detector pixels unitless
T Operating temperature of the detector Kelvin
Td Dark current doubling temperature Kelvin
Tref Dark current reference temperature Kelvin
σdc,ref Dark current reference RMS RMS e− / pixel / s
Nfull-well Full-well capacity of each pixel e−

n Bit depth of the analog-to-digital converter bits
SADC “Effective” gain factor of the detector e− / digital count
σr Read noise RMS RMS e−

tr Readout time seconds

From the specifications given for the detector, the area of the detector element is

computed as

Adet = p2Fdet (4.7)
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This area is used to convert the irradiance distribution on the detector, produced by

Equation 3.21, to a spectral flux distribution in photons.

Φp(x, y, λi) = Adet · tint · Edet(x, y, λi) ·
λ

hc
(4.8)

If this photon flux estimate was generated using synthetic data from DIRSIG, then photon

noise has not yet been included in the estimate and must be added now. Photon noise

is characterized by a Poisson distribution, where the mean and variance are the expected

signal level, Φp. For reasonably large signal levels (approximately 10 photons), the Pois-

son distribution can be well approximated by a normal distribution, where the standard

deviation is the square root of the signal level. Thus, the signal with photon noise included

is given by

Φ̃p(x, y, λi) = Φp(x, y, λi) +N
(

0,
√

Φp(x, y, λi)

)
(4.9)

The signal produced by the detector in electrons, Se, for a given band, b, is then given by

Se(x, y, b) =
∑

i

Φ̃p(x, y, λi) ·QEb(λi) (4.10)

where QE(λj) is the linearly interpolated quantum efficiency, calculated as

QEb(λ) =

(
λ− λi−1

λi − λi−1

)
QEb(λi) +

(
1− λ− λi−1

λi − λi−1

)
QEb(λi−1) (4.11)

where λi is wavelength of the QE sample that is closest to the wavelength of interest, λ,

while still being greater than λ. As such, λi−1 is the wavelength of the QE sample that is

closest to λ while also being less than λ.

The detector noise is then added to this signal in electrons. The detector noise is

treated as a sum of independent noise sources for the read noise and the dark current

noise. The read noise RMS is given by the user in electrons and is added as a Gaussian

noise source directly to the signal. For a given detector temperature, T , the dark noise

RMS is computed as

σdc = tint · 2
T−Tref
Td · σdc,ref (4.12)

where Td is the dark current doubling temperature and Tref is the reference temperature
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for σdc,ref. The dark current noise is then computed as a Gaussian noise source in electrons

and also added to the signal. The user-provided analog-to-digital conversion gain, SADC ,

and quantization bits, n, can then be used to quantize the signal into digital counts by

the equation,

I(x, y, b) = min

(
2n,

⌊
Se(x, y, b)

SADC
·
⌋)

(4.13)

where b·c is the integer “floor”, or round-down, operation. This equation assumes the

detector is linear over the whole range of light levels up to its full-well capacity. A model

for how the detector behaves approaching saturation could be integrated with little trouble.

4.8 Restoration Filter

As was seen in the previous sections on the OTF of the system optics, sparse aperture

systems have transfer functions that are non-zero for a large range of frequencies, however,

the magnitude of the transfer function at those frequencies is low. As such, inverse filtering

is a critical step in restoring image quality and extracting information from these images.

As was shown in Section 3.7, the inverse filter that will be used in this research is given

by

F̂ [ξ, η] = W [ξ, η] ·G[ξ, η] =
H∗[ξ, η]

|H[ξ, η]|2 + γ · |S[ξ, η]|2 (4.14)

In this equation H is the optical transfer function of the system and S is the transfer

function of some smoothness operator. In this research, the smoothness operator was a

3× 3 Laplacian convolution kernel, shown in Figure 4.12.

0 -1 0

-1 4 -1

0 -1 0

Figure 4.12: 3× 3 Laplacian convolution kernel

The transfer function, on the other hand, is less straightforward. Since this inverse

filter is applied to a signal integrated over a wide bandpass, it does not make sense to

use the system OTF at any specific wavelength. Instead, an “effective” OTF must be

constructed for the entire bandpass. In this research, the OTFs for wavelengths over the

bandpass were averaged in accordance with the relative spectral responsivity curve of the
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band. In addition, if the illumination spectrum of the scene is known, it can also be used

to guide the weighted average of the effective OTF.

OTFeff,b =

∑
iOTF (λi) ·R(λ)∑

iR(λi)
(4.15)

For sparse aperture system that have OTFs with many small peaks, this averaging effec-

tively blur those peaks radially in the frequency domain. This effect is minor for typical

hyper spectral bandwidths, however, it is drastic for panchromatic bands. The averaging

effect was shown in Figure 4.4. Since Equation 4.14 depends on the effective OTF, the

effects of spectral averaging are also seen in the restoration filter. The restoration filters

for a Tri-arm 9 configuration with a 10 nanometer FWHM band and a 100 nanometer

FWHM band are shown in Figure 4.13. The peripheral peaks of the Tri-arm 9 OTF are

still clearly present in the 10-nanometer bandpass but have been blurred away in the 100

nanometer bandpass.

(a) Center: 550 [nm], FWHM: 10 [nm] (b) Center: 550 [nm], FWHM: 100 [nm]

Figure 4.13: Illustration of the effects of the spectrally averaged OTF on the restpratopm
filter.

The restoration filters shown in Figure 4.13 work very well when applied to unaber-

rated imagery degraded with the described model. However, wavefront error can quickly

degrade the OTF of a sparse aperture system, as was shown in Figure 4.5. Wavefront error
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has the effect of eliminating some of the peaks in the OTF. If the inverse filters shown

in Figure 4.13 are used to restore images that were imaged with wavefront error, then

frequencies not present in the degraded imagery will be boosted, leading to undesirable

artifacts that degrade image quality. This is a large issue in a realistic imaging scenario,

as an estimate of the wavefront error may be unavailable or may require an advanced

technique, such as phase retrieval, to obtain. [Miller et al., 2007] showed that while phase

retrieval can obtain wavefront error estimates from sparse aperture imagery, it is only ef-

fective under constrained circumstances, which may be difficult to reproduce in a realistic

system.

(a) Center: 550 [nm], FWHM: 10 [nm] (b) Center: 550 [nm], FWHM: 100 [nm]

Figure 4.14: Illustration of the effects of wavefront error (0.1 RMS waves of piston, tip,
tilt) on the inverse filter.

If however, a wavefront error estimate can be obtained, it can incorporated into the

inverse filter. Equations 4.14 and 4.15 already handle the OTF produced by the complex

aperture function, so simply using the estimate of the wavefront error to predict the OTF

will result in a compensated inverse filter. Figure 4.14 shows inverse filters under the

same conditions as Figure 4.13 with the addition of wavefront error. In this case, random

piston, tip and tilt error were added so that the RMS wavefront error was 0.1 wavelength

or 55 nanometers, in this case. As can be seen, there are specific peaks that have been
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suppressed in the inverse filter. However, there are also regions closer to the origin that are

boosted more. These are regions of low but non-zero support in the aberrated optics OTF.

The high boosting of these regions can recover resolution but can also create undesirable

artifacts.

While the Wiener filtering approach will be used in this study, it should be noted

that there are many other deconvolution algorithms that may also perform well on sparse

aperture imagery. [Fienup et al., 2002] performed a study that compared Wiener filtering

to a maximum likelihood reconstruction algorithm and found that the two algorithms

performed equivalently for reasonable SNR values. Finding the ideal post processing

algorithm is not the focus of this research, so the accepted standard of the Wiener filter

will be used.



Chapter 5

Laboratory Model Validation

5.1 Introduction

The first key objective of this research will be to validate the sparse aperture image quality

model, set forth in Chapter 4. This model has been implemented using C++ and runs

on any Linux computer with a modern (C++11) compiler and the appropriate dependen-

cies. One of the key features of the model is that the user has direct control over the

input radiance field, detector and the aperture configuration that are used in the mod-

eled system. Given an imaging detector, the user can recreate that detector in the model

by entering values commonly found in the detector’s specifications. As for apertures, a

number of common sparse aperture components are built into the model. The user can

then create their own apertures through a configuration file, where they can specify which

sub-apertures to use and their positions, scales and rotations, if necessary. If a component

of the aperture is not included in the model, a simple programming interface exists to

add it. Wavefront error is also fully supported, through Zernike polynomials or an input

data file. These controls allow for the recreation of a small-scale laboratory system in the

computer model, a prerequisite for a validation study.

In previous work, the modeling approach from Chapter 4 was shown to predict no-

ticeable artifacts in imagery produced after inverse filtering. An example of this is shown

in Figure 5.1. As can be seen, ringing artifacts can arise after post-processing on sparse

aperture imagery. Post-processing of traditional imagery results in simple edge-overshoot

artifacts, but more complex artifacts arise due to the more complicated OTFs of sparse

53
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Figure 5.1: Predicted ringing artifacts due inverse filtering over large bandpasses [Block,
2005]. The ringing is most noticeable in the pavement areas.

aperture systems. While some artifacts are inherent in post-processing, they are exac-

erbated by errors in the post-processing filter. As was shown in Section 4.8, the post-

processing filter is given as,

F̂ (ξ, η) = W (ξ, η) ·G(ξ, η) =
H∗(ξ, η)

|H(ξ, η)|2 + γ · |S(ξ, η)|2 ·G(ξ, η) (5.1)

Examples of some post-processing filters are given in Figure 5.2, showing the effect of

the smoothness term in the denominator. As can be seen in the figure, the filters have

a similar level of detail to the sparse aperture OTF and thus require significant spectral

sampling to model correctly. Since H is the only unknown in the post-processing filter,

any errors in the post-processing filter derive soley from errors in the approximation of

the effective OTF. Over a bandpass, the effective OTF of the system is given as

Heff(ξ, η) =

∞∫
0

SW (λ) ·H(ξ, η, λ) dλ

∞∫
0

SW (λ) dλ

(5.2)

where, H(ξ, η, λ) is the monochromatic OTF of the imaging system and SW (λ) is the

spectral weighting function over the system’s bandpass. Errors can arise in both terms.

Errors in the monochromatic OTF normally arise from errors in the wavefront error esti-

mates. Errors in the spectral spectral weighting function normally arise from incomplete
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(a) γ = 1× 10−4 (b) γ = 1× 10−3 (c) γ = 1× 10−2

Figure 5.2: Examples of Golay-6 inverse filters for an aberrated system. γ is the La-
grange multiplier for the smoothness term in Equation 4.14 and modulates how much the
secondary peaks are boosted.

or imperfect knowledge of the scene or the sensor. In a scene-independent analysis, illumi-

nation is unknown and the spectral weighting function would be the product of the optics

transmission spectrum, the detector responsivity over the bandpass and at best a nomi-

nal scene spectrum. In a laboratory setting, the light source spectrum can also be included.

Since the spectral scaling in the system OTF (Equation 3.15) is uniform with respect

to ξ and η, the integration over the bandpass has the effect of radially averaging the OTF.

This effect is illustrated in Figure 5.3. As can be seen in the figure, the spectral averaging

has the effect of “filling in” the gaps between peaks. However, in the presence of wavefront

error, it also has the effect of spreading out the holes in the OTF. These extended valleys

in the MTF contribute to artifacting, especially if not accounted for in the post-processing

filter. [Block, 2005]

This chapter will describe an experiment to validate the OTF predictions of the model

described in Chapter 4. The laboratory setup will be described, with detailed descriptions

of each component. The system’s MTF will be directly measured and compared to the

model predictions. Post-processing artifacts will also be observed, but in-depth discussion

can be found in Chapter 6.
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Figure 5.3: An example of a spectrally-averaged MTF for a Golay-6 sparse aperture. The
spectral weighting function is the product of tungsten source spectrum with an IR-reject
filter and a silicon CCD quantum efficiency.

5.2 Laboratory System

Integrating Sphere

Target

Collimator SLR Lens

Target Optics

Detector

Mask

Figure 5.4: Schematic of laboratory validation study optical setup.

Given the modeling approach described in Chapter 4, the purpose of this research is to

validate the predicted results in a laboratory setting. This presents the challenge of con-

structing a sparse aperture system. This task has been attempted before, namely by

[Chung et al., 2002] and [Zhou et al., 2009]. Chung et. al. took the approach of a direct

construction, however, the cost was hundreds of thousands of dollars, putting it out of
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the budget for this research. Zhou et. al. took the approach of a 4f optical system with a

sparse aperture mask. This research draws more heavily from the latter approach, how-

ever, in an attempt to perform broadband experiments and introduce wavefront error into

the system, the design will be modified slightly. A schematic of the design is given in

Figure 5.4.

Each component of the system will be described in the following sections. The key

insight in this design, however, is that the mask must be the aperture stop of the system.

As such, it will dominate the MTF due to diffraction.

5.2.1 Integrating Sphere

The integrating sphere used in this system functions as the light source. Integrating

spheres have the desirable property of providing uniform illumination, which will make

modeling the source-object interactions easy, especially for binary targets, such as edge

targets. The sphere, pictured in Figure 5.5, is a calibrated sphere from Optonics Lab-

oratories. The calibration is unfortunately out-of-date. For the model validation study,

however, the calibration is not necessary. Simply characterizing the current spectral out-

put from the sphere will be sufficient for this study.
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Figure 5.5: Integrating sphere from Optonics Laboratories

As has been established in previous chapters, the spectral dimension is very important

to modeling sparse aperture system performance. As such, it was important to characterize

the spectral output of the source used in laboratory experiments. To do this, an ASD Inc.

spectrometer was used. A 3◦ field-of-view optic was attached to the instrument’s fiberoptic

and positioned at the exit pupil of the integrating sphere. One hundred samples were taken

and averaged to give the radiance spectra of the light source. When this measurement

was performed, the light source was being driven at a current of 5.787 Amps. This is

important, as the color temperature of the light output by the sphere varies with current.

The aperture setting, on the other hand, is not important as that essentially acts as a

scalar multiplier on the shape of the spectrum. The spectrum is plotted in Figure 5.6.
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Figure 5.6: Radiance spectrum output from the integrating sphere when driven at 5.787
Amps.

As can be seen from the plot, the peak of the spectral curve is in the visible range,

precisely at 679 nanometers. An infrared-reject filter is present in the integrating sphere,

which explains why this spectrum is not a closer approximation of a blackbody emission

spectrum. This spectrum was also measured with an OceanOptics spectrometer, which

produced an identical measurement. The spectral output of the light source will be used

heavily in model validation.

5.2.2 Target / Collimator

Since this study focuses on the remote sensing applications of sparse aperture systems,

the object plane will be nearly at infinity. To simulate this in a laboratory environment,

a collimator needs to be used. The collimator used in this research is an LC-06 from

Electro Optical Industries (EOI). This collimator uses an off-axis parabola for its primary

mirror. As such, the optical path is free of any obstruction and on-axis aberrations are

very low. Wavefront quality is high along the optical axis at 1/8th of a wavelength at 633

nanometers.
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Figure 5.7: Target plane of the EOI LC-06 collimator

The target plane of the collimator is shown in Figure 5.7. As can be seen, an edge tar-

get is installed. The target can be freely rotated to any orientation. This edge target has

been slightly inclined relative to the axis of the imaging system, so that the slanted-edge

MTF measurement technique may be used. The collimator has a multi-position target

wheel, so additional targets may be inserted. Targets must fit inside the 2-inch diameter

circular holder in the target wheel. While the edge target is sufficient for MTF validation,

alternative targets will be needed for other experiments.

Once the target has been placed into the target wheel, it is collimated by the internal

optics of the collimator. For the LC-06 model, the effective focal length of the system is

30 inches. The clear aperture of the system is 6 inches, giving an F-number of 5. Another

view of the collimator is given in Figure 5.8.
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Figure 5.8: EOI LC-06 collimator exit aperture (cover on)

5.2.3 Mask

The mask is the key element of the system and is responsible for simulating the sparse

aperture diffraction effect. For this experiment, a mask with the Golay-6 aperture pat-

tern and an 18% fill factor was used. This mask was produced by Applied Image Inc.

as a chrome-on-glass print. The accuracy of the print was quoted at 0.1-0.25 microns,

well below the size of the printed sub-apertures. While the entire system may bear little

resemblance to a sparse aperture telescope, if care is taken to ensure that the mask is

the aperture stop of the system, then the diffraction-limited OTFs of the systems will be

equivalent. The encircled diameter of the sub-apertures on the mask is 3.4 millimeters.

This size was chosen with knowledge of the camera system and resulted in the mask being

the aperture stop of the system, with a system f/# of 24. Two photographs of the labo-

ratory setup and the sparse aperture mask are given in Figure 5.9. As will be shown later,

this configuration is well-suited for the validation of aberrated MTF predictions. Through

the examples in previous chapters, it has been shown that the MTF of a sparse aper-
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Figure 5.9: Golay-6 sparse aperture mask mounted on the back of a rotation stage.

ture system can be highly angularly-dependent. Since the slant-edge MTF technique only

produces a 1-dimensional slice of the MTF, simply taking one measurement will not be

sufficient. While the edge target can rotate in the target wheel, the efficiency of the slant

edge method is at a maximum when the edge is oriented slightly off-axis. Thus, keeping

the edge at a high-efficiency position, while rotating the mask, is a more desirable solution

to sweeping out the 2D MTF with a number of 1D radial profiles. As such, the aperture

mask was mounted onto the back of a rotational stage, which had 2 degree markings.

5.2.4 Imaging Camera

Once the sparse aperture mask has degraded the input radiance field, an image is formed

using a panchromatic imaging system. An Albinar 80-200mm zoom lens is used for focus-

ing. In all experiments in this research, this lens is set at an 80mm focal length. Once
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focused, this signal is imaged by an SBIG 8300M astronomical CCD detector. Both of

these components are shown in Figure 5.10.

(a) Albinar 80-200mm zoom lens (b) SBIG STF-8300M imaging sensor

Figure 5.10: Components of the imaging portion of the laboratory sparse aperture system

Table 5.1: Relevant detector specifications for SBIG STF-8300M detector

Parameter Description Value

p Spacing between detector pixels 5.4 [µm]
T Operating temperature of the detector 258.15 [K]
Td Dark current doubling temperature 5.8 [K]
Tref Dark current reference temperature 258.15 [K]
σdc,ref Dark current reference RMS 0.02 [e−/pix/s]
Nfull-well Full-well capacity of each pixel 25500 [e−]
n Bit depth of the analog-to-digital converter 16
SADC “Effective” gain factor of the detector 0.37 [e− / count]
σr Read noise RMS 9.3 [e−]

As has been mentioned in previous chapters, sparse aperture imaging is notorious for

having signal-to-noise concerns. As such, it is critical that the imaging detector has good

noise performance. The relevant scalar detector parameters are given in Table 5.1. The

quantum efficiency is plotted in Figure 5.11. In all experiments run in this research, the

light source was adjusted such that integration time could be set to less than half a second.

As such, dark current was not a concern and system noise came from read noise and photon

noise.
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Figure 5.11: SBIG STF-8300M quantum efficiency spectrum

5.3 Methodology

Given the laboratory setup just described, the goal of this experiment is to validate the

OTF predictions of the sparse aperture model. In practice, we will approximate the OTF

with its complex magnitude, the MTF. In order to obtain MTF measurements from the

laboratory system, the slanted edge method, introduced by [Burns, 2000], will be used.

As input to this method, a region of interest of roughly 100 pixels was extracted around

the center of the edge to perform the analysis. This was done for a number of reasons.

Due to the off-axis parabolic design of the collimator, the area of high image quality is

limited to a small field angle. In addition, if analysis is confined to the on-axis region, the

only lens aberrations of concern are defocus and spherical aberration.

Since post-processing artifacts only arise in the presence of wavefront error, it was also

necessary to validate the model’s predictions under this error. Due the construction of the

system, each individual sub-aperture cannot have independent aberrations. This is unfor-

tunate, as introducing a first-order aberration, such as piston, to only one sub-aperture,

results in clear MTF effects that are confined to a subset of the MTF peaks. However,

due to the small size of the sub apertures, introducing these errors with additional optics

was not possible. As was previously mentioned, by confining analysis to the center of the

image, the only higher-order aberrations of concern are defocus and spherical aberration
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(a) 0 waves defocus (b) 0.5 waves defocus (c) 1.1 waves defocus

Figure 5.12: Effects of defocus on theoretical Golay-6 MTF. All images are contrast-
stretched. Defocus does not effect peak location, but does increase the width of the gaps
between peaks.

from the imaging lens. In the range around the mask’s f/# of 24, no spherical aberration

was detectable, so defocus could be used to introduce controllable wavefront error into the

system. In this experiment, two levels of defocus, 0.5 and 1.1 waves, were measured and

compared to the model. Since the falloff slope of the central peak of the MTF increases

steadily with defocus and can be measured with a very high accuracy, this was used to

determine the amount of defocus in the system.

In order to determine the validity of the model, some comparison must be drawn between

the measured and predicted MTF results. Root-mean squared (RMS) error in frequency

space is the simplest metric and gives compact representation of the quality of the fit be-

tween the model and measurement. However, it would also be desirable to put the results

in terms of image quality. The General Image Quality Equation (GIQE) is used to predict

image quality on the National Imagery Interpretability Rating Scale (NIIRS) as a function

of system parameters [Leachtenauer et al., 1997]. Utilizing GIQE when predicting sparse

aperture image quality is problematic, as the equation was not regressed on sparse aperture

images, however, it does give some insight into the relative importance of edge response

with respect to ground sample distance and signal-to-noise ratio. Additionally, the arti-

facts predicted by the model due to inverse filtering cannot be characterized by a simple

edge overshoot term. However, a simple analysis can be performed by inverse filtering on
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the measured images with filters derived from both the modeled and measured OTFs to

determine if any difference is noticeable. Post-filtered relative edge response (RER) can

be measured on both images and a rough estimate of the change in NIIRS between the

modeled and measured systems can be calculated, giving a perceptual difference between

the modeled and laboratory systems.

5.4 Control Experiment

Integrating Sphere

Target

Collimator SLR Lens

Target Optics

Detector

Circular 
Aperture

Figure 5.13: Setup for a control experiment to determine the non-modeled MTF of the
laboratory system

Since the slanted-edge method was chosen for this experiment, the measured MTFs

will be system MTFs. That is, they will include the image degradation from every step

of the imaging process. As such, a control experiment is required to isolate the effects of

the sparse aperture. It is common knowledge that the monochromatic MTF of a circular

aperture is,

MTF

(
ξ

ξcutoff

)
=

2

π


cos−1

(
ξ

ξcutoff

)
−
(

ξ

ξcutoff

)√
1−

(
ξ

ξcutoff

)2

 (5.3)

Over a bandpass, the cutoff frequency varies linearly with wavelength and Equation 5.2 is

used to perform spectral averaging. Using this knowledge, a circular aperture was place

into the system in lieu of the sparse aperture mask and MTF was measured using the
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same slanted-edge procedure. The MTF measured here would then be

MTFctrl,meas = MTFcoll ·MTFcir ·MTFlens ·MTFdet (5.4)

If this system is modeled as described in Chapter 4, the predicted MTF will be

MTFctrl,mod = MTFcir ·MTFdet (5.5)

Dividing these two results will give the non-modeled MTF of the system

MTFnonmod =
MTFctrl,meas

MTFctrl,mod
= MTFcoll ·MTFlens (5.6)

5.4.1 Results
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(a) Measured and modeled MTFs for the control experi-
ment.
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(b) Non-modeled MTF with a linear fit

Figure 5.14: Results of the control experiment to determine the non-modeled MTF of the
laboratory system

In order to obtain these results, ten images were taken through the circular aperture.

The same region of interest was taken from each image and the MTF was computed

independently. The MTF measurements were then averaged to obtain the measured MTF.

The measured and modeled MTFs are overlaid in Figure 5.14. The spread in this plot was

determined by the minimum and maximum values seen in the ten trials. Measurement

noise became significant after 0.3 cycles per pixel. As such, the expression for the non-

modeled MTF will only be fit on the data under 0.3 cycles per pixel. Since the sparse
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aperture system’s cutoff frequency is around 0.3 cycles per pixel, this noisy region of

frequency space is irrelevant. Since there is little curvature in the data, and noise is

present, a simple linear model was fit to the data, shown in Figure 5.14. The non-modeled

MTF was approximated as

MTFnonmod(ξ) = 1− 0.911 · ξ (5.7)

where ξ is spatial frequency in units of cycles per pixel.

5.4.2 Simulated Experiment

Construct ideal 
edge target

Degrade 10 times 
with matching 
noise levels

Perform slant-
edge on simulated 

images

Reconstruct 2D 
MTF from 2 degree 

profiles

Compare to 
theoretical MTF

Figure 5.15: Algorithm for simulating the laboratory OTF validation experiment

Given the result in the previous section, the non-modeled MTF can be integrated into

the model. Doing this would, in fact, make it a modeled MTF, however, it will continue

to be termed the non-modeled MTF for consistency’s sake. After integration, the entire

laboratory experiment can be simulated in the sparse aperture model to see the expected

results before performing the experiment in a laboratory. The modeling process is illus-

trated in Figure 5.15.

As can be seen in the figure, the modeling procedure closely mirrors the actual labora-

tory experiments, with the exception that image degradation is done digitally instead of

optically. The effects of noise, non-modeled MTF and MTF measurements/reconstruction

procedures should all be present in the simulated 2D MTF simulated measurement. The
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(a) Theoretical MTF (b) Simulated measured MTF

Figure 5.16: Results of simulated experiment for a Golay-6 aperture with no additional
wavefront error.

results of the simulated experiment for an un-aberrated system are given in Figure 5.16.

As can be seen, it is reasonable to expect to see all of the secondary peaks in this case.

The tails on the outer peaks due to spectral averaging are unlikely to be detected due to

the presence of noise, non-modeled MTF and the effects of the slanted-edge MTF tech-

nique. However, the shape, spacing and magnitude of the secondary peaks all appear to

be reasonable goals for the laboratory experiment.

Figure 5.16 (b) has a noticeable disk around the simulated measured MTF. This is

due to image noise and will appear on all MTF reconstruction derived from measured

data. Image noise will propagate through the slanted-edge MTF measurement technique

and manifest in noise in the reconstructed MTFs. While this noise is present at every

frequency, it is most visible when the MTF is zero or close to zero, which occurs at the

higher frequencies. This noise floor is at most 1% MTF is is only visible due to the

contrast-stretching present in the figures.

As wavefront error is introduced into the system, the MTF of the system degrades. This

manifests in both decreased magnitude of secondary peaks, as well as exaggerated valleys

between peaks. As was shown in Figure 5.12, at 0.5 waves of defocus, there are exaggerated
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(a) Theoretical MTF (b) Simulated measured MTF

Figure 5.17: Results of simulated experiment for a Golay-6 aperture with 0.5 waves of
defocus wavefront error.

valleys that spiral out from the central peak. In the case of 1.1 waves of defocus, there

are exaggerated valleys between the peaks of the first ring, as well as a “star pattern” of

valleys in the outer ring of peaks. The results of the simulated experiment for the case of

0.5 waves of defocus are shown in Figure 5.17. The spiral pattern can still clearly be seen;

thus, it is reasonable to expect it to be observed in the actual experiment. In the case of

1.1 waves of defocus, shown in Figure 5.18, the valleys in the first ring of peaks are clearly

visible. While the “star pattern” is visible the peaks outside of the pattern are starting

to fade into the noise. If there is more noise present in the actual experiment (as it turns

out there was), the “star-pattern” will be less visible in the measured data.
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(a) Theoretical MTF (b) Simulated measured MTF

Figure 5.18: Results of simulated experiment for a Golay-6 aperture with 1.1 waves of
defocus wavefront error.

5.5 Results

5.5.1 Un-aberrated System

The primary set of results for this study is the comparison of model MTF predictions to

measured MTF as a function of the angle of the aperture. The model prediction for this

experiment is shown in Figure 5.12 (a) and will be plotted with the measurements using

a dashed line. In order to produce a model prediction, the f/# of the system is a key

parameter. This is determined by the combination of the focal length of the lens and the

encircled diameter of the Golay-6 pattern on the mask. In this experiment, the f/# of

the system is 24. MTF predictions were calculated using Equation 5.2 over the bandpass

shown in Figure 5.3 with no wavefront error. In addition, the nonmodeled MTF found in

the control experiment is included into the model prediction.

In order to obtain the experimental results, the mask was rotated over a 60◦ region in 2◦

increments. Since the Golay-6 aperture has six-fold rotational symmetry, this is sufficient

to capture all of the distinct radial profiles of the MTF. At each orientation, 10 images

were acquired with a 0.25 second exposure. This exposure was determined experimentally

to ensure the bright region of the image had digital counts approximately in the center of

the detector’s dynamic range, so that non-linearity issues would not be a concern. The
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(a) Slant Edge Region Example (φ = 0◦)
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(b) φ = 48◦
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(c) φ = 43◦
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(d) φ = 58◦

Figure 5.19: Sample results for MTF validation study of an un-aberrated Golay-6 aperture

detector was set to cool to −15◦C, although depending on room temperature the detector

temperature ranged from −7◦C to −15◦C.

Due to the non-isotropic nature of sparse aperture OTFs, an alignment between model

predictions and measured MTFs is necessary to perform any quantitative analyses. For-

tunately, this is a simple task, due to the peaks that arise in the MTFs. By utilizing the

angular markings on the rotation stage, it is known that measured MTF profiles are sepa-

rated by approximately 2◦. However, due to the finite angular extent of the markings and

manual error, error in the spacing of the samples was introduced. A two-step automatic

procedure is used to perform the alignment. The first step holds the spacing at a constant

2◦ and varies the global offset between the model and measurements. This accounts for

the orientation at which the mask was mounted on the rotation stage. Secondly, each

profile is allowed to vary over a small region around the initial alignment to minimize
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RMS error. This accounts for error in the angular position of each measurement. Since

these measurements were performed in the dark, slight errors in precise alignment may

have occurred.

(a) Change in MTF due to a decrease in NIR
transmission (RMS error is 0.29% MTF).
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(b) Example of a potential error (decrease in NIR transmission)
in the spectral weighting function.

Figure 5.20: Errors in the spectral weighting function change the positions and widths of
peaks.

Results of the MTF validation study for an un-aberrated system are given in Figure

5.19. As can be seen, the measured and predicted MTFs match nearly exactly. RMS error

will be given in units of MTF percentage, which is simply the MTF error multiplied by

100. The average RMS error between the measured and theoretical MTF was 1.07% over

all angles, with a range of 0.67% to 1.35%. The error that does exist can be explained

by a few factors. The first is imperfect knowledge of the spectral weighting function for

calculation of MTF predictions. The spectral weighting function did not include the trans-

mission function of the collimator optics, sparse aperture mask or lens optics. Since the

spectral weighting function determines the radial blurring of the OTF, error in this func-

tion could explain any small discrepancy in the widths of the secondary peaks between

the measured and theoretical MTFs. For example, Figure 5.20 shows an example where

the NIR portion of the illumination was attenuated. In this case, peaks moved radially

outward and decreased in width, leading to a change of 0.29% RMS difference.
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While spectral weighting can account for error in the width and positioning of peaks,

a portion of the error comes from image noise. Image noise propagates through the MTF

measurement procedure and contributes to the error at every frequency. The measured

MTFs in Figure 5.19 are the result of an average of 10 measurements and still have

noticeable noise. The effects of image noise can clearly be seen in the region beyond 0.3

cycles per pixel, which is the cutoff frequency of the optics OTF. The measured MTFs are

non-zero in this region due to image noise. Lastly, the precise f/# of the system is not

known due to uncertainty in both focal length and diameter. A zoom lens is used in the

system and while the 80mm focal length is nominally on one of the extremes, a geometric

calibration would be required to determine the precise focal length. The effect of this error

is similar to that of the spectral weighting function, in that it changes the radial position

and extent of the MTF peaks.
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(a) Model Predictions (φ = 0◦)
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(b) Measured Data (φ = 0◦)

Figure 5.21: Sample results for MTF validation study of the Golay-6 aperture with various
levels of defocus

5.5.2 Aberrated System

The modeled MTFs for a defocused system were shown in Figure 5.12 (b) and (c). The

amount of defocus refers to the peak value of the wavefront error, which, in the case of

defocus, occurs at the outer border of the aperture. As can be seen in Figure 5.21, the

slope of the first peak in the MTF increases with worsening defocus error. In practice, this

slope can be measured with high precision and exhibited no observable variance over the

10 measurements that were taken at each orientation. As such, this feature in the MTF
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was used to determine the amount of defocus error present in the measurement.

Table 5.2: RMS errors between modeled and observed MTFs (units MTF%)

Angle (modulo 60◦) 0 Waves Defocus 0.5 Waves Defocus 1.1 Waves Defocus

0◦ 0.86% 0.89% 0.88%
5◦ 0.67% 0.73% 0.55%
10◦ 0.97% 0.71% 0.58%
15◦ 0.92% 0.68% 0.55%
20◦ 0.99% 0.73% 0.65%
25◦ 0.97% 0.73% 0.61%
30◦ 1.13% 0.68% 0.71%
35◦ 1.22% 0.72% 0.63%
40◦ 1.22% 0.96% 0.48%
45◦ 1.17% 0.98% 0.69%
50◦ 1.25% 0.84% 0.71%
55◦ 1.35% 0.90% 0.82%

As can be seen in the figure, the results again match the behavior of the model very

closely. For the data collected at 0.5 waves of defocus, the average RMS error across all

angles was 0.79% MTF with a range of 0.68% to 0.98% MTF. For the data set collected

at 1.1 waves of defocus, the average RMS error across all angles was 0.63%, with a range

of 0.48% to 0.88% MTF. All sources of error that were discussed in the previous section

also contribute to the error in this experiment, with image noise being a bigger issue on

the 1.1 wave data set, due to the decreased magnitude of the secondary MTF peaks. The

complete error results are given in Table 5.2. It is interesting that error decreases with

increasing defocus. While this may be unintuitive, the overall magnitude of the MTF

decreases with defocus, so, if error is truly only arising from the factors listed, such as

error in the spectral weighting and f/#, the magnitude of the error should decrease with

the magnitude of the MTF. The only other observation that is apparent from the error

data is that error was consistently high in the 35◦ to 45◦ range. This is to be expected, as

those profile are in a range between peaks in the MTF, thus resulting in little MTF signal

to be measured.

One final potential source of error is misalignment between the collimator and imaging
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(a) Change in 0.5 wave defocus MTF from
adding 0.1 waves of coma
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(b) RMS change in the sparse aperture MTF as a result of adding
various levels of coma

Figure 5.22: Misalignment of the collimator and imaging system will result in coma, which
can contribute to the error between the measured and modeled MTF

system, which can introduce coma into the measurement area. Confining analysis to the

center of the image was supposed to mitigate coma from the imaging lens, however, coma

from the collimator’s parabolic primary mirror will still be present. Figure 5.22 shows the

result of a simple sensitivity analysis of adding coma into the modeled MTF for the case

of 0.5 waves of defocus. If an eighth of a wave of coma were introduced into the system,

which is the quoted wavefront error of the collimator, then an RMS difference of 0.25%

MTF would be introduced. This would explain a portion of the error seen in Table 5.2,

along with spectral weighting error, non-modeled MTF and measurement noise.

5.5.3 Inverse Filtering and RER Comparisons

In order to put the experimental results into image quality terms, a brief study was done

to determine the effect of the difference between model and measured MTFs on the rel-

ative edge response (RER). In the GIQE 4, the RER is measured after post-processing

and thus, inverse filtering needs to be applied to the images. Given the images captured

through the laboratory system, post-processing filters derived from both the measured

MTF and predicted OTF were used to restore the image. RER was then measured on the

restored images and the values were compared. An example result is shown in Figure 5.23.
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(a) Restored with Modeled OTF (b) Restored with Measured OTF
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Figure 5.23: Results of the RER study for an unaberrated system (φ = 0◦, γ = 0.01)

In order to design a post-processing filter for the measured MTFs using Equation 5.1, a

representation of the system’s two-dimensional OTF is required (H∗(ξ, η) and |H(ξ, η)|2).

However, in this situation, only one-dimensional radial profiles of the MTF, |H(ξ, η)|, are

available. As such, bilinear interpolation was used in polar frequency space to fill out the

two-dimensional MTF, |H(ρ, φ)|, and was then converted back to ξ and η. Since no infor-

mation about the phase transfer function can be measured using the slant edge method,

the MTF was simply assumed to be the real part of the OTF and the imaginary part was

set to zero.
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As can be seen from Figure 5.23, the restored images and edge spread functions (ESFs)

look similar, exhibiting the same ringing artifacts, with the modeled restoration filter

exhibiting slightly more edge overshoot. For the unaberrated system, the average RER

over all angles was 0.240 for the modeled OTF restoration and 0.232 for the measured

MTF restoration. This equates to a ∆NIIRS of 0.04, well below the ”just-noticeable”

difference threshold of 0.1 [Fiete, 1999]. The average percent error between the two RER

measurements was 3.33%, with the modeled always having the greater RER, although this

was not a general trend and did not occur in the two aberrated data sets. As a tradeoff for

the higher RER, there was also more artifacting for the modeled OTF restoration. This is

in the form of a ringing artifact instead of a simple edge overshoot, so it does not have a

method by which to include it in the ∆NIIRS calculation. For the 0.5 wave defocus data,

the average modeled OTF restoration RER was 0.188 and the average measured MTF

restoration RER was 0.185, a ∆NIIRS of 0.014. The average percent error over all angles

was 1.20%. Finally, for the 1.1 wave defocus data, the average modeled OTF restoration

RER was 0.169 and the average measured MTF restoration RER was 0.164, a ∆NIIRS of

0.04. The average percent error over all angles was 3.28%. Since the inverse filter relies

on the OTF predictions, all error sources from the previous two experiments affect these

results. In addition, the lack of phase transfer function knowledge and interpolation error

will contribute to the error. Interpolation error is most noticeable toward the periphery

of the measured MTF, where samples are less dense and there is noticeable noise present.

5.6 Conclusions

In this chapter, a validation study was presented for the sparse aperture image quality

model set forward in Chapter 4. An optical design was presented that utilized a sparse

aperture mask and an SLR lens to simulate a spare aperture telescope. The lens focus

adjustment was then used to introduced controllable wavefront error into the system. A

summary of the results is shown in Figure 5.24, which shows the observed results compared

to the results of a simulated experiment using the sparse aperture model. Before looking at

numerical errors, a number of conclusions can be drawn from a simple, visual comparison.

Firstly, the distribution of secondary peaks matches between the model and measurement,

indicating that the MTF calculation through autocorrelation is being correctly performed.

Secondly, the shape and width of the secondary peaks matches, indicating that the spec-
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Figure 5.24: Two-dimensional MTF reconstructions from the simulated experiment (top)
and the actual experiment (bottom) for 0 waves (left), 0.5 waves (center) and 1.1 waves
(right) of defocus.

tral modeling is being performed correctly. Lastly, matching effects of wavefront error can

be seen in the measurements. The spiral pattern in the 0.5 wave defocus data set and

the central valleys in the 1.1 wave defocus data set are both clearly visible. The “star

pattern” in the 1.1 wave defocus data set is visible, although the signal-to-noise ratio

towards the outer peaks is lower in the measurement than in the simulated experiment.

These matching patterns indicate that wavefront error is being properly accounted for in

the OTF calculations. In Figure 5.24, it is also clear that the measured MTFs are slightly

lower in magnitude than those in the simulated experiment, indicating that there was

some additional non-modeled MTF that was not accounted for. In addition, the noise in

the measured data had slightly more frequency structure than the noise in the simulated

experiment. However, these sources of error are minor and do not affect the conclusions

of the validation study.
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The visual comparison of the measured data with the model predictions gave a number

of useful conclusions. To back these conclusions up numerically, a number of quantitative

results were also produced. Without any wavefront error in the system, the RMS error

between the measured MTF and the theoretical MTF was approximately 1% MTF. When

0.5 waves of defocus was introduced, the RMS error went down to 0.79% MTF and when

1.1 waves of defocus was introduced, the error went down to 0.63% MTF. Given that peaks

in the MTF of the Golay are generally in the neighborhood of 10% MTF, these error val-

ues are relatively low. Additionally, post-processing filters derived from the modeled OTF

and measured MTF were used to restore the measured images. The model’s prediction

of ringing artifacts were observed in real world data and the relative edge response mea-

surements matched closely. At all levels of defocus, the ∆NIIRS between measured and

modeled restored images due to RER was less than 0.04, where a 0.1 ∆NIIRS is considered

a “just-noticeable” difference [Fiete, 1999].

While this validation study allowed for a number of conclusions on the validity of the

model’s OTF predictions, there are a number of limitations. The primary limitation is

that only MTF was measured, so no conclusions about the phase transfer function (PTF)

can be made. Also, due to the design of the laboratory system, the only controllable

wavefront error was defocus. In practice, sparse aperture systems will have sub-aperture

aberrations that are independent of one another. A laboratory design that facilitates

this sort of wavefront error would be desirable. In addition, while ringing artifacts were

observed and did match model predictions, they were relatively minor on such a simple

edge target. As such, additional studies on more complicated targets were also performed

and will be described later.



Chapter 6

Artifact Validation

6.1 Introduction

(a) A simulated restored image with a circular aper-
ture.

-1

-0.5

 0

 0.5

 1

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Ed
ge

 R
es

po
ns

e

Spatial Coordinate

Raw Edge
Restored Edge

(b) Effects of post-processing on edges in imagery taken with
a circular aperture

Figure 6.1: Post-processing on traditional imagery makes imagery sharper and only results
in simple edge overshoot artifacts.

Image artifacts, which arise as a result of post-processing, are a key factor to under-

standing image quality. For systems with monolithic aperture functions, these artifacts

manifest as edge overshoots, as plotted in Figure 6.1 (b). However, under reasonable levels

of restoration, these artifacts only have a small effect on image quality, as Figure 6.1 (a)

shows. In general, imagery remains smooth and the effect is only noticeable close to edges.

81
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Once the aperture shape becomes more complicated, these image artifacts become

more complex and a larger factor in image quality. As was plotted in Figure 5.23 (c),

when dealing with sparse aperture imagery, these artifacts can manifest as secondary

peaks after the initial overshoot, resulting in false signals in the image. This has a larger

negative effect on image quality than the simple edge overshoot artifact. If we consider

the General Image Quality Equation,

NIIRS = 10.251− a · log10(GSD) + b · log10(RER) + c ·H − d · G

SNR
(6.1)

there was a means by which to integrate artifacts into the image quality of traditional

imagery [Leachtenauer et al., 1997]. This is done using the H term, which is the edge

overshoot and the G term, which is the gain of the post-processing filter. For conven-

tional imagery, it was found that these terms correlated linearly with the NIIRS rating,

although the magnitude of their coefficients was much less than the terms on GSD and

RER. However, for systems with non-conventional apertures, it is unclear how to quantify

these artifacts, what correlation they have with image quality and how important they

are relative to other image quality terms.

While the top-level goal of characterizing the effects of generic artifacts on image

quality is beyond the scope of this research, there are some prerequisite challenges that

need to be solved before the image quality challenges can be addressed. Since constructing

and launching a sparse aperture telescope would currently be an extremely challenging and

expensive venture, gaining an understanding of image quality tradeoffs with simulated

data would be desirable. Much of the previous work mentioned in Chapter 4, particularly

[Block, 2005], has predicted the existence of artifacts in restored imagery. This research

will take the model predictions of artifacts and attempt to reproduce them in real data

collected with the sparse aperture system described in Chapter 5. However, it will be left

to future investigators to address the impact of these artifacts on image quality.

6.1.1 Causes of Artifacts

Since artifacts only arise in imagery that has been restored, they must occur due to

imperfections in the restoration process. As has been described in Chapter 4, image
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restoration is performed with a Wiener filter of the form,

F̂ (ξ, η) = W (ξ, η) ·G(ξ, η) =
H∗(ξ, η)

|H(ξ, η)|2 + γ · |S(ξ, η)|2 ·G(ξ, η) (6.2)

In this equation, G(ξ, η) is the measured raw image spectrum (with noise), γ is a user-set

smoothness parameter and S(ξ, η) is a deterministic spectrum of a smoothness operator.

While noise in the image limits the effectiveness of restoration, the only term in which error

can arise is H(ξ, η), which is the OTF of the imaging system. The OTF of the system varies

spectrally, however, due to the spectral integration of the system, restoration cannot be

performed at each individual wavelength and must instead be performed on the integrated

signal. In order to account for this limitation, the “effective” OTF of the system is used,

which is computed as

Heff(ξ, η) =

∞∫
0

SW (λ) ·H(ξ, η, λ) dλ

∞∫
0

SW (λ) dλ

(6.3)

This equation gives insight into one potential cause of error, which will result in an increase

in artifacts. SW (λ) is the spectral weighting function of imaging system. This is the

product of the spectrum of the incoming radiance, which spatially varies, the transmission

spectrum of the optics and the responsivity of the detector in a given band. Error or lack

of knowledge in any of these spectra will result in error in the spectral weighting function.

Performing image simulations can show that errors in the spectral weighting functions

should result in an increase in artifacts. This is shown in Figure 6.2. As can be seen in

the figure, not accounting for the illumination spectrum of the scene will still allow for

sharp edges in the resulting images, but at the cost of some contrast and artifacts. Using

a gray-world assumption over the bandpass will result in an ineffective restoration, as the

resulting edges will not be sharp and will exhibit large amounts of overshoot. For realistic

imagery, the illumination spectrum will vary over the field of view. This leaves two options

for realistic systems: accept these artifacts or somehow obtain an approximation of the

incoming spectral radiance, such as with a coaxial low-resolution hyperspectral system.

However, the spectral weighting function is not the only term that can introduce error

into the effective OTF. Error can also arise in the estimate of the monochromatic OTF,
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(a) Image restored with true spectral
weighting function

(b) Image restored with detector QE
spectrum, but not illumination spec-
trum

(c) Image restored with a gray-
world assumption. This image had
large overshoots and required con-
trast mapping.

Figure 6.2: Artifacts can arise from incorrect or incomplete knowledge of the system’s
spectral weighting function.

which was computed as the autocorrelation of the pupil function,

H

[
ξ, η; z1 =

(
1

f
− 1

z0

)−1
]

=
1

k
· p[−λz1ξ,−λz1η] F p[−λz1ξ,−λz1η] (6.4)

Thus, any error must arise from error in the estimate of the pupil function, which is given

as,

p[x, y, x′, y′] = |p[x, y, x′, y′]| · e2πiW (x,y,x′,y′) (6.5)

Any error in the pupil function must come either from error in the magnitude or phase

of Equation 6.5. Error in the magnitude would correspond to construction error in the

telescope, such as mispositioned subapertures. Error in the phase would correspond to

imperfect wavefront error estimates, which is likely to be the more common error. Just

as with the spectral weighting function, image simulations will also verify this intuition.

Figure 6.3 shows a simple simulation result. The image simulation was performed under

-0.4 peak waves of coma and restoration was performed with and without this coma

incorporated into the restoration filter. As can clearly be seen, wavefront error that

has not been compensated for in the restoration filter should be another key source of
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(a) Image restored with knowledge of the -0.4 waves of
coma present in the raw image

(b) Image restored without any knowledge of wavefront
error

Figure 6.3: Artifacts can arise from incorrect or incomplete knowledge of the system’s
wavefront error.

artifacting. Additionally, for aberrations such as coma, the restoration filter must be

varied over the image plane to compensate for the spatially-changing aberration. The

effects of both wavefront error and spectral weighting will be examined in this chapter.

6.2 Laboratory System

As in Chapter 5, a small-scale sparse aperture system in the laboratory will be used to

match artifact predictions. In the slanted-edge experiments, post-processing artifacts were

observed in the data, however, their magnitude was small and it would be desirable to

see artifact manifestation in more realistic imaging scenarios. As such, a new target was

needed for the laboratory collimator. A United States Air Force (USAF) 1951 tri-bar

target was selected for this purpose. This is a traditional resolution target that is used

in the remote sensing community. It was chosen due to the repeated spatial patterns, as

well as the ability to automatically detect and analyze the imagery with image processing

techniques.
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Figure 6.4: Digital representation of the USAF-1951 tri-bar target used in artifact valida-
tion experiments.

The target was fabricated by Applied Image Inc. as a chrome-on-glass print. A

grayscale representation of the target is given in Figure 6.4. The tri-bars are transmissive

regions, so the detected images with have a dark background with a bright foreground.

The target was illuminated by the same integrating sphere as was used in Chapter 5. The

illumination spectrum was plotted in Figure 5.6.

6.3 Methodology

The goal of this study is to validate the artifact predictions of the model. As such,

procedures need to be designed to compare artifacts in measured and modeled data. This

involves creating the same imaging scenario in the model and in the laboratory, as well

as matching restoration procedures. Once these conditions have been met, qualitative

observations and comparisons may be made about the data. Then, measurements must

be performed on the data to extract quantitative information about the artifacts. Finally,

some quantitative comparisons must be made between the measured and modeled data.
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6.3.1 Model Configuration

In Section 6.1.1, it was shown that artifacts arise as a result of errors in the restoration fil-

ter. Thus, in order to observe artifacts in larger magnitudes than those on the slanted-edge

data, the restoration filter must be slightly mismatched from the true imaging scenario.

This is actually unavoidable, as there is wavefront error inherent in the laboratory setup.

These errors include coma from the parabolic primary mirror of the collimator, defocus

from the target potentially not being precisely located at the collimation plane, as well as

the non-modeled MTF of the back-end imaging system. Unfortunately, it was not possible

to characterize the wavefront error of the collimator due to lack of the necessary equip-

ment. Seeing as the collimator and camera system were not precisely aligned, it would also

be impractical to compensate for coma, as it would be difficult to determine the location

in the image of the optical axis of the collimator.

Given the sources of wavefront error just described, an imaging scenario was designed

to produce the modeled imagery. Both defocus and coma were added to the Golay-6 MTF.

These aberrations were centered on the center of the image, with the acknowledgement

that this is likely not exactly true due to misalignment of the imaging system and the

collimator. The level of these aberrations was adjusted manually to roughly match the

levels of artifacting seen in the measured images. Restoration was performed without any

wavefront error compensation, giving rise to the necessary mismatch in the restoration

filter. To further exacerbate the artifacts for the wavefront error study, the lens was

slightly defocused. The lens was placed at optimal focus for the spectral weighting study.

6.3.2 Profile Extraction

Once images have been modeled or measured and restored, measurements must be ex-

tracted from the images. In this study, one-dimensional profiles over each tri-bar group

will be extracted. Since the pattern was slightly inclined, as shown in Figure 6.4, the edge

spread function reconstruction procedure from the slanted-edge MTF algorithm [Burns,

2000] can be used to extract profiles from the image over the tri-bar groups. If desired,

these profiles can be extracted at a higher resolution than the image’s native resolution.

The implementation of this procedure written for this research automatically selects this

resolution based on the orientation of the target and size of the input data. The majority

of profiles in this study were extracted at a resolution of 4 samples per pixel.
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In order to correctly position the profile measurements, the USAF-1951 target must

be recognized and fit to a model. The pattern exhibits a number of detectable features.

However, artifacts in the image will cause issues in detecting the bars, so a custom al-

gorithm needed to be developed, which will be described here. Typically, the first step

in a USAF-1951 recognition algorithm would be to binarize the image. However, using

a single threshold on restored sparse aperture imagery would result in the artifacts also

being classified as part of the foreground. Without a relatively clean segmentation of

background and foreground, subsequent recognition steps would not be able to function.

As such, an adaptive threshold was used to binarize the image. The neighborhood size

was set to twice the width of the largest bar in the pattern. The output of this operation

is shown in Figure 6.5.

Figure 6.5: An adaptive threshold was necessary to isolate the bars from the post-
processing artifacts.

As can be seen in the figure, the adaptive threshold can generally isolate the bars
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from the artifacts. Once isolated, a connected components analysis was performed on the

binarized image. This produces a connected component label image, as well as statistics,

most importantly the area, for each connected component. The next task is to determine

which of these connected components are the bars that compose a tri-bar group. This was

done by looking at the aspect ratio of the connected component. Since the three bars in a

group are equally spaced and the group itself is contained in a square, the aspect ratio of

each bar is 5:1. A principal components analysis was performed on the pixel locations of

each connected component analysis. The ratio of the square roots of the eigenvalues was

used as an approximation of the aspect ratio. If the aspect ratio was close to 5:1, then

the connected component was accepted as a bar. The results of this procedure are shown

in Figure 6.6. This procedure was generally successful, although it could run into issues if

artifacts were not successfully filtered out by the adaptive threshold, which did occur on

images with higher levels of artifacting.

Figure 6.6: Analyzing the aspect ratio of the connected components was a useful step in
filtering for the bars.
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Once bars in the image have been identified, they can be used to identify the orien-

tation of the target. By the design of the target, it is known that only two orientations

of bars may exist in the image and those exist orthogonal to each other. As such, the

orientation of each bar, which was already computed through the principal components

analysis, was used to cluster the bars into oriented groups. A threshold of 10 degrees was

used to detect outliers, which is useful to eliminate some false alarms from the bar detec-

tion phase of the algorithm. This may seem to be a loose threshold, however, orientation

of the smaller bars may be noisy and inverse filtering will slightly alter the orientation

of some of the smaller bars. Once divided, each orientation group can then be used to

compute an average orientation vector, thus providing a set of two basis vectors for the

target. Due to the issues with orientations of the smaller bars, bars were sorted by area

and only the larger half were used in the basis vector computation.

Given the orientation of the target, the tri-bar groups can then be detected. The key

insight here is that a tri-bar group is a group of three parallel bars of similar area that are

equally spaced and have a spacing of one bar in between them. The centers of the three

bars are also collinear. With this large set of constraints, a simple greedy algorithm was

able to successfully group the tri-bars, along with eliminating the remainder of the false

alarms from the bar detection phase. With the tri-bar groups detected, bounding boxes

could be fit around the tri-bar groups that were aligned to the basis vectors of the target.

As was seen in Figure 6.6, not every tri-bar group will be able to be detected. While

it is not necessary to detect every group, it is critical to know which groups were missed.

From the design of the target, the spatial frequency of each tri-bar is

f = 2G+E
6 [lp/mm] (6.6)

where G is the group number and E is the zero-based index of the tri-bar in the group.

Looking at two adjacent tri-bars in the same group

fi+1

fi
=

2G+E+1
6

2G+E
6

= 2
1
6 ≈ 1.12 (6.7)

That is, between every tri-bar group, the frequency increases by a factor of roughly 1.12.

In spatial units, this means that the spacing between bars, or the side length of the bound-
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ing box, decreases by a factor of roughly 0.89 between each group. Alternatively, the area

of the bounding box should decrease by a factor of roughly 0.79 between each tri-bar

group. Once the bounding boxes are detected, they are sorted in decreasing order of area

and ratios between consecutive areas are computed. If the ratio is closer to the square of

the expected ratio of 0.79 than the ratio itself, it can be inferred that a tri-bar group was

missed and a blank is inserted until all misses have been detected.

Figure 6.7: One dimensional profile regions are placed over each tri-bar target after recog-
nition.

Once missed tri-bars have been detected, each detected bounding box can be associ-

ated with a group and element index. If in a given element, only one of the horizontal and

vertical groups was found, the other can be inferred. Much like bounding box area, the

spacing between the horizontal and vertical tri-bars falls off as a geometric series. So, the

offset between the found tri-bar and the missing one can be inferred from the geometric

series. It is also known that the horizontal tri-bars are always on the outside of the target.

This can be used to determine the sign to attach to the horizontal basis vector for the
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offset direction.

After completing any incomplete tri-bar pairs, the last step of the algorithm is to infer

the location of any remaining missed tri-bars. By design, the USAF-1951 has nested copies

of itself. That is, the inner groups of tri-bars are scaled replicas of the outer groups. Thus,

the approach taken here will be to find a scaling and translation transformation between

the outer and inner replicas of the target. The RANdom SAmple Consensus (RANSAC)

model-fitting algorithm [Fischler and Bolles, 1981] will be used for this purpose. Once a

transform between the two replicas of the target was found, the detected bounding boxes

were used to infer the locations of the missed bounding boxes. Finally, a one-dimensional

profile region was calculated from the bounding box by selecting the center portion and

adding some padding beyond the ends of the box. The profile regions can be seen in

Figure 6.7. As was mentioned earlier the projection technique from the slanted-edge MTF

measurement algorithm is used to extract profiles at a resolution of 4 samples per pixel.

6.3.3 Error Metrics

Once profiles have been extracted from the restored USAF-1951 measured and modeled

imagery, some error metrics must be extracted from the profiles in order to characterize

how well the artifacts are being modeled. In order to calculate such metrics, the profiles

will need to be co-registered. This was done manually, as efforts to automatically perform

registration did not yield results with ample precision. Given two registered profiles, there

are a number of metrics that may be defined. In this study, there are two large questions

that need to be answered. The first is whether or not the model is predicting exactly

the correct artifact pattern. The second is whether the model predicts artifacts that have

equivalent effect on image quality.

It is unlikely that the model will produce the exact artifacts, as the actual imaging

conditions cannot be exactly reproduced in the model. This is due to a number of factors.

Firstly and most importantly, there are a number of uncharacterized sources of wavefront

error in the system, namely defocus and coma from the collimator. The decentration

between the collimator and imaging system was also unable to be characterized. Pixel

phasing can also be a significant issue on the smaller tri-bar targets. The model requires a

bitmap image as input and as such, assumes a certain pixel phasing, which may or may not
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Figure 6.8: Pixel phasing can have a large effect on high-frequency targets. Notice the
difference in modulation and bar spacing between the two pixel phasing instances shown
here. Artifacting differences are due to other factors.

match the pixel phasing seen in the real imagery. This will affect the model’s accuracy on

all tri-bars, but will be most notable on the smallest groups, as it will affect the observed

modulation. This effect is shown in Figure 6.8. Finally, the phase transfer function, which

is the phase of the OTF, was not characterized for the laboratory imaging system, which

again may cause some differences on the higher frequency tri-bars. In order to quantify

the match between measured and modeled data, an average L1 distance between profiles

will be used. RMS error is a more traditional choice, however, it was very sensitive to

slight misregistration errors in the profiles.

The more interesting of the two questions is whether the model produces artifacts that

have an equivalent effect on image quality. Given the sources of error, this is a more

realistic goal. However, given that there is no equivalent to GIQE for sparse aperture

imagery, there is no definitive metric for this question. For traditional imagery, the shape

of the edge-overshoot artifact, which was plotted in Figure 6.1 (b), is generally constant. As

such, only the peak magnitude of the overshoot was necessary. However, in sparse aperture

imagery, the shape is not constant and depends on subaperture layout, orientation and

spatial frequency, among other factors. As such, the peak magnitude alone is not sufficient.

In this research, the area of the artifact will also be measured. Area alone is not ideal either

however, as it also discards shape information. Thus, peak and area will both be measured

and compared. An illustration of these two measurements is given in Figure 6.9. These
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Figure 6.9: Illustration of artifact area and peak measurements

measurements will be used in this study with the acknowledgement that further research

is needed to correlate them with image quality and that other measurements might be

more predictive of image quality.

6.4 Wavefront Error Results

As was described earlier, the laboratory sparse aperture system was used to capture an

image of the USAF-1951 target. This was done under the inherent wavefront error of the

setup, along with a slight defocus of the imaging lens to increase artifacting. The imagery

was then restored without any wavefront error compensation. A zoomed-out view of the

measured and modeled restored imagery is shown in Figure 6.10.

From Figure 6.10, it is difficult to tell how well the artifacts match, however, one of

the key differences that will explain the quantitative results is visible. While the noise

levels in the two images is actually identical in terms of standard deviation, the mea-

sured data appears to the human eye to be noisier. This is due to the presence of spatial

correlation of noise in the measured data. The noise power spectra for both images are

shown in Figure 6.11. It is clear from the figure that the measured noise spectrum ex-

hibits different behavior than that of the modeled data. The low-frequency peak in the
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(a) Measured restored image (b) Modeled restored image

Figure 6.10: Imagery results of the wavefront artifact validation experiment.

measured spectrum is slightly wider and the noise power is relatively constant over the

range of ±0.05−0.15 cycles per pixel, whereas the modeled spectrum falls off in this range.

This discrepancy in the behavior in low-frequency noise is easily explainable. In the

model, noise is simulated as the sum of photon and detector noise. However, each of these

effects is modeled independently at each pixel, leading to spatially-independent noise and

relatively lower levels of low-frequency noise. Since the human eye is more sensitive to

lower frequencies, the spatially-correlated noise in the real data will have a larger perceived

image quality impact than the spatially-uncorrelated noise. In addition, this structured

noise also affects the artifacts, which can contribute to some the discrepancies in the quan-

titative metrics. Adding support for structured noise is a future improvement that can be

made to the model. This would require a more sophisticated characterization of the noise

performance of the detector being modeled.

For a closer look at artifacting, Figure 6.12 shows an enlarged version of bars 8-11,

which are the last 4 bars in the image’s top-left group. Bar groups are numbered in de-

creasing order of size, starting from 0. Being towards the edge of the field of view, the

effects of coma can clearly be seen in this figure, through the matching directional smear
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Figure 6.11: Relative log noise power spectra in the measured and modeled raw imagery.
The RMS of the noise is equivalent in both images.

on the numbers next to the tri-bars. While not explicitly shown here, flipping the sign on

the coma aberration will shift these artifacts to the other side of the numbers. Artifacts

appearing between horizontal bars are also positioned correctly, as they are slightly shifted

to the right, relative to the bars in both measured and modeled imagery. Vertical bar ar-

tifacting is less visible in both images, as artifacts are located closer to the bars, making

them look like a simple blur. The smallest vertical group is interesting, as the artifacts

merge with the bars in both images, resulting in a bright region inside the three bars. The

artifact under the last bar in each horizontal group also shows matching behavior, as it

is consistently not parallel to the bar in either image. This figure also shows the effect

of structured noise, as the artifacts in the modeled imagery tend to be slightly smoother

than those in the measured imagery.

Figure 6.13 shows an enlarged version of the inner level of the tri-bar target. These

tri-bars more clearly show off the non-parallel artifact, which can be seen above the hor-

izontal tri-bars on the right side of the images. The highest frequency tri-bar group also

shows some interesting matching behavior. Looking at the vertical tri-bars in group 18-21

shows that the spacing between the center and left bars is smaller than that between the

center and right bars. This effect also occurs in the horizontal tri-bar in group 22 and 23 in
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(a) Measured restored image (b) Modeled restored image

Figure 6.12: Enlarged version of bars 8-11 in the wavefront artifact validation experiment.

both measured and modeled images. This occurs due to matching pixel phasing between

the input bitmap to the model and the actual imaging scenario. However, this occurred

by chance and as shall be seen in the spectral results, is by no means guaranteed. Since

this level of the target is closer to the center of the image, the effects of coma should be

less pronounced. This is indeed the case, as the numbers on the right side of the images

do not exhibit the same streaking that was seen in Figure 6.12.

Figure 6.14 shows two sample registered profiles from the tri-bars imagery. These

profiles provide another layer of confirmation that the model is predicting artifacts that

show up in the actual imagery. The measured and modeled curves have very similar

shapes and exhibit peaks in roughly the same locations. While the precise positioning and

magnitude varies slightly, the modeled and measured artifacts are definitely comparable.
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(a) Measured restored image (b) Modeled restored image

Figure 6.13: Enlarged version of bars 12-23 in the wavefront artifact validation experiment.
Bar group numbers are marked in the measured image.

From these profiles, the average point-to-point average L1 distance for the ith profile was

computed as,

εL1(i) =
1

N

N∑

j=1

|Measuredi(j)−Modeledi(j)| (6.8)

These results were then plotted as a function of a tri-bar group. This plot is shown in

Figure 6.15. In general, error increased as the spatial frequency of the tri-bar increased.

While this was not a strong trend, it does make sense. Since MTF is lower at those fre-

quencies, the inverse filter is boosting more, which will magnify any errors in the image

modeling process. Additionally, as bars shrink, the pixel phasing issue becomes more sig-

nificant, although the pixel phasing in this experiment was a fairly close match, as was

shown by the uneven bar spacing in the smallest tri-bars. For the lower-frequency bars,

error was around or below 10 digital counts, which was roughly 5% of the bar magnitude.

From these profiles, the artifacts peaks and areas were measured manually. The

specifics of these measurements was shown in Figure 6.9. For this analysis, only arti-

facts located in the gaps between bars and outside the first and third bar were measured.
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(b) Horizontal Tri-bar 7

Figure 6.14: Sample registered tri-bar profiles from wavefront artifact validation experi-
ment.

This was done for a number of reasons. Artifacts occur inside the bars, however, the

artifacts from both sides of the bar tended to interfere with each other, making it difficult

to put bounds on the area measurement. Since there was rarely a constant region inside

a single bar, it was difficult to define a baseline value from which peaks or areas could be

defined. Since the image should go to zero between bars, all signal in between bars could

be attributed to artifacting. The resolution of the system was sufficient that modulation

of the tri-bars did not become an issue until around bar group 13, at which point artifacts

were no longer appearing between bars.

Figure 6.17 shows a scatter plot of measured peak heights versus modeled peak heights.

Ideally for a perfect model, these measurement should lie on the line y = x, which is over-

laid on the plot. In the horizontal plot, this appears to be the case in general, with the

exception that the smallest peaks tend to be overestimated by about 5-10 digital counts.

The vertical tri-bar plots fits slightly less well, although it is still close to the expected

line. Error in this data set can be relatively easily explained, however. As can be seen in

Figure 6.17, artifacts on vertical bars tended to be located closer to the bars than those

on horizontal bars. In fact, it was sometime the case that the artifact was primarily posi-

tioned near the edge or inside the tri-bar, which was observed in Figure 6.12 in bars 8-11.

Note that this corresponds to the peak in the L1 error in Figure 6.15. When the artifact

is located very close to the edge, structured noise inside the bar will have a larger effect
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Figure 6.15: Average L1 error as a function of bar group for horizontal and vertical tri-bars.

on the artifact profile. This effect is to “break up” the artifact, which smoothes out the

profile, lowering the peak and leading to an overestimation. In addition, it is possible this

bias would have been balanced out if artifacts inside the bars were also analyzed.

In order to test how well the data fit the ideal y = x line, which would imply a perfect

model, a regression analysis was performed on the peak data. For this analysis, the bias

in the fit was fixed to zero and a 95% confidence interval for the slope was computed. For

the horizontal data, a slope of 1.024 was obtained, with a standard error of 0.029, leading

to a 95% confidence interval of 0.966 - 1.081. For the vertical data, a slope of 1.064 was

obtained, with a standard error of 0.030, leading to a 95% confidence interval of 1.005 -

1.124. These results match with the visual interpretation, as the horizontal tri-bar results

matched well with the model, while the model tended to overestimate the artifacts for the

vertical tri-bars. Again, since the artifacts on the vertical tri-bars were located close to

the edges, any errors in the model, such as structured noise or wavefront error predictions,

could have a large effect on the peak height or area.

Finally, Figure 6.17 shows similar scatter plots for the artifact area. As with the peak

height plots, the horizontal data is well-centered around the y = x line, while the vertical

artifacts tend to underestimated at low magnitude and overestimated at high-frequencies.
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Figure 6.16: Artifact peak heights in measured and modeled data sets, overlaid with a
1-to-1 line.

For the horizontal tri-bars, the regressed slope was 1.059 with a 95% confidence interval of

1.003 - 1.114. For the vertical tri-bars, the regressed slope was 1.107 with a 95% confidence

interval of 1.053 - 1.160. The area results agreed with the peak height results, although

the differences from unit slope are higher, by approximately a factor of 2. Looking at

Figure 6.14, artifacts tend to have a width in the neighborhood of 5 pixels, which was

consistent across tri-bar groups. Since artifacts are not rectangular, the derivative of peak

area with respect to height will be less than 5. In a simple simulation with Gaussian

peaks, this derivative was computed as 1.86, so the factor of 2 is reasonable, since artifact

shape varied from profile to profile.

While the structured noise and proximity of artifacts to the edges on vertical bars

contribute to the error, there are also some simpler sources of error. As was mentioned

earlier, the inherent wavefront error of the system was not characterized due to a lack of

the necessary equipment. As such, the modeled and measured raw imagery were likely

produced under slightly different circumstances. This can account for some of the dif-

ference in the artifact instantiation. The decentration of coma had a noticeable effect in

Figure 6.12, as the streaks on the number 3 are at a slightly different angle. Finally, the

input image was manually scaled and rotated to match the measured image. Any errors in

this process or, more importantly, lens distortion will result in a difference in the predicted

artifacts.
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Figure 6.17: Artifact area in measured and modeled data sets, overlaid with a 1-to-1 line.

6.5 Spectral Bandpass Selection

6.5.1 Background

After examining the effects of wavefront error, the other main source of artifacts is error in

the spectral weighting function of the system. When designing a sparse aperture system,

signal-to-noise ratio is often a prime concern, due to the low fill factor. As [Breckinridge

et al., 2008] and [Fiete et al., 2002] showed, integration times for sparse aperture systems

can rise drastically with respect to the fill factor. Wide bandpasses can be used to slightly

mitigate the signal-to-noise issues. However, large bandpasses also introduce the potential

for error in the spectral weighting function of the system. Since the spectral response of

the system is used when performing restoration, there is an implicit gray-world assumption

introduced.

In order to minimize the effect of this gray-world assumption, a multi-band sparse

aperture system could potentially be utilized. In this design, multiple bandpasses would

be introduced, each with a smaller bandpass than the broadband system. Each bandpass

would then be restored independently and then summed to restore the signal-to-noise ratio

of the broadband system. The rationale behind this design would be that the gray-world

assumption would be violated less in each individual bandpass, thus mitigating artifacting

due to error in the spectral weighting function. This effect is illustrated in Figure 6.18.

In this figure, a typical vegetation reflection spectrum is shown. Clearly, the spectrum
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Figure 6.18: Splitting a system’s bandpasses can decrease the error of the gray-world
assumption in each band

violates the gray-world assumption over the shown bandpass. However, if the system’s

bandpass is split at 700 nanometers, then the gray-world assumption is much more valid

on each side of the split.

While splitting bandpasses can theoretically reduce artifacting, the design choice is not

without its drawbacks. As was described in Section 3.7, inverse filtering works better on

data with low noise levels. In a photon-noise dominated system, splitting the bandpass

reduces the signal-to-noise ratio in each band, thus reducing the effectiveness of inverse

filtering in those bands. In addition, by narrowing the bandpass, less MTF smoothing

occurs due to the spectral scaling of the optics OTF, which was illustrated in Figure 4.4.

This results in less consistent performance over the frequency range of the system. Finally,

splitting the bandpass can lead to registration issues between the bands, which can harm

high-frequency performance in the recombined final image with ghosting artifacts.

6.5.2 Methodology

In order to create a demonstration of this multi-band system design, a number of spec-

tral filters were introduced into the system. The first was a dual-band filter, which was

attached to the light source. This dual-band filter was acquired from Edmund Optics
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Figure 6.19: Illumination spectrum of laboratory system with 577/690 dual-band filter

and had approximately 98% transmission in both bandpasses, 565-589 nanometers and

665-715 nanometers, with approximately zero transmission elsewhere. The product of the

filter transmission spectrum with the light source spectrum is shown in Figure 6.19.

Once inserted, the dual-band filter creates a spectral weighting function with high-

frequency information. When imagery is restored without knowledge of this spectral

weighting function, it is expected that artifacting will occur. To test this hypothesis, the

USAF-1951 target from the earlier artifact validation experiment will be illuminated by

the filtered spectrum and imaged under two different scenarios: broadband and multi-

band. In the broadband scenario, the entire bandpass of the SBIG-8300M detector will

be used. In this case, the quantum efficiency spectrum of the detector will be used as the

spectral weighting function for the system during restoration. The multi-band scenario

will introduce more filters into the system in front of the camera, a 650 nm shortpass filter

and a 650 nm longpass filter. An exposure will be taken using each filter to simulate a

multi-band sensor. The products of the detector quantum efficiency spectrum and the

filter spectrums will be used as the spectral weighting functions during restoration of each

band. After independent restoration, the restored images from each band will be summed

to produce the multi-band image. The broadband and multi-band images will then be

compared with respect to modulation performance and artifacting.



6.5. SPECTRAL BANDPASS SELECTION 105

6.5.3 Results

6.5.3.1 Broadband Results

(a) Measured restored image (b) Modeled restored image

Figure 6.20: Enlarged version of bars 12-23 in the USAF-1951 target imaged under the
broadband scenario.

Figure 6.20 shows the central portion of the restored USAF-1951 target for the broad-

band configuration, along with a prediction from the model. As can be seen, the results

again match fairly well between the modeled and measured data sets. There are a couple

of noticeable mismatches in this data set. The artifacts above the tri-bars on the right

side of the image are oriented at slightly different angles between the modeled and mea-

sured images. This effect arises because of the decentration between the sparse aperture

imaging system and the collimator. This decentration results in a mismatch between the

coma predictions of the model and the actual coma present in the system, thus changing

the orientation of smear artifacts. Unfortunately, since both the centration and magnitude

of the coma are unknown, it was impractical to run an optimization to match the coma

present in the measured images. It should be noted that the spectral and wavefront error

data sets were collected months apart, which is why coma centration and pixel phasing

differ between the data sets.
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Figure 6.21: Enlarged version of the center of the input image to the model. The effects
of pixel phasing can clearly be seen on the smallest bars.

In addition to the mismatch in coma artifacts, the smaller tri-bars on the left side have

different contrast and spacing between the modeled and measured images. In the mea-

sured imagery, tri-bars have lower contrast and the three bars in a group are evenly spaced.

This differs with the modeled data, where bar spacing is altered, which results in higher

contract. In the wavefront error results, the uneven spacing and higher contrast were also

present in the measured data, but they are not present in this broadband data set. This

is simply a function of pixel phasing. Figure 6.21 shows the raw input image that is given

to the model. As can be seen, the edges of the bars have gray values in between black and

white due to anti-aliasing. While this precise instantiation of pixel phasing can occur in

real data, as it roughly did with the wavefront error data set, it is not guaranteed. As can

be seen in the figure, the number of anti-aliased pixels can approach or even outnumber

the pure white pixels on the last series of tri-bars. Since this effect can change between the

modeled and measured scenario, it is difficult to have high confidence in any conclusions

drawn from these tri-bars, which is why they have been omitted from consideration and
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analysis has been confined to tri-bar groups 0-17. In the future, it would be useful to

have the ability to change pixel phasing in the model, however, this would likely require a

multi-scale input image, as sufficiently increasing the resolution of the input image would

have a large effect on model runtime.
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Figure 6.22: Average L1 error as a function of bar group for horizontal and vertical tri-bars
illuminated by the spectrum in Figure 6.19.

As with the wavefront error data set, the average L1 error was computed for the

broadband data set. The L1 error as a function of bar-group is plotted in Figure 6.22.

The error in this data set was slightly higher than the error in the wavefront error data set.

Averaged over all tri-bar groups (disregarding the one outlier), the error in the broadband

data set was 11.86, compared to 10.68 for the wavefront error data set. This increase

in error can be attributed to a couple of factors. While the effect is most notable on

the smaller tri-bars, which are omitted from the L1 calculations, pixel phasing has an

effect on all tri-bars and the pixel phasing instantiation given to the model was a closer

match on the wavefront error data set. In addition, the lens was placed at the position of

best focus for this collection. As such, the uncertainty in the wavefront error is relatively

higher in this data set, since the dominant wavefront error present in this collection comes

from the collimator, which was not characterized, instead of the imaging lens, which was

characterized.
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6.5.3.2 Multi-band Results

(a) Measured restored image (b) Modeled restored image

Figure 6.23: Enlarged version of bars 12-23 in the USAF-1951 target imaged under the
multi-band scenario.

After examination of the broadband results, the same procedures were applied to the

case of a multi-band system. One image was taken through a 650 nanometer shortpass

filter and one image was taken through a 650 nm longpass filter. This cutoff wavelength

was chosen because it fell in the middle of the two bandpasses on the dual-band filter,

which was placed in front of the light source. Due to the limited dynamic range of the

system, in order to get enough exposure for the shorter bandpass, a ND filter also had to

be inserted with the longpass filter. This does change the spectral weighting function of

the system. Since the wavefront error is constant between the two imaging scenarios, ar-

tifacting will be worse in the shorter bandpass, since wavefront error is defined relative to

the wavelength of light. Thus, the multi-band system will start at a disadvantage relative

to the broadband system, but will still exhibit better artifact performance. The insertion

of this ND filter does not affect the comparison to the model predictions, however, since

the ND filter can also be inserted into the model.

Figure 6.23 shows the central tri-bar pattern from the measured and modeled multi-

band system. The results are similar to those in the broadband system, with overall
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Figure 6.24: Average L1 error as a function of bar group for horizontal and vertical tri-bars
for the multi-band system.

artifacting levels being comparable between the two images, with the exact instantiations

differing slightly due to difficulties in modeling the exact wavefront error present in the

system, which is most noticeable in the orientation of the smearing artifacts due to coma.

As expected, artifacting is less severe in the multi-band system than in the broadband

system, despite the wavefront error being constant between the two cases. The average L1

point-to-point error is plotted as a function of bar group in Figure 6.24. Over all tri-bars,

the average L1 error was 10.89 digital counts, which is slightly lower than that of the

broadband results and comparable to the wavefront error results. Again, the last tri-bar

group exhibited considerable higher error as pixel phasing started affecting the modulation

of the tri-bar and error was no longer dominated by artifacting differences.

6.5.3.3 System Comparison

Given the results obtained in the previous two sections, the broadband and multi-band

systems can now be compared, along with the model predictions of these two systems. It

is important that the gains predicted by the model are supported by the measured data,

as this will establish that the model is an adequate stand-in for real data in future trade

studies. Figure 6.25 shows the central tri-bar pattern in all four imaging scenarios. It is

clear from visual inspection that the multi-band system has higher image quality in both
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scenarios, despite the disadvantage of the higher weighting of the shorter bandpass in the

multi-band scenario due to the ND filter. This image quality improvement is due to two

related factors, increased contrast in the tri-bars and decreased artifacting.

(a) Measured broadband restored image (b) Measured multi-band restored image

(c) Modeled broadband restored image (d) Modeled multi-band restored image

Figure 6.25: A comparison of artifacting performance between the broadband and multi-
band system in both real and modeled scenarios.
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Splitting the bandpass has multiple effects on the post-processing operation. Decreas-

ing the error in the gray-world assumption increases the accuracy of the “effective” OTF

prediction, which decreases artifact levels and increases modulation performance in the

restored image. However, the decrease in the signal-to-noise ratio from splitting the signal

detracts from these performance gains. The signal-to-noise effect is most noticeable at fre-

quencies with low OTF values, namely the highest frequencies or those between secondary

peaks. As such, it is expected that modulation should increase on the low-frequency

tri-bars and the tri-bars which share a spatial frequency with a secondary peak, while

modulation should decrease on high-frequency tri-bars and tri-bars which fall in between

secondary peaks. Artifacting levels should generally decrease.
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Figure 6.26: Comparison of modulation performance between broadband and multi-band
systems in both the real and modeled scenarios.

Modulation for a tri-bar can be quantified as,

M =
DChigh −DClow

DChigh +DClow
(6.9)

where DChigh is the highest digital count in the bright regions of the tri-bars and DClow is

the lowest digital count between tri-bars. For traditional raw imagery, these peak values

are sufficient, however, as was seen in Figure 6.14, tri-bars in restored sparse aperture

imagery do not image as simple sinusoids. Instead averages will be taken over the peaks

and troughs of the profiles. The bounds of these averages will be the first and last peaks
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in the three bars and the first and last troughs in the two dark regions between bars. For

higher-frequency tri-bars, profiles again begin to resemble sinusoids and the traditional

extrema measurements will be used.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

M
u
lt
i-
b
a
n
d
 M

o
d
u
la

ti
o
n

Broadband Modulation

Measured

Modeled

Figure 6.27: Multi-band modulation as a function of broadband modulation for both real
and modeled data sets.

Modulation as a function of tri-bar group is plotted for both the measured and modeled

data in Figure 6.26. This figure shows the same general trends in both measured and

modeled data. Modulation starts out high and then decreases until tri-bar group 8 or 9.

This decrease occurs due to artifacting, which increases the digital count in between bars.

In this range, the multi-band system always outperforms the broadband system. Once

tri-bars become small enough that artifacts no longer appear in between bars, modulation

performance increases until image blur then causes it to again decrease, which occurs

around tri-bar 13 in both measured and modeled data set. In this range the performance

of the broadband and multi-band systems is very similar in both the measured and modeled

data. In order to draw a direct comparison between the measured and modeled data, the

broadband and multi-band modulations can be correlated and the regression lines can be

compared. This analysis is shown in Figure 6.27. For the measured data, the regression
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line (with its 95% confidence interval) is

Mmb,meas = (0.620± 0.129) ·Mbb,meas + (0.345± 0.104) (6.10)

and the regression line for the modeled data is

Mmb,mod = (0.604± 0.115) ·Mbb,mod + (0.355± 0.089) (6.11)

Clearly, from both the figure and the equations, the performance difference is consistent

between the measured and modeled data sets, which means that the model is accurately

predicting the difference in modulation performance between the broadband and multi-

band system. The equations also give some insight into this performance difference. The

multi-band system offers an improvement in modulation performance until a modulation

of 0.8, at which point the broadband system has slightly better performance. Since the

modulation does not exceed 0.8 until higher frequencies, where artifacts no longer appear

between bars, this matches the behavior that was seen in Figure 6.26. Since the broadband

image has higher signal-to-noise ratio, it should be able to be restored more effectively at

the higher frequencies.
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Figure 6.28: Comparison of artifacting metrics between the measured and modeled data
sets.

In addition to improved modulation performance, the multi-band system also demon-

strates less artifacting than the broadband system. As with the wavefront error data set,

both artifact peak height and peak area were measured on both the measured and modeled
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data sets. In order to draw a comparison between the measured and modeled data sets,

the broadband and multi-band artifact metrics were correlated with each other for both

data sets and linear regressions were performed. The results of these linear regressions are

shown in Figure 6.28. The multi-band system consistently exhibited smaller artifact area

and artifact peak height in both the measured and modeled data sets. For the measured

data set, the regression line (with 95% confidence bounds) was given as

Amb,meas = (0.617± 0.072) ·Abb,meas + (36.878± 17.844) (6.12)

For the modeled data set, the same regression line was

Amb,mod = (0.622± 0.055) ·Abb,mod + (18.013± 8.586) (6.13)

As can be seen in the plot and the equation, the slopes of the two lines are essentially

equivalent, while the modeled data set has a slight bias towards less artifact area. This

can be caused by a number of sources, but a slight underestimation of wavefront error in

the system would be the simplest explanation.

The peak height of artifacts was also analyzed in both sets and is also plotted in Figure

6.28. Of the two metrics, peak height exhibited more variability, which is logical, since

it is more susceptible to be influenced by the structured noise present in the measured

data. Regression analysis was again performed, however, since the data sets contained

some outliers, the RANdom SAmple Consensus (RANSAC) algorithm [Fischler and Bolles,

1981] was used to pick the input points to the regression. Since not all point were used

in the regression, the true 95% confidence interval is larger than the one produced by the

regression analysis. For the measured data set, the regression line was

hmb,meas = (0.575± 0.039) · hbb,meas + (10.792± 2.169) (6.14)

and for the modeled data set, the regression line was

hmb,mod = (0.679± 0.044) · hbb,mod + (4.442± 1.71) (6.15)

As can be seen in the figure, these two confidence regions cross in the middle of the

data set, thus making the slope the meaningful difference between these two fits. The
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modeled data set has the steeper slope, indicating that artifact heights in the modeled

multi-band data were generally higher than they were in the measured multi-band data.

This could be explained by a couple of factors. While structured noise and error in the

wavefront error estimates are again factors here, there is also the issue of registration.

In the model, the two bands are perfectly registered and thus artifacts in the two bands

will likely lie perfectly on top of each other, causing peaks to add together. If there is

a slight, pixel-level registration error in the measured data, it could cause a slight mis-

registration of artifacts, causing a decrease in peak height while not significantly affecting

the artifact area. However, given that the confidence bounds are understated due to the

use of RANSAC, the slopes are in reality fairly close to each other and this is a minor

effect.

6.6 Conclusions

In this chapter, post-processing artifacts in restored sparse aperture imagery were exam-

ined. Simulations from the image quality model from Chapter 4 and previous work have

indicated that these artifacts appear in imagery due to errors in the post-processing filter,

which arise from errors in the wavefront error estimates or spectral weighting function. As

such, experiments were performed to examine the effects of both error sources. A USAF-

1951 target was inserted into the collimator and imaged with the laboratory system from

Chapter 5. Two studies were performed to examine the two theorized sources of artifacting.

In order to examine the effects of wavefront error, the inherent wavefront error of the

laboratory system and additional lens defocus were present in the imaging process, but not

accounted for during restoration. These conditions were approximated and reproduced in

the model. Point-to-point error, as well as artifact area and peak height were measured

and compared to the model predictions. The average L1 error was approximately 5% of

the magnitude of the signal level and artifacts predicted by the model were generally close

in both shape, size and position to those seen in the modeled imagery. The peak height

and area between the measured and modeled data were also well correlated. Sources of

error were small, but explainable.

Errors in the spectral weighting function were examined in a slightly different manner.
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Since there was inherent wavefront error in the system, it would have been impossible

to separate artifacts due to wavefront error from those caused by spectral weighting er-

ror. Since in a realistic scenario, the spectral nature of the incoming radiance will be

unknown, restoration in this experiment was performed only using the spectral response

of the imaging system, thus introducing a gray-world assumption, while a dual-band filter

was inserted into the system to create a highly spectrally-varying object. Images were

then taken using the entire bandpass, for maximum spectral weighting error, and using a

split bandpass to mitigate spectral weighting error. The split bandpasses were restored

independently and then added to restore the original signal-to-noise level. The multi-band

system demonstrated a measurable improvement in artifact performance, confirming the

hypothesis that artifacts arise due to spectral weighting error. In addition, the model

predicted this improvement with reasonable accuracy, meaning that the model could be

useful in spectral band selection trade studies. Error in this study was slightly higher, but

were explainable and a number of improvements to the model were suggested.

While the study presented in this chapter confirmed that predicted artifacts do in fact

appear in real imagery and are accurate, there are still a large number of areas for future

work. The largest issue is that while artifacts can be predicted, their effect on image

quality is not yet understood. It seems likely that these artifacts have a more severe effect

than the edge overshoot artifacts found in traditional imagery. Performing image quality

studies, similar to those in [Garma, 2015], on simulated sparse aperture imagery would

be a reasonable initial approach. It would also be useful to perform studies to see the

effect of these artifacts on various automatic image analysis algorithms. Parallel to these

types of studies is the need to quantify these artifacts. In this chapter, the area and peak

height of these artifacts were used as metrics. It would be useful for a future study to

correlate these metrics, or potentially others, with the results of image quality studies. In

terms of artifact modeling, future improvements could be made to the model to handle

the effects of structured noise and pixel phasing, which appear to be the two effects that

cause most of the differences between modeled and measured data. Finally, the studies

performed in this chapter could be reproduced in a setup where the wavefront error is more

controllable. Given the constraints of the available equipment, wavefront error estimates

had to be manually adjusted. A more sophisticated setup could examine the effects on

artifacts of different forms of wavefront errors.



Chapter 7

Aperture Layout Optimization

7.1 Introduction

Previous research in sparse aperture imaging has typically been confined to a small set of

known existing designs that have been used or theorized in the field of radio astronomy

[Fiete et al., 2002] or have simple geometric properties [Meinel et al., 1983]. These designs

are typically examined for their desirable frequency response properties or practicality for

construction, but may not be optimal for every application. In this chapter, a design

framework for sparse aperture systems, based on genetic algorithms, will be introduced.

This framework can be used to discover optimal sparse aperture layouts for a given set

of mission parameters. For example, this framework might be used to design an aperture

pattern that maximizes perceived image quality, in order to produce imagery for use in

a consumer product, such as Google Earth. Another use case might be to optimize an

aperture that has maximal performance in a certain frequency range to match the size of

a target that needs to be detected by the system.

The approach presented here is inspired by the successful previous usage of genetic

algorithms in related problems. Genetic algorithms have been used in sparse antenna

array design [Marcano and Durán, 2000], [Chen et al., 2006], [Chen et al., 2007], [Rattan

et al., 2008] and sparse aperture imaging design for correlography [Henshaw and Guiv-

ens Jr, 1994]. While these works focus on different problems, they show that the usage

of genetic algorithms on this type of design problem is feasible. This chapter will de-

scribe the adaptation of genetic algorithms to the problem of optimizing the layout of

117
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sparse aperture telescope arrays for image quality in an incoherent imaging situation. A

number of computational constraints from previous work will be relaxed and a few fit-

ness functions for incoherent sparse aperture image quality will be presented. This work

was published in [Salvaggio et al., 2016], but will be described in greater detail with an

expanded background discussion here.

7.2 Background

Genetic algorithms are a set of biologically-inspired optimization algorithms that are based

on the theory of evolution. They have a rich history in computer science tracing back to

the 1960s. For an extended discussion of genetic algorithms, the reader is referred to

[Mitchell, 1998]. This section will describe why genetic algorithms were selected for this

problem and give a description of each step in the specific genetic algorithm used in this

research.

When optimizing sparse aperture layouts, MTF properties and practicality for con-

struction are generally of prime concern. More traditional optimization algorithms, such

as Gauss-Newton or Levinburg-Marquardt, require derivatives of the optimization function

with respect to the optimization parameters. Typically the parameterization of a sparse

aperture consists of position and shape of the subapertures, making derivatives expensive

or impossible to compute. Given that derivatives are unavailable, there are two options

for optimizations: gradient-based methods with numerical derivatives or derivative-free

optimizations. Gradient-based approaches normally require a starting estimate as initial-

ization. If this estimate is not sufficiently close to the global optimum, there is a large

risk of convergence to a local extrema in the cost or fitness function. Obtaining such an

estimate is not generally possible in the sparse aperture layout problem, leaving derivative-

free optimization as the most suitable option.

Genetic algorithms are one of many derivative-free optimization techniques that uti-

lize randomness instead of derivatives. Particle swarm optimization is another notable

example that would be applicable to this problem. Both of these algorithms consider a

number of candidate solutions, which increases robustness to local extrema, giving them

advantages over other derivative-free optimization algorithms, such as Nelder-Meade, for
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this problem. Genetic algorithms also excel on problems that are compactly parametriz-

able, which is true of sparse aperture telescopes with discrete subapertures, especially if

design constraints are enforced through the parameterizations.

While genetic algorithms offer some advantages over gradient-based optimization ap-

proaches, the reliance on randomness does come with some drawbacks. Termination of

the optimization is an instance of the halting problem, as there is no guarantee that a

better solution does not exist. The precision of the gradient-based algorithms is also hard

to reproduce without greatly increasing the run-time. As such, this work will take the

approach of tuning genetic algorithms for both global search and progressive local re-

finement, resulting in multiple optimizations being run to obtain a precise result. This

approach improves precision and runtime, while sacrificing robustness to local minima.

This robustness can be regained, however, by running multiple global search algorithms

and selecting the best output for refinement.

Given the selection of genetic algorithms for this problem, the role of each step of the

algorithm will now be described. The implementation of these steps will be described in

the Methods section. Like most optimization algorithms, genetic algorithms are an itera-

tive process. An overview of one iteration is given in Figure 7.1.

As shown in the figure, during each iteration, there exists a set of potential aperture

configurations, termed the population. During each iteration, a set number of new con-

figurations are derived, or bred, from the population. This process involves two steps,

crossover and mutation. Crossover combines attributes from the two parent configura-

tions to create a new configuration. Mutation then introduces random variation into the

newly-produced configuration. Finally, a new population is constructed from the union of

the initial population and the newly-created configurations. Details on each step in the

algorithm will be given in the following sections.

7.2.1 Crossover

The task of the crossover operator is to produce a new configuration from two existing

members of the population. The philosophy behind this operation is that if two popula-

tion members both have attributes that produce high values of the fitness function, then
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Population Crossover Mutation Selection

Figure 7.1: Overview of one iteration of a genetic algorithm optimizing aperture design

a better configuration might be found by combining the positive attributes of both. Thus,

it would make sense to use the best members of the population as inputs to the crossover

operation. However, repeatedly selecting the two best members of the population would

be highly susceptible to local maxima in the fitness function. To achieve a balance between

robustness and convergence speed, inputs to the crossover operator are selected using the

fitness values of the population members as a probability density function.

1 2 3 4 5
0 CF5

i

f(pi)
r ⇠ Uniform(0, CF5)

Figure 7.2: Illustration of crossover operand selection process
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At the beginning of each iteration, the fitness function is evaluated for each population

member. The population is then sorted in decreasing order of fitness and a cumulative

fitness function is computed. Defined recursively,

CF0 = 0 (7.1)

CFi = CFi−1 + f(pi)− f(pmin) + ε (7.2)

where f() is the fitness function, pi is the i-th population member, pmin is the popula-

tion member with the smallest fitness function and ε is a small number to give a baseline

probability of all population member being selected. The construction of the cumulative

fitness function is visualized in Figure 7.2. Once the cumulative fitness function has been

computed, members are selected randomly, weighted by the cumulative fitness function.

A random number r is selected uniformly between 0 and CFN . The selected member is

the member i, where CFi is the first value in the cumulative fitness function greater than r

[Lipowski and Lipowska, 2011]. Crossover requires two operands and thus r is repeatedly

generated until two different members are selected.

Since each crossover operation produces one new population member, the user is free

to select how many new members the algorithm should create in each generation. Since

there is overhead associated with each generation, creating more candidates can speed

up computation and reduce the number of required iterations. However, generating more

members per generation can have diminishing returns if there is a large amount of redun-

dancy in the outputs of the crossover operator. The optimal number of configurations to

create will depend on the implementation of the crossover operator. If the operator can

create many new, non-redundant configurations, then a larger number of new configura-

tions will be ideal. Otherwise, the parameter should be set to a lower value. In practice,

this parameter is set by the user and must be empirically tuned.

7.2.2 Mutation

Like crossover, mutation is a biologically-inspired operator intended to explore the search

space. Whereas crossover combined attributes from members already in the population,

mutation introduces new attributes, or modifies existing attributes in new ways. This op-

erator is important to drive the genetic algorithm into unexplored portions of the search
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space. Unlike crossover, mutation is a unary operator, meaning it operates on one popula-

tion member, potentially changing its parameters. Unlike crossover, the mutation operator

is deterministically invoked. That is, every output of the crossover operator is passed to

the mutation operator. The mutation operator will then internally use randomness to

introduce (or not introduce) its variations.

As was mentioned earlier, this research will utilize a two-stage optimization approach:

global search and local refinement. Mutation is used in both steps but is the only operator

used in local refinement. If the population is initialized as copies of a starting guess and

an identity crossover operator is used, then a mutation operator that only introduces

small changes can explore the local neighborhood around the initial guess. Evaluating the

fitness function and using the selection process detailed in the next section can make the

genetic algorithm function in a similar manner to a local heuristic search, such as the A∗

algorithm [Hart et al., 1968].

7.2.3 Selection

One of the key parameters for a genetic algorithm is the number, M , of new population

members to create during each iteration. For each new member, the crossover operation

is run and the mutation operator is then run on its output. These two operators are not

guaranteed to result in a valid population member. So, the fitness function is evaluated

for the new member to determine validity. If the new member is invalid, the process is

repeated until a valid new member is produced. Once this process is finished, there will

exist M new population members, along with the existing population of size N .

The goal of selection is to construct a new population of size N from the new group of

N+M population members. The goal of each iteration is to move the population closer to

the global optimal solution. As such, it would be expected that the best N members should

be taken as new population. However, the same argument applied to crossover operand

selection also applies here, as does the solution. Instead of deterministically selecting the

N best members, the cumulative fitness function is recomputed, by Equation 7.1 and 7.2.

The same random selection process is then repeated until N unique members have been

chosen to form the new population. Once this process completes, the next iteration begins,

using the new population.
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7.2.4 Termination

Termination of a genetic algorithm can be a difficult task. The core issue is that termina-

tion is an instance of the halting problem [Turing, 1937]. That is, given the fact that we

are randomly exploring a continuous space, there is no guarantee that the optimal solution

will ever be found. Furthermore, given the current optimal solution, there is no way of

determining whether a better solution exists. As such, the user must decide what entails

an acceptable solution for the given optimization.

To solve this issue, there are a large number of potential strategies. The simplest

among these is to fix the number of iterations or execution time. Upon reaching either of

these limits, the best member in the population is taken as the optimal solution. While

these solutions are both simple, they offer no guarantees as to the quality of the solution.

Another simple solution is to define a threshold for the fitness function. Once a solution

exceeds this threshold, it is taken as “acceptably optimal” and the iteration is terminated.

This solution gives guarantees on the quality of the solution, but not its optimality. If a

well-defined specification for system performance is provided, then this is often the best

strategy. However, if the fitness function is a weighted combination of multiple perfor-

mance metrics, then computing the threshold can be challenging and the threshold loses

its semantic meaning. Since the fitness function is a projection into a one-dimensional

fitness space, there may be combinations of performance metrics that exceed the fitness

threshold but do not satisfy the specification. In such a case, more sophistication is needed

to apply thresholds to each component of the fitness function.

If the simpler methods are not sufficient, some more sophistication can be used. If there

is an acceptable level of precision for the algorithm, the search space can be discretized.

Once discretized, a local search can be assumed to have converged if the best solution

does not change after a user-defined number of iterations. The user can also look at a plot

of fitness function versus iteration number and determine a point of diminishing returns

at which to stop the iteration in the future. However, none of these potential solutions

guarantee a global optimal solution. Since this is an instance of the halting problem, such

a solution does not exist and the user must decide which of the termination strategies is

best suited for the given optimization.
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7.3 Previous Work

This optimization framework builds directly on the sparse aperture modeling described in

Chapter 4 and validated in Chapter 5. In addition to the previous work in sparse aperture

image quality described in previous chapters, a few studies have looked at the design of

sparse aperture telescopes. [Breckinridge et al., 2008] focused on the tradeoff between

fill factor and image quality for several non-optimized designs. Another related study is

presented in [Miller et al., 2007], which focuses on the Golay apertures, but takes an in

depth look at optimizing both the number of apertures and the expansion factor. While

[Salvaggio et al., 2015] did laboratory studies with broadband sources, [Miller et al., 2007]

instead used monochromatic illumination. As a result, that study was able to explore

the use of phase retrieval on a sparse aperture system, although the authors only found

the technique to work under heavily constrained circumstances. This work looks to build

directly on [Salvaggio et al., 2015] and [Miller et al., 2007] and provide a mechanism for

finding alternatives to the Golay apertures. While the Golay apertures are optimal for

frequency coverage, image quality is a complex issue and these apertures may not be the

answer for all situations.

Due to their flexibility, genetic algorithms can be applied to a vast array of problems

and have seen previous use in related problems. One such problem is that of sparse an-

tenna array design [Marcano and Durán, 2000], [Chen et al., 2006], [Chen et al., 2007] and

[Rattan et al., 2008]. The goal of these studies is to design an antenna array that produces

a radiation pattern with a minimum side lobe level. While the research presented here

will employ similar methods to these previous studies, the goals of the optimizations vary

significantly. Image quality for sparse aperture systems is a more complicated issue than

for conventional imaging systems and lacks a definitive metric. Finding such a metric

is beyond the scope of this research, however, the results of some simple metrics will be

demonstrated, as well as methods for applying construction constraints and examining the

effects of subaperture shape.

A more directly-related previous work is presented in [Henshaw and Guivens Jr, 1994],

where genetic algorithms were used to optimize a sparse aperture imaging array for cor-

relography. In correlography, an object is illuminated by a laser and the measured speckle

pattern is used to reconstruct an incoherent image. The quality of an aperture for cor-
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relography in [Henshaw and Guivens Jr, 1994] was defined as the non-redundancy of the

system MTF. Due to the computational constraints at the time, apertures were confined

to a coarse grid and a 2D to 1D mapping function was required, which had noticeable

effects on the result. As a result of the constraints, the MTF was a binary function, res-

olution was low and all peaks were identical and could not overlap. Unfortunately, using

only a non-redundancy metric in incoherent imaging will lead to unacceptable levels of

artifacting during image restoration, so new metrics will need to be developed.

In the proposed genetic apertures framework, all calculations are performed in two

dimensions and are not quantized to a grid. This allows for more complicated fitness

functions that incorporate the value of the MTF. This is a necessary improvement if

genetic algorithms are to be used for optimizing image quality in an incoherent imaging

situation. For example, in order to make a system more robust to post-processing artifacts,

peaks may need to overlap in order to smooth the MTF and boost MTF values relative to

the image noise. Such overlap is also necessary for low-contrast imaging scenarios, as was

examined in [Breckinridge et al., 2008]. Additionally, the shape of the subapertures can be

varied to control the shape of peaks. The gridded approach in [Henshaw and Guivens Jr,

1994] is also unable to account for the effects of a system’s spectral bandpass, as it was

intended for laser illumination. The approach in this research can be easily extended to

support spectral effects (currently with a linear effect on runtime). This research also

presents new fitness functions that focus on the image quality of sparse aperture imagery.

7.4 Methods

Figure 7.3 shows a graphical overview of the genetic apertures framework. In order to

run an optimization, three components must be specified: the parameterization, fitness

function and search strategy. The parameterization is the search space of the optimization

and should be as low-dimensional as possible. The fitness function is the function that

is optimized by the genetic algorithm. More desirable aperture layouts should result in

higher values of the fitness function. Finally, the search strategy describes how the search

space defined by the parameterization is explored. This consists of the initialization of the

population and implementations of the crossover and mutation operators. Examples of

each component will be given, along with some example results from several combinations
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Figure 7.3: An overview of the genetic apertures framework. The boxes on the left must
be specified by the user for each optimization, while the genetic algorithm stays constant.

of components. The software used in this work is written in C++ and is hosted at

(https://github.com/psalvaggio/multaptelescope). All optimizations described in

this research were run on a 2.6 GHz Intel Core i7 processor in under one hour, without

parallelization.

7.4.1 Parameterization

As was mentioned previously, genetic algorithms excel on low-dimensional problems. As

such, a compact parameterization of the sparse aperture layout is important to obtain-

ing good performance out of the optimization framework. Using the parameterization to

enforce design constraints is an ideal way to both lower the dimensionality of the opti-

mization and ensure the optimal aperture will be practical for construction.

In this work, analysis was confined to sparse apertures composed of a discrete number

of circular subapertures. Since circular optics are a common choice for framing remote

sensing systems, this was a realistic design constraint for a demonstration of the system

and also allowed for efficient approximation of the system MTF in fitness functions. As

such, the most straightforward parameterization would be a list of (xi, yi, ri) triplets for

the position and radius of each subaperture.

https://github.com/psalvaggio/multaptelescope
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A common design constraint in this parameterization might be to keep the subaper-

tures inside some encircled radius, renc to bound the x and y dimensions. The r dimension

in this parameterization also needs to be constrained so the optimization does not revert

to a filled aperture. A common figure used in sparse aperture design is the fill factor, F ,

which is the percentage of the area inside renc that is filled with glass. This holds the

sum,
∑
r2
i to a constant value. Taking this one step further, if the component telescopes

are already specified and only the layout is desired, the r dimension can be quantized to

match available telescopes.

θi

di

ri

θ1 = 0, θ2, ..., θm

a1, d1, r1

a2, d2, r2

...
an, dn, rn

Figure 7.4: A parameterization for a sparse aperture array with m discrete arms. θi refers
to the arm angle angle of the ith arm. For rotationally invariant fitness functions, θ1 can
be fixed to 0. aj , dj and rj refer to the arm index, radial displacement and radius of the
jth subaperture, respectively.

In addition to MTF characteristics, practicality for construction is another concern

for sparse aperture layout design. While construction terms can be used in the fitness

function, changing the parameterization can be an efficient way to shrink the search space

and ensure a constructible layout. For example, in order for a space-based instrument to fit

into a certain launch vehicle, perhaps all subapertures need to exist on a small number of

foldable arms. Such a situation is shown in Figure 7.4. In this case, the parameterization

would be the arm angles, θi and a triplet (aj , dj , rj) for the arm index, offset and radius

of each subaperture. Similar constraints can be placed on the r dimension and the arm

indices are quantized, leading to a smaller search space.
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7.4.2 Fitness Function

The role of the fitness function is both to ensure a candidate aperture is valid and to map

that candidate aperture layout to a scalar value, indicating the quality of that layout.

The genetic algorithm will attempt to maximize the value of this function, yielding the

optimum aperture. Ideally, this function will be designed to have a sharp peak and no

local maxima, although this is often difficult to achieve or verify in practice. In the case

of sparse aperture optimization, the fitness function typically aims to achieve a certain

property in the MTF of the system. In this study, three distinct fitness functions were

used.

7.4.2.1 Golay Validation Study

In order to validate the genetic apertures framework, a verification of Golay’s solution

[Golay, 1971] was attempted. The goal was to reproduce the Golay-6 aperture pattern,

shown in Figure 7.5 (b), as this is a common aperture seen in sparse aperture studies,

such as [Miller et al., 2007] and [Fiete et al., 2002]. In Golay’s work, he claims that his

apertures maximize non-redundancy and compactness of the MTF. His claim is logical,

given the hexagonal packing of MTF peaks.

In order to reproduce Golay’s result in this framework, a fitness function had to be

constructed. A direct mapping of Golay’s language to a fitness function would be a

weighted sum of non-redundancy and compactness terms.

fGolay = NR(MTF (ξ, η)) + γ · C(MTF (ξ, η)) (7.3)

NR(MTF ) =

∫∫
dMTF (ξ, η)− T e dξ dη (7.4)

C(MTF ) =




N∑

i=1

N∑

j=1

(xi − xj)2 + (yi − yj)2



−1

(7.5)

where γ is a relative weighting term, d·e is the ceiling function and T is an MTF threshold

to consider a frequency resolved above the noise of the system. The ceiling function

serves to round any MTF value over T up to 1. Another method would be to apply a
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monotonically decreasing weighting function, W , to the MTF, such as

fGolay =

∫∫
W (ρ) ·min(MTF (ρ, φ), T ) dρ dφ (7.6)

where ρ and φ are polar spatial frequency coordinates and T is again an MTF threshold,

although this time it is used to bound the MTF support at a given frequency, encouraging

the MTF to cover more frequencies. Simply setting the value of T to a small value over 0

will encourage maximum non-redundancy, while the monotonically decreasing property of

W will encourage compactness. As will be shown in the Results section, both approaches

reproduce Golay’s results.

7.4.2.2 Discrete Annulus

Another common sparse aperture design seen in previous studies, such as [Fienup, 2000],

is the annulus, or a circular aperture with a very large central obscuration. This design

produces an MTF that is essentially constant, albeit low, out to the cutoff frequency.

This is attractive in that using an annulus over a large bandpass only has an effect on

the MTF at the highest frequencies, as can be seen by comparing the broadband MTF

in Figure 7.5 (c) and the monochromatic MTF in Figure 7.6. A large drawback of sparse

apertures are the image artifacts that occur due to post-processing restoration filters. The

annulus design mitigates this drawback, as shown in Figure 7.5, but would be difficult to

both construct and launch into space. The genetic apertures framework can be used to

reproduce some of the positive aspects of the annulus in a constructible system, such as

the discrete arm array from Figure 7.4.

In order to emulate the annulus in a discrete subaperture system, it must be described

with a fitness function. While the Golay design exhibits maximum non-redundancy, it

does so under the constraint of discrete sub-apertures. The annulus has support at every

theoretically possible frequency for its diameter, and thus a non-redundancy term is also

necessary here. However, the annulus is attractive due to the radial smoothness of its

MTF, which is the source of its robustness to large bandpasses. As Figure 7.6 shows, this

smoothness can be characterized by looking at enclosed MTF area as a function of radial

frequency. The fitness function used to emulate an annulus in this work is given by

fAnnulus =

∫∫
dMTF (ξ, η)− T e dξ dη + γ · r′area (7.7)
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(a) Annulus mask (b) Golay-6 mask (c) Annulus broadband MTF

(d) Golay-6 broadband MTF (e) Simulated restored annu-
lus image

(f) Simulated restored
Golay-6 image

Figure 7.5: Difference in post-processing artifacts between the annulus and Golay-6 sparse
aperture designs. Notice the gradient in the bars and ghosting above each bar in (f).
Both designs were given the same amount of coma and defocus wavefront error. Image
simulation and restoration was performed with the modeling framework from [Salvaggio
et al., 2015].

where the first term is the non-redundancy term from Equation 7.4 and r′area is the cor-

relation coefficient of the cumulative distribution from Figure 7.6 over a range of middle

frequencies. Since most cumulative distributions will have high correlation coefficients,

the range [0.98, 1] is linearly stretched to the range [0, 1] with everything under 0.98 being

thresholded to 0.

7.4.2.3 Acutance

Acutance is a standard measurement of perceived image quality published by the IEEE

Cell Phone Image Quality group [Baxter et al., 2012]. This metric takes into account

the contrast sensitivity function of the human visual system, plotted in Figure 7.7 and
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Figure 7.6: Enclosed MTF area as a function of radial frequency. The large linear region
is characteristic of the annulus design.
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Figure 7.7: The contrast sensitivity function used in the acutance equation. The peak
sensitivity is at roughly 4 cycles/degree.

modeled as

CSF (f) = f0.8 · e−0.2f (7.8)

where f is in units of cycles per degree. The acutance is then given by

A =

∫∫
MTF (ρ, φ) · CSF (ρ) dρ dφ∫∫

CSF (ρ) dρ dφ
(7.9)

While acutance is a good metric for conventional photographs, it was not designed with

sparse aperture systems in mind. So, the metric will be adapted for use with sparse

apertures here as a demonstration, while conceding that further work is needed in sparse

aperture image quality metrics. One of the main differences between sparse aperture
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imaging and conventional imaging is the heavy reliance on post-processing. As such, once

one frequency has enough resolution to be restored, it is better to cover more frequencies

than to add more MTF at that single frequency. Thus, to account for the effect of post-

processing, a similar idea from Equation 7.6 will be used.

fAcutance =

∫∫
min(MTF (ρ, φ), T ) · CSF (ρ) dρ dφ∫∫

CSF (ρ) dρ dφ
(7.10)

where T is an MTF threshold indicating the level at which a frequency can be restored.

The effects of T are illustrated in Figure 7.8. This threshold in reality will vary with signal-

to-noise ratio, which is also a function of spatial frequency. For the sake of demonstration,

it will be held to a constant value. However, when designing an actual system, it may be

desirable to model the frequency content of the expected imagery to determine how SNR

varies as a function of spatial frequency and vary T accordingly.
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Figure 7.8: Illustration of the the effects of the threshold T in Equation 7.10, set to a
value of 0.095 here.

7.4.3 Search Strategy

Once the parameterization and the fitness function have been specified, the last component

of the genetic algorithm is the search strategy, or the mechanisms by which the algorithm

explores the search space. In genetic algorithms, this consists of three operations: initial-
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ization of the population, crossover and mutation.

7.4.3.1 Initialization

In other optimization algorithms, initialization is critical to avoiding local extrema in the

fitness or cost function. It is generally less important in genetic algorithms, but must still

be done properly to allow the genetic algorithm to operate. In this work, two separate

search strategies were used: global search and local refinement. Global search was used

to find a low-precision approximation of the optimal aperture, while local refinement was

used to fine tune that approximation to obtain a high-precision optimal aperture.

The implementation of the initialization was very different in these different search

strategies. In global search, the role of initialization is very minimal. The main goal is to

provide an initial set of valid apertures that the crossover and mutation operators can use

to construct new apertures. Simple random assignment of values to each parameter until a

valid aperture is constructed is a sufficient strategy. In local refinement, the population is

simply initialized as copies of the initial guess and space exploration is left to the mutation

operator.

7.4.3.2 Crossover

Crossover is an operator that produces a new population member from two existing mem-

bers, which have been randomly selected, according to their fitness. This operator maps

well to sparse aperture design. Since MTF peaks come from the baselines between sub-

apertures, mixing groups of apertures from previous designs should give new combinations

of MTF peaks. In this work, crossover is only used in global search, as it leads to large

variations in aperture design. In local refinement, the crossover operator randomly re-

produces one of the input apertures. The crossover operator needs to be defined for each

parameterization that is used.

As is shown in Figure 7.9, the implementation of the crossover operator is very straight-

forward for the (xi, yi, ri) parameterization. The operator maps less well onto discrete arm

parameterization, but involves randomly selecting arms from each input and then placing

apertures onto each new arm. In both cases, care must be taken to maintain the fill factor

through the operation. A reasonable approach is to create a “subaperture budget” for the
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Figure 7.9: An example of the crossover operator. In the (xi, yi, ri) parameterization,
subapertures are randomly selected from each input aperture to construct the output
aperture.

optimization. That is, the r-dimension is quantized to a small set of possible radii and

each radius is given a count. Thus, the random selection can be confined to apertures of

a given radius, maintaining the fill factor.

7.4.3.3 Mutation

The mutation operator functions on the output of the crossover operator and introduces

random variation, thus allowing greater exploration of the search space. This has the effect

of randomly changing the baselines between subapertures and thus randomly moving a

subset of the MTF peaks. Mutation is used in both local and global search.

Figure 7.10: An example of the mutation operator during global search. Apertures are
randomly displaced to reach into new portions of the search space.
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As shown in Figure 7.10, the mutation operator on the (xi, yi, ri) parameterization dur-

ing global search will randomly relocate a subset of the subapertures to a new location. It

will also randomly swap the radii of some apertures. In the discrete arm parameterization,

it will randomly move subapertures to different arms, change their offset, move entire arms

or swap radii between subapertures.

Mutation is also used as the primary driver of local refinement. Instead of randomly

relocating apertures in the (xi, yi, ri) parameterization, a Gaussian offset is applied to the

subaperture location, while radius changes are disabled. Successive runs with standard

deviations of 5%, 1% and 0.1% of the encircled diameter are used as progressive refinement

of the aperture. For the discrete arm parameterization, only aperture offsets and arm

angles are mutated, in a similar progressive approach.

7.5 Results

(a) Optimized aperture mask (b) Optimized MTF

Figure 7.11: Results for Golay optimization using Equation 7.3 as a fitness function (T =
3%, γ = 3). The fitness function is invariant to rotation and reflection transformations.
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7.5.1 Golay Validation

The first set of results use the (xi, yi, ri) parameterization to replicate the results of [Golay,

1971] and [Miller et al., 2007]. In order to compare directly to the previous work, all of

the subaperture radii, ri, were set to a constant value, producing a minimum fill factor of

18%. This value was taken from [Fiete et al., 2002], as it was in the middle of the range of

fill factors that produced acceptable image quality for the Golay-6 design. As can be seen

from Figure 7.11, the aperture and its MTF match the Golay-6 design, which was shown

in Figure 7.5 (b). This result was produced with the fitness function that was given in

Equation 7.3. Using Equation 7.6 with an exponential decay weighting function will give

nearly identical results.

Shown in Figure 7.11, the result obtained from the genetic apertures approach is a

rotated version of the Golay-6 aperture and MTF. However, upon inspection of both

Equation 7.3 and Equation 7.6, it can be seen that the optimization is invariant to both

rotation and reflection. Equation 7.3, the direct approach, depends on the number of re-

solved frequencies, which is constant under any rotation or reflection transforms, and the

distances between the subapertures, which are also maintained under these transforms.

Equation 7.6, the weighting function approach, has a weighting function that only depends

on radial frequency, ρ, thus giving the invariance to rotation and reflection. So, a rotated

result, such as the one seen in Figure 7.11, is an equally valid aperture.

r
s =

∆

2r∆

Figure 7.12: The expansion factor of a Golay aperture is defined as the ratio between the
spacing between pairs of closest subapertures and the diameter of each subaperture.

Building on Golay’s work, Miller et. al. in [Miller et al., 2007], examined the effect of
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the expansion factor, s, illustrated in Figure 7.12. The expansion factor is the ratio of the

spacing between the pairs of closest subapertures and the diameter of each subaperture.

So, the minimum case, where two subapertures touch, is s = 1 and spacing increases as

s increases. In [Miller et al., 2007], expansion factors were examined in increments of 0.1

and it was found that voids in the MTF occurred at values of s over 1.6. A void was

declared to be when the MTF fell below some threshold value, which was set to 3%. This

is the same parameter as the MTF threshold, T in Equation 7.3. To match the result in

[Miller et al., 2007], T was set to 3% in the genetic apertures approach. This produced

the result in Figure 7.11 and the expansion factor was computed to be 1.62, matching the

result from [Miller et al., 2007]. If the minimum MTF value, T , is increased, it is expected

that the aperture spacing will need to decrease, so that the valleys between peaks will not

fall below T . This expectation matches observed behavior. If T is set to 5%, the resulting

optimal expansion factor will be 1.54 and if it is set to 7%, an expansion factor of 1.46 is

obtained.

7.5.2 Discrete Annulus

(a) κ = 1.1 (b) κ = 1.5 (c) κ = 1.9
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Figure 7.13: Sample results for the discrete annulus optimization. The three shown results
are representative of the different designs that result from varying the subaperture radius
ratio, κ. Each design features a roughly isotropic ring around the central peak. The
aperture with κ = 1.1 best optimized the fitness function. Central dots indicate the
smaller subapertures in the κ = 1.1 result.
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Given that the genetic apertures approach can reproduce a known result, it can be

applied to new design problems with the expectation of valid results. This set of results

uses the discrete arm parameterization to maximize the annulus fitness function given in

Equation 7.7. For these results, three arms were used, as this is likely the most practical for

construction and previous studies have examined the Tri-arm 9 design [Fiete et al., 2002].

While existing work on the Golay apertures used subapertures of a constant size, there

is no reason to maintain that constraint here. In fact, having apertures of unequal size

will result in MTF peaks of a constant magnitude over a small range of frequencies, which

might be desirable for reproducing the annulus’s constant MTF properties. For these

results, the six subapertures were divided into two groups of three, with two different

radii, and a constant fill factor was maintained. The radii were computed as

r1 = renc ·
√

F

3(κ2 + 1)
(7.11)

r2 = κ · r1 (7.12)

where renc is the radius of the circle enclosing the subapertures, F is the fill factor and κ

is the ratio of the radii of the two sets of subapertures.

A subset of the results obtained with the annulus fitness function are given in Figure

7.13. At first inspection, the MTFs might have little resemblance to the annulus MTF.

This is to be expected, as there were many restrictions placed upon these apertures, namely

that they must be composed of six discrete circular subapertures and must be located on

three arms intersecting at a common point, a far cry from the original annulus design.

As such, it is not reasonable to expect a close approximation of the annulus MTF. Upon

careful inspection, the tradeoff made by the optimization is clear. While these MTFs are

not isotropic or smooth in the periphery, each design possesses a ring of peaks around the

core that is approximately both constant and isotropic. So, while these apertures could

not reproduce the annulus MTF over the whole frequency range, they were able to do so

at the low to low-medium frequencies, which are the most important to visual perception.

Interestingly, the results for this function tended to place the larger subapertures towards

the center of the array. This contrasts to the results of the Golay fitness function with

this parameterization and the armed arrays in [Breckinridge et al., 2008], which placed

smaller subapertures towards the center.
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7.5.3 Acutance

(a) T = 3% (b) T = 12% (c) T = 20%
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(d) Expansion factor, s, as a function of T

Figure 7.14: Sample results for the acutance optimization. The value of the MTF thresh-
old, T directly influences the expansion factor, and thus fill factor, of the resulting Golay
aperture.

The final set of results uses the (xi, yi, ri) parameterization to maximize the acutance

fitness function, given in Equation 7.10. For these results, it was assumed that the im-

age would be viewed under normal conditions, where the Nysquist frequency of the pixel

grid would match the maximum acuity of the human visual system, 60 cycles/degrees.

As with the Golay fitness function, the MTF threshold, T can be used to control how

much subapertures spread out over the available range. As with the Golay optimization,

the minimum fill factor was set to 18%, although without a non-redundancy term, it is

expected that the optimization will produce an aperture with a higher fill factor.

As can be seen in Figure 7.14, the optimal apertures for the acutance fitness function

are the Golay apertures. This is not surprising, as the Golay apertures are the most effi-

cient at covering every frequency under some cutoff frequency. The behavior as a function

of the MTF threshold, T is of great interest in this optimization, however. The MTF

threshold in this context refers to the minimum value of the MTF that can be restored

in post-processing with some acceptable level of artifacts. An example of these artifacts

was shown in Figure 7.5 (f). In this example, a Golay array with an expansion factor of
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1.6 was used, equivalent to a T of 3% here. So, if that level of artifacting is deemed too

high for a specific system, a higher value of T can be used to affect the expansion ratio

and thus image quality. This behavior also matches the findings of [Breckinridge et al.,

2008], who found that higher fill factors were needed to resolve low-contrast features, as

T directly effects the MTF minimum level and thus contrast resolution. Subapertures of

different radii were also examined here, as in the previous section, but did not result in

any gains to the acutance fitness function.

While acutance is a measure of perceived image quality, it cannot be concluded that

the Golay apertures yield the optimal image quality. Acutance has been derived by the

IEEE Cell Phone Image Quality Group [Baxter et al., 2012] for systems with a monolithic

aperture functions. There is no mention of inverse filtering in this metric and it does not

account for inverse filtering artifacts. As such, the metric cannot be assumed to predict

sparse aperture image quality and the just-noticeable-difference scale in the acutance met-

ric is almost certainly invalid for sparse aperture imagery. As such, more research into a

proper sparse aperture image quality metric is needed before declaring the Golay apertures

optimal for perceived image quality, although the authors do think it likely.

(a) Simulated restored Golay image
(s = 1.6)

(b) Simulated restored discrete annu-
lus image (κ = 1.1)

(c) Simulated restored acutance im-
age (T = 0.12)

Figure 7.15: Images simulated with optimized apertures from three fitness function. Each
aperture was given the same amount of defocus (-0.5 waves), which was not corrected for
in the inverse filter. The bandpass ranged from 0.5 to 1 microns. (a) and (c) used the
(xi, yi, ri) parameterization, while (b) used the discrete arm parameterization. All three
optimizations used the same amount of glass.
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7.5.4 Simulated Image Comparison

Given the results obtained in the previous sections, images can be simulated using derived

optimal apertures. This simulation was done with the modeling approach in [Salvaggio

et al., 2015]. If the optimizations were performed correctly, the effects of the different

fitness functions should be seen in the output images. The goal of the annulus fitness

function was to give a broad frequency support, while also minimizing post-processing

artifacts. The goal of the acutance fitness function was to maximize perceived image qual-

ity, and thus the resulting image should subjectively look the best of the apertures to an

observer. The Golay fitness function should result in the most resolution out of all of the

designs, but since it does not account for post-processing, the resulting image should also

have the most artifacting.

Post-processing was done using a Weiner filter of the form

W (ξ, η) =
H∗(ξ, η)

|H(ξ, η)|2 + α · |S(ξ, η)| (7.13)

where H is the system OTF, α is a weighting term and S is the Fourier transform of a

Laplacian convolution kernel and acts as a smoothness term. α was set to 1 × 10−3 for

each image, so that all images were restored comparably. This value of α is an aggres-

sive restoration to be used in low-noise scenarios. Since the restoration filter accounts for

wavefront error, artifacting will be minimal with perfect knowledge of the wavefront error.

However, this is not a realistic scenario for space-based remote sensing systems. As such,

some wavefront error will be added to the system during the imaging process, but will not

be corrected for in the restoration. In these simulations, -0.5 peak waves of defocus was

added to all three apertures, so as to ensure a fair comparison. This value was selected to

highlight the differences in artifacting between the three designs.

As can be seen from Figure 7.15, the results generally match expectations. The Golay

aperture exhibits the most spatial frequency support, as the most tri-bar targets can be

resolved in Figure 7.15 (a). However, this comes at the cost of post-processing artifacts,

which affect the Golay aperture more so than the other apertures. The discrete annulus

aperture offers a balance between resolution, contrast and artifacts. While artifacts do

exist, they have a smaller magnitude than the Golay design. The contrast of the tri-bar
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targets is almost identical to the Golay design, however, one less tri-bar target can be

resolved. As was seen in Figure 7.13 (a), the discrete annulus has inconsistent frequency

support in the higher frequencies and the cutoff frequency is non-isotropic. This was the

tradeoff for obtaining constant and isotropic frequency support in the low to low-medium

frequency range. So, while the image performance seen here does not reach the level

of the theoretical annulus, it showcases the tradeoffs that must be made to produce a

constructible array. In addition, the layout of the discrete annulus aperture was confined

to three arms. This constraint was not applied to the other two designs.

Figure 7.16: Simulated restored image from a monolithic circular aperture with the same
amount of glass as the optimized apertures used in Figure 7.15. The circular aperture
results in a blurrier image overall and cannot resolve the last tri-bar series.

Finally, the acutance result is the most visually pleasing of the three images after

restoration, which was the intention of the optimization. The cutoff resolution is roughly

equal to that of the discrete annulus aperture, but the tri-bars have less contrast and

the image is smoother overall. However, the lack of any post-processing artifacts gives the

acutance aperture the highest perceived image quality. In addition, this fitness function has

the most intuitive tunable parameter, which can be set to eliminate post-processing for a

given system’s noise characteristics. Despite the differences between these sparse aperture

designs, all three apertures have much higher resolution than a monolithic aperture with

the equivalent amount of glass, shown in Figure 7.16, which cannot resolve any tri-bars in

the last series.
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7.6 Conclusions

In this chapter, an improved sparse aperture design framework was introduced, based on

genetic algorithms. This framework relaxed a number of computational constraints from

previous work in sparse aperture optimization. In addition, a small set of fitness functions

were presented that targeted incoherent sparse aperture image quality, a problem not ad-

dressed in previous optimization studies. An initial validation study was performed by

replicating the Golay-6 sparse aperture design in the new framework. This was achieved by

simply replicating the design goals from Golay’s work in the genetic apertures framework.

When similar parameters were used to previous work, identical results were obtained.

Once the optimization framework was validated, it was applied to two design problems

as demonstrations of the framework’s potential use cases. The first was to replicate the

attributes of another well-known sparse aperture design, the annulus. While the theoreti-

cal annulus has desirable image quality properties, it is likely impractical for construction

and launch. So, a set of sparse apertures were optimized that reduced the image arti-

facts seen in Golay-6 imagery, while also being practically constructible with a foldable

array. Such an aperture would be desirable in an application that required high frequency

information, but could not accept Golay levels of artifacting. Finally, an aperture was

optimized for acutance, a measure of perceived image quality. The result was a set of

Golay apertures, although with higher fill factors and lower expansion factors than nor-

mally seen in sparse aperture studies. The simulated imagery subjectively looked better

than the other designs, as it lacked any restoration artifacts, but came at the cost of a

lower cutoff frequency. Such an aperture would be desirable if the system’s main design

goal was visually pleasing imagery, such as wide area coverage for a consumer geospatial

information system (GIS) product.

Given this demonstration of the genetic apertures framework, the obvious future work

is to find a fitness function that directly relates to image quality of restored sparse aperture

imagery. Unlike sparse antenna array design, such as in [Marcano and Durán, 2000], there

is not an accepted metric for the quality of a sparse aperture imaging array. Conventional

image quality predictors, such as the General Image Quality Equation [Leachtenauer et al.,

1997] are not applicable to sparse aperture systems. The work in [Miller et al., 2007] put

forward some MTF metrics that are targeted towards sparse apertures. This work pro-
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posed using existing image quality metrics, such as acutance, while bounding the MTF

to account for the effect of post-processing. There has been much examination of the

“effective diameter” of a sparse aperture array. Perhaps these factors can be combined to

correlate with image quality for a specific application, such as perceived image quality or

target detection performance.

In addition to image quality concerns, there are additional practical concerns that

might need to factor into the optimization. For instance, the cost of the system will in-

crease as a function of the complexity of the system. For monolithic systems, the cost

tends to scale by at least the square of the diameter [AWMA and SPIE, 1996]. For a

sparse system, additional factors, such as the alignment and mounting system for all of

the mirrors, will factor into the cost. Integrating cost into the fitness function will al-

low optimizations that explore the trade space between cost and image quality. Besides

cost, increasing the complexity of a sparse aperture design also increases the necessary

engineering effort to both build the system and deploy it after launch. This research set

forward the method of enforcing a practical design through the parameterization. In the

case of a more flexible design than the discrete arm design presented here, a construction

practicality term in the fitness function may also be useful.

While finding fitness functions targeted towards sparse aperture image quality, cost

or construction practicality is obvious future work, there are still technical improvements

that can be made to the genetic apertures framework. The most obvious issue is spectral

performance. All optimizations done in this work were performed assuming monochro-

matic illumination. Increasing the bandpass has the effect of radially blurring the MTF.

While this will not have a large effect on the optimized apertures, it will likely allow the

apertures to spread slightly further apart, as the voids will be filled due to the spectral

blurring. Using the monochromatic approximation will result in a conservative design.

While the framework is perfectly capable of doing spectral simulations currently, an ef-

ficient approximation method is needed, so as to beat the linear runtime tradeoff with

spectral resolution. Robustness to wavefront aberration, such as piston/tip/tilt or coma,

is another interesting direction for future work, as such aberration would surely exist in a

real sparse aperture system. In addition, all current optimizations have a constant number

of subapertures, which was set to six in this work. It would be desirable for the framework
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to be able to vary the number of subapertures, so that the user does not need to run mul-

tiple optimizations with different numbers of sparse apertures and manually compare the

results. For a space-based system, only a small number of subapertures is likely practical

for construction, so this would be a tractable problem.



Chapter 8

Conclusions

In the previous chapters, a number of research efforts have been presented related to the

challenges of image quality modeling for non-conventional aperture systems. The efforts

have focused on sparse aperture systems, but the methods developed can be applied to al-

ternative aperture designs, including systems with segmented apertures, such as the James

Webb Space Telescope, or systems with phase elements inserted at the aperture plane. In

this chapter, there will be a brief summary of the conclusions reached in each research

effort, along with a broader discussion of the impact of these efforts and suggestions for

future work.

8.1 Modeling Approach

The sparse aperture image quality model was the core of this research and its implemen-

tation was described in Chapter 4. An overview of the model was given in Figures 4.1 and

4.2. This model was primarily based off of the initial work of [Introne et al., 2005], but

was built from scratch for this research with a couple of important improvements. First

among these improvements was the ability to model off-axis aberrations, such as coma,

which vary over the field of view of the system. This was a necessary improvement due

to the coma inherent in the laboratory system used for later experiments. Improvements

were also made to the aperture specification system, which allowed the model to accept

a wider range of apertures outside of existing well-known designs. This improvement al-

lowed for the optimization study in Chapter 7.

146
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(a) Restored image with circular
aperture

(b) Unprocessed image with sparse
aperture

(c) Restored image with sparse aper-
ture

Figure 8.1: Pavia hyperspectral data set as would be seen through a sparse aperture
telescope compared to a circular aperture telescope with the same amount of glass.

While the vast majority of modeled images shown in this research have been of bi-

nary patterns, such as edge targets of USAF-1951 resolution targets, the sparse aperture

model is also capable of accepting hyperspectral images, either real or simulated, as input

radiance data. Figure 8.1, shows degraded versions of a portion of the common Pavia

hyperspectral data set. In this figure, versions are shown through two systems using the

same amount of glass, one circular and one Golay-6 sparse aperture. When looking at

restored images from both cases, the resolution gains attainable with a sparse aperture

are clear, manifesting as higher contrast, sharper features and increased detail on building

roofs, parking lots and trees. The ability to simulate imagery from these systems will be

critical to future studies utilizing this model.
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8.2 OTF Validation

The first main contribution of this research is the validation of the modeling approach,

which begins with the study described in Chapter 5. In that chapter, an experiment to

validate the OTF predictions of the model is described, along with the laboratory setup

to facilitate that experiment. This setup involves an off-axis parabolic collimator and a

small-scale imaging system, which utilizes masks to create the sparse aperture effect. The

use of masks was inspired by [Zhou et al., 2009], but the laboratory system used here

offers a number of advantages. These advantages are the use of broadband illumination,

the ability to introduce extended scenes and the ability to introduce controllable wavefront

error. Previous sparse aperture validation studies had only used monochromatic illumi-

nation when measuring MTFs, however, larger bandpasses are useful in sparse aperture

design in order to offset the low signal-to-noise performance due to fill factor. In order to

model a realistic imaging scenario, the effects of wavelength on the system’s OTF need to

be modeled and thus, the ability to use broadband illumination in the validation study

was a necessary improvement. In addition, the ability to introduce extended scenes aided

in both this experiment, by facilitating slanted-edge measurements, and more importantly,

the artifact validation experiment.

The results of this experiment were shown in Figure 5.24. These results showed that

the MTFs measured in the laboratory matched the predicted MTFs obtained from the

model. This experiment was repeated three times for three different levels of wavefront

error and the results matched the model in each case. Sources of error were small in these

experiments, but were explainable through a number of factors, such as uncertainty in the

wavefront error of the laboratory system, uncertainty in the spectral transmission of each

element in the system, MTF of the back-end imaging system, and image noise propagating

through MTF measurement techniques. Even with all of these sources of error, RMS error

between the measured and modeled MTFs were all consistently around or below 1% MTF.

When the measured and modeled MTFs were used to restore slanted edge imagery, it was

shown that the relative edge responses were equivalent to within the limits of human

perception. Given these results, it was concluded that the model was correctly modeling

the sparse aperture OTF, complete with the effects of spectral bandpass and wavefront

error. This work was published and presented as [Salvaggio et al., 2015].
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8.3 Artifact Validation

Once the basic OTF predictions of the model were validated, validation of post-processing

artifacts was attempted. While post-processing artifacts have been predicted in optical

sparse aperture imagery before, such as in [Block, 2005], there has not been a study that

tries to compare the predicted artifacts to those seen in real data, which is a necessary val-

idation that must be performed before trusting model predictions for use in trade studies.

As such, Chapter 6 describes an experiment to produce artifacting in real sparse aperture

imagery and compares this artifacting to model predictions. In addition, a very simple

trade study was presented, addressing spectral band selection. There were two goals in

the analysis of both of these studies. The first was to determine whether the model was

predicting the exact artifacts seen in real data and the second was to determine for a given

set of parameters, if the model was producing the right level of artifacting. That is, the

model should be producing the right degradation in image quality, even if the produced

artifacts do not match exactly.

Two experiments were described in Chapter 6, corresponding to the two major drivers

of artifacting in sparse aperture imagery: uncertainty in wavefront error and uncertainty in

the system’s spectral weighting function. To a reasonable confidence, the laboratory sys-

tem’s spectral weighting function could be measured with a spectrometer and monochrom-

eter. As such, it was possible to set up an experiment where the true spectral weighting

function was used in restoration, while uncertainty in the wavefront error was introduced.

Modeled and measured images were produced of a USAF-1951 target and 1D profiles were

extracted over each tri-bar target. Profiles were compared on a point-to-point basis to

test for exact matching. Error was shown to be approximately 5% of the peak intensity.

Inspection of the results showed that while measured and modeled artifacts were close,

they were not a perfect match. However, artifact area and peak height were also measured

in both data sets and showed good agreement. As such, it is likely that the image quality

impact of these artifacts were correctly predicted by the model, although such a conclusion

is not entirely certain without further research into a sparse aperture image quality metric.

While the spectral weighting function of the lab setup was measurable, the wavefront

error was not, due to the limited budget available for this research. As such, a different

approach was taken to validate the effects of the spectral weighting function. Two sys-
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tems were simulated with the use of spectral filters. A highly spectrally-varying object was

created using a dual-bandpass filter in front of the illumination source. The USAF-1951

target was then imaged under different conditions. A broadband system used the entire

bandpass of the imaging detector. A two-band system was simulated by collecting two

images through a shortpass and longpass filter with the same cutoff frequency. Restoration

of all three images was performed without knowledge of the filtered illumination spectrum

and the longpass and shortpass images were then summed to restore the signal-to-noise

ratio of the broadband image. This creates a scenario of two systems with identical wave-

front error, but differing amounts of error in the spectral weighting function, overcoming

the limitation of not knowing the wavefront error. In both the measured and modeled case,

the multi-band image showed a decrease in artifacting. More importantly, this decrease

was roughly consistent between the measured and the modeled data set.

The main conclusion of this study was that the post-processing artifacts predicted

by the sparse aperture model are, in fact, real and will appear in actual imagery. For a

given amount of wavefront error, real artifacts will appear with approximately the same

height and area as those predicted by the model, although their shape and position might

vary slightly due to noise and pixel phasing effects. Unfortuantely, due to the lack of

precise knowledge of the wavefront error, a perfect match between modeled and measured

data was not possible. Regardless, the intuition that artifacts arose from errors in the

wavefront error estimate and spectral weighting function estimate was confirmed. Finally,

it was shown that careful selection of spectral bands can reduce the error due to the

implicit gray-world assumption in restoration, resulting in a decrease in artifacting. By

showing that this improvement in artifacting performance was accurately predicted by the

model, it was shown that the model can be used in future trade studies about artifact

performance with reasonable confidence.

8.4 Aperture Layout Optimization

Chapter 7 described the final study in this research and focused on optimizing the spatial

layout of sparse apertures. This optimization was performed using a genetic algorithm.

The main contribution of this study was the framework of the optimization, however, a

number of demonstrations were also outlined in this chapter, which was published as [Sal-



8.4. APERTURE LAYOUT OPTIMIZATION 151

vaggio et al., 2016]. While a large number of variables may be optimized, the domain of

optimization in the presented demonstrations was confined to the positions and sizes of

circular subapertures.

In order to run an optimization, the user has to specify three components: the param-

eterization, search strategy and fitness function. In Chapter 7, two parameterization and

search strategy examples were provided, along with three fitness function examples. The

first study that was done was aimed as a validation experiment. [Golay, 1971] had de-

rived a set of aperture patterns that maximized both non-redundancy and compactness.

These results were reproduced in the genetic algorithm framework. Subapertures were

allowed to move anywhere within a given radius and the radius of each subaperture was

held constant, as it was in Golay’s work. A fitness function was designed to count the

number of “resolved” frequencies and balanced that with the compactness of the peaks

in the MTF. Golay’s results were reproduced by finding the correct balance between the

two terms in the fitness function. Golay had confined his result to have three-fold sym-

metry, however, this constraint was not placed on the optimization and occurred naturally.

Once the genetic algorithm approach was validated, it could be used on new design

problems. Another fitness function was designed to reproduce the frequency domain bene-

fits of the annulus sparse aperture design, which has been seen in previous works. However,

in this study, a practical and build-able design was desired. So, it was demonstrated that

the parameterization could be used to enforce design constraints, in this case, that sub-

apertures must be located on a discrete number of “arms”. In addition, subaperture

size was allowed to vary in a controlled manner, although the optimization showed that

the best design had roughly constant subaperture size. The results of this study demon-

strated some of the benefits of the annulus design. That is, the simulated imagery showed

good modulation performance with reduced artifacting. Qualitative examination of the

resulting MTFs showed that the optimized apertures emulated the annulus design at low

frequencies quite well, despite the considerable design constraints of six subapertures on

three arms.

The final demonstration in this study aimed to maximize perceived image quality. To

this end, the acutance metric from [Baxter et al., 2012] was used as a fitness function, with
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some slight modifications for sparse aperture imagery. This fitness function offered an ad-

justable parameter, which served to control the amount of artifacting that was deemed

acceptable for a given application. The results of this study were the Golay apertures, al-

though with lower expansion factors than normally seen in sparse aperture studies. When

the expansion factor is decreased, secondary peaks in the Golay aperture condense and

overlap, causing the MTF to resemble the constant disc of the annulus design. As such,

it made sense that this MTF would maximize the acutance fitness function. Simulated

imagery from the optimized apertures looked subjectively better than imagery from the

other two, reflecting the goals of the fitness function.

The three demonstrations presented in Chapter 7 showed the adaptability of the op-

timization framework, even with a constrained domain of optimization parameters. By

changing the fitness function, the user was able to obtain three very different telescopes,

one that resolved as many frequencies as possible within a certain cutoff frequency, one that

balanced artifacting, resolution and constructibility, and one that maximized perceived im-

age quality. When combined with future metrics for sparse aperture image quality, this

framework could prove very useful to future designers of sparse aperture telescopes. This

design optimization framework could also be easily extended to other non-conventional

aperture systems that can be compactly parameterized.

8.5 Broader Impacts

The research presented here can have impacts for the field of sparse aperture imaging,

as well as imaging with other non-conventional apertures. In the field of sparse aperture

imaging, this works showed the validity of the model presented in Chapter 4, which is

an updated and improved version of the model presented in [Introne, 2004]. The OTF

predictions of the model were validated through the use of a small-scale laboratory sparse

aperture system. This validation study was more extensive than previous efforts in that

it introduced both broadband illumination and controllable wavefront error. Such a setup

could be used to perform broadband MTF studies for other types of non-conventional

systems and the ability to introduce extended scenes allows this laboratory setup to be

used for other types of calibration and testing.
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Beyond simple OTF predictions, the model is capable of performing image simula-

tions. The most unique feature of simulated sparse aperture images is ringing artifacts

after post-processing. The occurrence of these artifacts in real data was also validated

through a laboratory experiment. It was shown that the model can be trusted to pre-

dict the correct level of artifacting and can be used as a stand-in for real imagery in a

trade study focused on these artifacts. This property can result in large cost reduction to

anyone designing a sparse aperture telescope, as it can potentially eliminate a good deal

of physical prototyping. Finally, given that trust in the model was established with the

validation studies, it was shown that the user could design new sparse aperture systems by

using model predictions in conjunction with an optimization framework, based on genetic

algorithms. With further computational improvements, it could be possible to integrate

artifact predictions directly into the optimization.

While all of these contributions are useful to the field of sparse aperture imaging, they

are extensible to other forms of non-conventional imaging. The two most notable examples

are segmented aperture imaging and phase elements. It was shown that the precursor to

the model used here could be applied to segmented apertures, such as the James Webb

Space telescope, by [Zelinski, 2009]. This model could be used to perform trade studies on

such systems, such as spectral band selection. If a larger sparse segmented aperture were

desired, this model could be used to determine which sub-mirrors could be omitted to

minimize the effect on image quality. Phase elements are an even more natural extension.

Phase elements can be used to alter the point spread function of a system, as in [Ruane

et al., 2015]. Almost every step of the methodology in this research could be replicated by

simply replacing the sparse aperture mask with a phase element. If the phase function of

the element is parametrizable, it could also be optimized with the framework set forward

in Chapter 7.

While the modeling framework presented and validated in this work can be critical to

performing trade studies on non-conventional aperture systems, there are some limitations

that need to be addressed. This model only covers a portion of the imaging chain. That

is, it ignores all of the light-matter interactions that occur prior to the radiance reaching

the entrance pupil of the system. Similarly, the model ignores the last steps of the imaging

system, those of display, perception or analysis. As such, the model only functions as part
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of an image simulation pipeline, but can be integrated with other components, such as the

Digital Imaging and Remote Sensing Image Generation (DIRSIG) model, to model the

entire imaging chain. However, the final quality of the simulated system will be dependent

on the tools chosen to address the remainder of the imaging chain. In addition, the model

presented does not explicitly model all of the necessary optics for a real sparse aperture

system. In reality, a significant amount of back-end optics, such as fold mirrors and beam

collectors, will be necessary. Misalignments or imperfections in these optics will cause

wavefront error, such as piston, tip and tilt, among others. Once computed, these errors

can be integrated into this model, however, the computation of these aberrations was not

covered here. Beyond these limitations, there are numerous improvements and areas for

future work.

8.6 Future Work

There are a large number of possible areas for future work based off of this research. The

most obvious is the area of sparse aperture image quality metrics. While the NIIRS scale

is still applicable to sparse aperture imagery, the GIQE regression fit is not. A sparse aper-

ture image most likely should be characterized using different or additional terms for both

resolution and post-processing artifacts and both the coefficient values and functional re-

lationships are likely to change. A future study that combines predictions from this model

and the methods from [Garma, 2015] would be an interesting continuation of this work.

Findings from this study could then be integrated with the optimization approach from

[Salvaggio et al., 2016] to produce useful new sparse aperture designs.

Future work on sparse aperture modeling is also a possibility. A key assumption in the

modeling approach of this work was that the entrance pupil-reaching radiance field could

be described as a two-dimensional quantity. This is a valid assumption for a satellite-sized

telescope. However, if such a telescope is spread over a large enough area, then this as-

sumption breaks down and perspective differences begin to emerge between the telescopes,

resulting in a depth of field/focus for the telescope. The integration of this effect into the

model would widen the potential use cases to even more exotic system designs. In Chap-

ter 6, a number of limitations of the model and the laboratory setup became clear. The

issue of pixel phasing became clear when evaluating the spectral data and the ability to
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provide multi-scale input imagery to the model would be useful in examining how artifacts

varied as a result of pixel phasing. The uncertainty in wavefront error was the primary

reason that the model could not exactly predict the observed artifacts. A system that had

more controllable wavefront error, through the use of adaptive optics equipment, such as

a wavefront sensor and a deformable mirror, would allow for more precise and automated

comparisons between measured and modeled data. So, while defocus and coma was the

only wavefront error explicitly examined in this work, the introduction of a deformable

mirror could allow for automated experiments that examined the effects of other aberra-

tions, such as local piston, tip and tilt, among others.

While artifact predictions were directly validated, it would also be advantageous to val-

idate entire two-dimensional image simulations. As work in hyperspectral image projectors

advances, such as in [Iacchetta et al., 2015], it would at some point be worth investigating

whether such a system could be integrated into the laboratory system. While the post-

processing artifacts are the most unconventional portion of the image simulation outputs,

it would still be a worthwhile conclusion to see that image simulations are, in fact, in

agreement with real data. Such a study could either perform subjective experiments with

human observers or task-based automated studies to establish whether image quality was

accurately modeled.

Finally, the issue of post-processing on sparse aperture imagery could be investigated

further. In this research, the post-processing methodology was held constant throughout

every experiment. This allowed for analysis of the underlying effects that caused artifact-

ing, namely wavefront error and spectral weighting function uncertainty. While improving

these sources of error will generally decrease artifacting, it may also be possible to decrease

overall artifacting by improving the post-processing operation. This may be accomplished

through a number of means, such as examining non-linear techniques or spatially varying

the linear post-processing filter. It would be useful for future studies to look into whether

additional information, such as the spectral content of the scene, would result in significant

decreases in artifacting.
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