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Abstract

Mapping land-cover land-use change (LCLUC) over regional and continental scales, and long time
scales (years and decades), can be accomplished using thematically identified classification maps
of a landscape—a LCLU class map. Observations of a landscape’s LCLU class map pattern can
indicate the most relevant process, like hydrologic or ecologic function, causing landscape scale
environmental change. Quantified as Landscape Pattern Metrics (LPM), emergent landscape pat-
terns act as Landscape Indicators (LI) when physically interpreted. The common mathematical
approach to quantifying observed landscape scale pattern is to have LPM measure how connected
a class exists within the landscape, through nonlinear local kernel operations of edges and gradi-
ents in class maps. Commonly applied kernel-based LPM that consistently reveal causal processes
are Dominance, Contagion, and Fractal Dimension. These kernel-based LPM can be difficult to
interpret. The emphasis on an image pixel’s edge by gradient operations and dependence on an
image pixel’s existence according to classification accuracy limit the interpretation of LPM. For
example, the Dominance and Contagion kernel-based LPM very similarly measure how connected
a landscape is. Because of this, their reported edge measurements of connected pattern correlate
strongly, making their results ambiguous. Additionally, each of these kernel-based LPM are un-
scalable when comparing class maps from separate imaging system sensor scenarios that change
the image pixel’s edge position (i.e. changes in landscape extent, changes in pixel size, changes in
orientation, etc), and can only interpret landscape pattern as accurately as the LCLU map classi-
fication will allow. This dissertation discusses the reliability of common LPM in light of imaging
system effects such as: algorithm classification likelihoods, LCLU classification accuracy due to
random image sensor noise, and image scale. A description of an approach to generating well
behaved LPM through a Fourier system analysis of the entire class map, or any subset of the class
map (e.g. the watershed) is the focus of this work. The Fourier approach provides four improve-
ments for LPM. First, the approach reduces any correlation between metrics by developing them
within an independent (i.e. orthogonal) Fourier vector space; a Fourier vector space that includes
relevant physically representative parameters (i.e. between class Euclidean distance). Second,
accounting for LCLU classification accuracy the LPM measurement precision and measurement
accuracy are reported. Third, the mathematics of this approach makes it possible to compare
image data captured at separate pixel resolutions or even from separate landscape scenes. Fourth,
Fourier interpreted landscape pattern measurement can be a measure of the entire landscape shape,
of individual landscape cover change, or as exchanges between class map subsets by operating on
the entire class map, subset of class map, or separate subsets of class map[s] respectively. These
LCLUC LPM are examined along the 1991-1992 and 2000-2001 records of National Land Cover
Database Landsat data products. Those LPM results are used in a predictive fecal coliform model
at the South Carolina watershed level in the context of past (validation study) change. Finally,
the proposed LPM ability to be used as ecologically relevant environmental indicators is tested
by correlating metrics with other, well known LI that consistently reveal causal processes in the
literature.
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Chapter 1

Introduction

Traditional approaches to detecting human impacts on rivers include chemical, biotic, hydrologic,
and physical habitat assessment. Most notable are the water chemistry and biotic indices developed
along community and regional scale monitoring programs. These programs typically monitor water
quality attributes such as water clarity, temperature, and conductivity; or are biotic surveys of
aquatic invertebrates, algae, plankton, and vascular plants. Using traditional hydrological indices,
instream flow, methods reduce the riparian system to a series of pipes and drains where comparisons
between contemporary and historic flows, methods based on hydraulic geometry, and instream
habitat assessment are recorded to describe potential ecological efficacy. Sediment sequence and
composition, soil and sediment erosion, stream flow, stream channel morphology, stream sediment
storage and load, surface water quality, and hydrology of floodplains and wetlands are several of
the traditional geoindicators used in physical habitat monitoring [Gergel et al., 2002]. Still, in all
of their attention to detail neither of these indicators are a direct measure of human influence,
consider the effects of upland land-use on riverine systems, or are directly connected to an effect of
its cause. They are strictly local in interpretation, and can be application (e.g. region, watershed,
catchment, etc.) specific.

These traditional river indicator campaigns tend to be totally biologic or geologic in construc-
tion. However, biological activity has not been well linked with river-bed shape, making it difficult
to interpret one type of indicator from another [Maddock, 1993]. An answer to connecting the sep-
arate biologic and geologic perspectives for interpreting causal environmental relationships can be
found in Landscape Ecology. The science of Landscape Ecology employs landscape scale indicators
that have a strong correlation with traditional riparian indicators, particularly for water chemistry
indicators. These landscape scale indicators form a more complete picture of the watershed due to
terrestrial effects, including human influences.

In Landscape Ecology, the entire surface of the Earth is considered to be a living organism.
Where, a map of categorized surfaces (e.g. satellite derived land-cover land-use (LCLU) classifica-
tion maps, or census data) are a snap shot of biotic activity. Shape characteristics of an individual
class patch and interrelationships between class shapes are an indication of current and potential
biotic health. Where, for a given LCLU class type, any set of contiguous pixels are referred to as
a patch.

Multiple landscape level indices of biotic health have been proposed; mostly concerning cov-
erage percentage, statistical moments, entropy, fractal dimension, and spatial characteristics (e.g.
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physical extent of class coverage, distance from nearest body of water, etc.) to name a few. A sig-
nificant amount of theory used in interpreting these landscape indices is borrowed from the science
of population dynamics. Where nine factors of population (or patch) influence and existence are
used for population dynamics index interpretation [Akcakaya et al., 1999]:

• Degree of isolation (distance to nearest neighbor, and mainland)

• Length of isolation (time)

• Relative size of class patch (larger coverage area usually facilitates greater activity)

• Climate (tropical versus arctic, humid versus arid, etc.)

• Location relative to ocean currents (influences nutrient, fish, bird, and seed flow patterns)

• Initial plant and animal composition if previously attached to a larger land mass (e.g., mar-
supials, primates, etc.)

• During initial contact: the relationship between the pairing classes (if always isolated)

• Serendipity (the impacts of chance arrivals)

• Human activity

Three landscape indices have consistently shown a high correlation to biotic health. As indi-
cators of watershed integrity, biotic integrity and diversity, and landscape stability and resilience:
the Environmental Protection Agency (EPA) has identified entropic measures of Dominance and
Contagion, as well as the statistical measure of Fractal Dimension. However, these three indices
of Dominance, Contagion, and Fractal Dimension suffer from a nonlinear dependence on imaging
system resolvability. Also, a strong correlation between Dominance and Contagion indices make
it difficult to understand which population dynamics factor is effecting index variability.

Now, consider the measure of landscape level indices as a nonlinear operator on any imaging
system derived landscape product. From a systems perspective, each map of the landscape is ideally
effected by only the imaging system’s capture method. These imaging system effects are functions
of observed spatial scale. Where for a satellite derived LCLU map, imaging system spatial scale
effects are completely dependent on sensor pixel size and sensor observation height. Landscape
Ecology’s respective parameters of spatial scale are grain size and extent. The nonlinear effects
of these operators (scale effects) limit the interpretation of landscape indices for LCLU maps of
different spatial scales.

Spatially, the imaging system scale effects are introduced as a series of summations (see Figure
1.1). The relationship between a spatially varying lower resolution function f �[x] and a spa-
tially varying higher resolution function f [x] using pixel element h[x

d ] is f �[x] ≡ f [x] ∗ h
�

x
d

�
=�

α f [α] · h[α−x
d ]∂α—here, d is the pixel width and ∗ is the convolution operator. The summation

makes it difficult to compare one pixel from a lower resolution image f �[x] and its higher resolution
component positions in f [x]. Interpreting any pixel-based operation done on multiple resolution
images would be even more difficult. However, when interpreting the observed landscape along its
spatial frequency, scale effects are introduced as a single summation, smoothly varying, windowed
function of bandwidth (see Figure 1.2). The relationship between a lower resolution’s spatial fre-
quency F �[ξ] and a higher resolution’s spatial frequency F [ξ] with pixel spatial frequency response
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function (i.e. bandwidth) d · H[d · ξ] is F �[ξ] ≡ F [ξ] · d · H[d · ξ]—again, d is the pixel width. De-
veloping and interpreting indices along the observed landscape’s spatial frequency provides clarity
about system scale effects. Analysis of spatial frequency is done using the Fourier transform.

Figure 1.1: The spatial convolution operation for a detector sampled function. Pixel element
h[x− x0] is a sample across the function f [x] at every position x0, for all of the N pixel positions
in the scene. Shown in a are the areas sampled for h[x] at positions x = 0, j and N − 1; where a
sample is a simple average of the values contained within h[x]. b shows this process graphically
with “+” as the average, and the resultant convolution g[x] is shown in c.

Three indices are proposed to take advantage of this bandwidth interpretation: the Fourier
Metric of Proportion (FMP), the Fourier Metric of Fragmentation (FMF), and the least squares
Fourier transform (lsFT) method for fractal dimension. Each of these indices are developed, and
interpreted within the Fourier transform’s spatial frequency domain.

As a measure of landscape composition, FMP reveals how evenly distributed each class patch
is across the landscape. A single LCLU class dominating landscape cover may be interpreted as
aggressive biotic activity, whereas an evenly distributed landscape LCLU would hold greater class
diversity. FMF measures landscape spatial configuration, or the nature of movement between
classes. Fractal dimension is an indication of LCLU influence and occupancy across a landscape.
A new approach to fractal dimension estimation analysis is presented, and reveals the lsFT method
to report a relatively more accurate measure of statistically self-similar fractals. These self-similar
fractals are the types of fractal found in landscape patterns [Mandelbrot, 1977].

Chapter 2 discusses the objectives, and directly identifies each goal of this research effort.
Chapter 3 serves as a general introduction to the field of Landscape Ecology. Chapter 3 also covers
the elementary theory for the practice of Landscape Ecology, the considered Landscape Indicators
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Figure 1.2: The Fourier convolution operation. After being transformed into the Fourier domain,
convolution is a simple multiplication between the representative signal F [ξ] and representative
pixel element H[ξ]. When the resultant product G[ξ] is transformed back into a spatial signal, the
expected result g[x] is found. a shows this graphically, and b plots this process. No matter what
spatial resolution window H[ξ] is used the relationship between higher and lower spatial frequencies
are always the same (as indicated by the arrows in a), and so are easy to compare between multiple
resolution images. Both plots g[x] here, and g[x] in Figure 1.1 are the same.

(LI), and appropriate background in Fourier system analysis for the discussion of proposed LI in
a Fourier vector space. The approach of each of these Fourier metrics is discussed in Chapter 4,
where the concept and theory of each of these Fourier-based LI are considered. Chapter 5 reveals
preliminary results of each proposed indicator, and makes a comparison between current and pro-
posed LI. Chapter 6 compares the Fourier-based metrics against traditional Landscape Pattern
Metrics (LPM) popular in the literature. This comparison reveals how unique the Fourier-based
metrics are. The relevance of these metrics are then determined for fecal-coliform prediction in
Chapter 7. Also, a 1991-1992 training and 2000-2001 testing model validation study of South Car-
olina watersheds is analyzed. Finally, Chapter 8 provides an overview of this work by summarizing
each of the preceding chapters.
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Chapter 2

Objectives

This dissertation develops a systems approach to understanding the long-term effects spatially
revealed landscape function have on their environment. The question asked when monitoring
landscape function using different types of sensors is, “how to consistently report the change in
landscape function pattern, that is ecologically relevant?” The objectives of this proposed work are
to increase the reliability of multiple sensor scale Landscape Pattern Metric (LPM) comparisons,
as Landscape Indicators (LI), by developing and applying a Fourier systems analysis approach for
LPM. Here, LPM quantitatively describe spatially revealed landscape function change, while LI
describe spatially revealed and ecologically relevant landscape function. This approach operates
on whole images of a class map or image subsets of class map to understand what process(es)
encourage the patterns seen across a landscape, independent of the image capture method. The
metrics derived this way have advantages over metrics found from traditional local kernel-based
edge and gradient operators by eliminating the statistical dependence between LPM, and resolving
issues of scalability. The hypothesis: by incorporating information from larger regions of class
map, the proposed metrics will be more sensitive to large scale, but subtle land-cover land-use
(LCLU) change.

My research goals are to:

1. Reduce correlation between metrics by developing them under an uncommon

(i.e. orthogonal), physically representative Fourier vector space. Each pixel ele-
ment in the Fourier vector space is spatially independent from one another. This is granted
by the orthogonal sinusoidal basis that composes the Fourier Transform operator. Addition-
ally, the Fourier vector can be separated into independent image parameters of magnitude
and phase. Combinations of these individual LCLU class magnitude and phase independent
parameters prevent metric ambiguity due to the measurement-operator bias. This makes
LPM correlation analysis clear when interpreting whether the prescribed relationship is due
to the mathematics used to observe the pattern, the image scale (i.e. image pixel resolution),
or the process being observed.

2. Relieve misunderstandings between measurement precision and measurement

accuracy when reporting LPM from satellite imagery. How well behaved any LPM
might be versus how relevant the LPM is to an observed process are concerns of measure-
ment precision versus measurement accuracy. Including the effects of LCLU map algorithm
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classification likelihood, the ability of each metric to consistently report change to within
some degree of confidence is evaluated.

3. Compare image landscape pattern captured under separate image scenarios,

along with a statistical measure of confidence. Expressed as error bounds each metric
reports its dependence on the accuracy of the LCLU classification algorithm, LCLU classifi-
cation due to random image sensor noise, and LCLU classification due to image scale.

4. Interpret landscape pattern measurement spatially: measuring the entire land-

scape shape (i.e. entire class map), or individual landscape cover interactions

(i.e. subset of class map, or exchanges between class map subsets). All of the met-
rics proposed in this dissertation report local information of landscape change using global
parameters of the LCLU map. This global operation along with the ability to locally inter-
pret LCLU class map provide Fourier LPM the flexibility to be applied to any combination
of LCLU classes.
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Chapter 3

Background

3.1 Landscape Ecology

German Geographer Carl Troll published a paper titled, “Aerial Photography and Ecological Stud-

ies of the Earth” where he considered the entire landscape, so the totality of species within an
area, to study interactions between environment and vegetation [Troll, 1939]. This was not, and
is not, the typical approach to case studies within Ecology—usually ecological investigations sim-
plify their questions by handling a single, homogenous species (e.g. camphor tree, lions, wheat,
red imported fire ant). This change in philosophy of approach is portrayed in Ingegnoli’s 2002
ecotissue1 model, shown in Figure 3.1. Beginning nearly fifty years later, applications of Troll’s
landscape level analysis, emphasizing the significance of spatial pattern and scale on ecology across
landscapes, began to arise [Baker and Cai, 1992, Gustafson and Parker, 1992, Haines-Young and
Chopping, 1996, Krummel et al., 1987, O’Neill et al., 1988, Romme and Knight, 2004, Turner,
1989, Wickham and Norton, 1994]. Dubbed Landscape Ecology, the study of spatial variation in
landscapes at a variety of scales has seen much of its activity in the manufacturing of simple spatial
metrics for change in scale and pattern, and the theoretical limitations of this approach [IAL, 2007].
With the advent of MacArthur and Wilson’s 1967 theory of Island Biogeography [MacArthur and
Wilson, 1967] and Levins’ [1969] Metapopulation model, a mathematical framework for under-
standing heterogeneous landscapes using land-cover land-use (LCLU) maps from labeled satellite
imagery had been developed. An example of these labeled (i.e. classification) maps can be seen in
Figure 3.2. Predominantly due to the work of Turner, Gardner, and O’Neill, Landscape Ecology’s
questions of pattern and scale have been treated by applying landscape pattern metrics2 (LPM) to
classification maps on each LCLU class, or contiguous pixels of a given classification, known as an
ecological patch3: these metrics being measures of entropy, fractal dimension, regression schemes,
moments, etc. [Crews-Meyer, 2006, Turner and Gardner, 2001].

1Ingegnoli [2002]’s ecotissue separates the ecological landscape into connected macroecologic and microecologic

subdivisions.
2Quantitatively described, spatially revealed, landscape change.
3The smallest contiguous unit of a LCLU class.
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Figure 3.1: The ecotissue model. The basic mosaic is generally the vegetation one where the
complex structure of a landscape is integrated over diverse components: temporal, spatial, and
thematic. The integration at each stage are intrinsic, meaning every level of the ecotissue model
must follow the population dynamics derived from the intrinsic characters at that level of life
organization [Ingegnoli, 2002].

3.1.1 Elementary Theory of Landscape Ecology

Island Biogeography

MacArthur and Wilson’s [1967] theory of Island Biogeography, while developed separately from
Landscape Ecology, gives credence to Troll’s focus on the consequences of landscape heterogeneity
by considering any isolated species to be an island unto itself. For instance, mountains surrounded
by desert, or an isolated lake in the middle of dry land. The existence of these confined objects
is then dependent on two factors: the size of the object, and its proximity to objects that would
compromise its existence. So, according to Island Biogeography at the landscape level, any evidence
of an individual object’s size, and proximity to other objects within an area is indicative of the
potential health of that object. Example ecological patches are shown for the emboldened blue
LCLU patch (i.e. object) in Figure 3.2 of a general water land cover, and the emboldened red
LCLU patch of general mixed vegetation/soil land cover). Figure 3.3 below show these Island
Biogeography concepts.
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Figure 3.2: A land-cover land-use (LCLU) classification map of Dresden, Germany acquired by
the SPOT-3 sensor (22 April 1995). The left image presents surface reflectance after atmospheric
correction (RGB=SPOT bands 3/2/1, NIR/Red/Green), and the right image shows the results of
the automatic spectral reflectance classification. The map legend goes as: dark to bright green—
different vegetation covers; blue—water; brown—bare soil; grey—asphalt, dark sand/soil; white—
bright sand/soil; red—mixed vegetation/soil; yellow—sun-flower rape while blooming [ATC, 2007].
Examples of ecological patches are shown by the emboldened blue, water class and emboldened
red, mixed vegetation/soil class ecological patches in the spectrally labeled (right-side) image of
Dresden.

Metapopulation

MacArthur and Wilson’s theory of Island Biogeography interprets the potential survival of: a
single object, two objects of the same type, and two objects of a different type within a landscape.
Each object is a LCLU patch. Levins’ Metapopulation model explains how the existence and
interaction of these LCLU patches can be represented. The better or more realistic model of
species fragmentation—how each LCLU patch is worn away or grows—would be stochastic, but
Levins modeled within-species island aggregation, and invasive-species succession deterministically.
Using a satellite derived LCLU map as an object process model of either existence or nonexistence
in a landscape has consistently given an accurate description of ecological exchange [Gaggiotti
and Hanski, 2004, Hanski, 2002, Hanski et al., 2004, Ovaskainen and Hanski, 2004, Singer and
Hanski, 2004, Wahlberg et al., 2004, Wiegand et al., 2003]. Levins described Metapopulation as,
“a population of populations which go extinct locally and recolonize.” The mathematical expression
is:

∂p

∂t
= m · p · (1−N)− ε · p (3.1)

where p is the proportion (fraction) of population centers (e.g. LCLU patches), m is the migration
(colonization) rate, ε is the rate at which local populations go extinct, and N is the total number
in the population. The existence or nonexistence of a classified pixel, like the ones of a LCLU map
in Figure 3.2, is then sufficient to accurately model ecological processes.
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Figure 3.3: The legend for Island Biogeography concepts is located on the far left. The legend
goes from a hazardous object state of existence (red), to a neutral state (yellow), and an optimal
state (white). In example a, the single localized object is at a neutral state of existence. However
in the b and c examples, introducing a second object affects the original object’s existence. For
b, the distance between separate objects (green ball vs. cyan ball) is directly proportional to the
green object’s existence. Here, cyan identifies the predator and green identifies the prey. For c, the
distance between similar but separate objects (green ball vs. green ball) is inversely proportional
to the green object’s increased support and state of existence. The closer similar groups are to
each other, the more likely they are to join as one group, which increases preservation. Note: that
for any object (green or cyan), the farther away from the center of the ball, the lower the object’s
likelihood of existence. This is a stochastic (Gaussian) representation of species interaction.

3.2 Landscape Pattern Metrics (LPM)

With this new synoptic ecological focus on heterogeneous structure, and a simple but sufficient
model of heterogeneous structure dynamics, the utility of remote sensing classification maps be-
comes obvious. Using the LCLU classification map, LPM have evolved and have been used to
quantify aspects of spatial pattern, correlating them to ecological processes [Baker and Cai, 1992,
Frohn, 1998, McGarigal and Marks, 1994, O’Neill et al., 1988, Ritters et al., 1995, Turner and Gard-
ner, 2001]—correlated spatial metrics are then interpreted as landscape indicators (LI) of ecological
processes. Of that evolution, three metrics have consistently shown a correlation between pattern
and process. Dominance, Contagion, and Fractal Dimension are LPM that have been proposed by
the Environmental Protection Agency (EPA) Environmental Monitoring and Assessment Program
(EMAP) [Agency, 1994] to act as watershed integrity and diversity indicators, landscape stabillity

and resilience indicators, and biotic integrity and diversity indicators.
As an example of such an indication of landscape level influence: in an upland catchment of

the Calado floodplain along the Amazon, Williams et al. [1997] and Williams and Melack [1997]
found large increases in solute mobilization from the upper soil horizons after cutting and burning
catchments. Nutrient ratios in streams were altered from a nitrogen-to-phosphorus ratio of 120:1
before deforestation, to a ratio of 33:1 after deforestation [Gergel et al., 2002]. The variability
in Calado floodplain catchment nitrogen-to-phosphorus water chemistry was inversely correlated
to the 80% change in presence of forest land-cover [Williams and Melack, 1997]. Presence of

forest land-cover is a landscape pattern metric. Williams and Melack observed a direct temporal
connection between the stream water chemistry process, and the change in landscape Presence of
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forest land-cover LPM pattern. Nitrogen-to-phosphorous temporal variability, caused by cutting
and burning catchments, could be explained to within 80% confidence by LPM. Very encouraging
for Landscape Ecology. This approach to LPM landscape analysis is shown in Figure 3.4, and
additional examples of landscape indicators are shown in Table 3.1.

Figure 3.4: The LPM approach to landscape analysis. When using LPM the process being observed
must first be defined. After having defined the process being observed, expected process relevant
patterns can be used to determine an environmental cause. In the bullets, at every level of analysis,
a general description for identifying the cause behind some pollutant loading process is shown using
the proportion LPM.

3.2.1 Dominance

The measure of landscape class Proportion pj used by Williams and Melack is the fraction of class
j occupying the landscape.

pj ≡
nj

N
=

the total number of cells (pixels) of class j

the total number of cells (pixels) in the landscape (image)
(3.2)

It is a simple metric, but a metric that correlates most with ecological function [Turner and
Gardner, 2001].

A metric of greater complexity, that describes the relative variability in Proportion across the
landscape, is Dominance. Dominance measures the equality of LCLU class proportion on the
landscape [O’Neill et al., 1988]. The Dominance equation is shown in Equation 3.3 where S is the
number of classes in the scene, and pj is the proportion of the jth class of all S classes. Values
of d range between 0 and 1. Values near 1 describe a landscape dominated by few classes, while
values near 0 describe the proportions of each class being nearly equal. By a units analysis, the
Dominance S-normalization constrains the metric 0 ≤ d ≤ 1, and in turn allows comparisons
between multiple scenes of variable class amounts. The pj N -normalization allows d results to be
compared to registered images with or without the same pixel physical area.

The relative distribution of patches across a landscape is a description of the terrain’s ecological
navigability. Small patches across a landscape are interpreted as stepping-stones for LCLU patch
movement, and would have a low Dominance value. Additionally, a network of small patches
provide different and supplemental ecological benefits as opposed to a network of large patches
(see [Dramstad, 1996]). An example of trends seen using Dominance is given in Figure 3.5.

d ≡
ln (S) +

�S
j=1 pj · ln (pj)

ln (S)
(3.3)
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Figure 3.5: Using Gardner’s Rule program four landscapes were generated, and are shown above.
In the leftmost landscape, at a Dominance value of 0.490, the black class holds the largest propor-
tion in the scene. The rightmost landscape, at a Dominance value of 0.328, has class proportions
of 20% for each. The Dominance value follows the trend of landscape distribution, as from left-to-
right the landscape becomes equally divided.

qi,j ≡
ni,j

nj
=

the number of adjacencies between cells (pixels) of classes i and j

the total number of adjacencies for class j
(3.4)

When interpreting, low values reveal low adjacency, and high values reveal high adjacency. For
qi,j values of one LCLU (where i = j) low values describe small, isolated, and dispersed landscape
patches; while high values describe highly aggregated, clumpy patches. Due to the normalization
across class j adjacencies, comparisons between multiple scenes of variable class amounts but with
the same physical dimensions are allowed. The metric can only be interpreted as a measure of
relative class adjacency when compared in scenes of different physical dimensions, since there is no
normalization of a parameter that refers to the entire scene (e.g. the scene wide N -normalization
in pj).

Providing an increase in sensitivity to qi,j—a LOG-amplified measure of classes distributing
themselves, through adjacencies—Contagion too reveals the overall degree of clumping in the
landscape. Contagion in Equation 3.5, is constrained between 0 ≤ Contagion ≤ 1 and accounts
for each edge across the left- and right- horizontal, or top and bottom vertical between class edge
pixel through normalizing by twice the number of classes. The description of high or low pattern
adjacency and the degree of clumping is the same as for qi,j .

The Contagion metric is inversely related to the amount of clumping or fragmentation of patches
on a landscape [O’Neill et al., 1988]. Within the literature, a metric of fragmentation has been used
to monitor ecosystem processes as varied as vegetation dispersal to animal movements [Agency,
1994, 1996, Graham et al., 1991, Gustafson and Parker, 1992, Li and Reynolds, 1993, Turner,
1989, 1990a,b, Turner et al., 1989]. Discontinuities of species coverage, or speciation as indicated
by Contagion, would lead to the extinction of that species given Island Biogeography. The inverse
Contagion-to-fragmentation relationship is shown in Figure 3.6 for the projected fragmentation
and destruction of the Great Ape Habitat of Central Africa. More about how this metric measures
fragmentation can be found in Frohn’s Remote Sensing for Landscape Ecology [Frohn, 1998].
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Figure 3.6: On the top, fragmentation and destruction of the Great Ape habitat in Central Africa,
from the Global Methodology for Mapping Human Impacts on the Biosphere (GLOBIO) and Great
Apes Survival Program (GRASP) projects is shown [GLO, 2001]. On the bottom, the Contagion-
fragmentation relationship is shown for a single classified species, modeled as a binary image.

Contagion ≡
2 ln (S) +

�S
i=1

�S
j=1 (pj · qi,j) · ln (pj · qi,j)
2 ln (S)

=
2 ln (S) +

�S
i=1

�S
j=1

�ni,j

N

�
· ln

�ni,j

N

�

2 ln (S)
(3.5)

3.2.3 Fractal Dimension

Fractal Dimension [De Cola, 1989, Krummel et al., 1987, O’Neill et al., 1988, Turner and Ruscher,
1988] is a metric of shape complexity across the landscape—useful in monitoring the influence of
current and potential landscape LCLU. Figure 3.7 shows how human activity on the landscape
tends to be identifiable by simple and rectilinear shapes while a more natural landscape is often
identified by landscape structure that is not so well defined. This description of spatial signature
is one example of the spatial relevance of Fractal Dimension. Fractal Dimension serves to:

1. Describe trends in ecological navigability:

• As LCLU dimension increases so does its existence across the landscape (see Figure
3.8) and integer dimensions tend to be well connected encouraging ecological exchange,
unlike non-integer dimensions.

2. Identify spatial signatures:
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• Every LCLU process has a characteristic fractal dimension at their ecological equilib-
rium4.

3. Report potential available resources:

• LCLU with similar dimension tend to exchange landscape cover.

[Milne, 1991b].

The Fractal Dimension metric in Equation 3.7 first separates the LCLU map into its patches.
For each patch: P is the respective patch perimeter of edges, A is the respecive patch area, and k
is a constant of proportionality. A power relationship between pixel perimeter P and pixel area A
can be expressed as:

P = k · AD
2 (3.6)

with some constant of proportionality k. Equation 3.6 is only scale invariant for true fractals, and
k is only known for geometric equilateral shapes (k = 4 for squares) and true fractals. How true
fractals are defined is discussed in Section 3.2.4.

In an image, the Fractal Dimension value is between 0 (with simple shapes) and 2 (for most
complex shapes) like those shown in Figure 3.8, which can be solved as:

ln [P ] = ln
�
k · AD

2

�

ln [P ] = ln [k] + ln
�
A

D
2

�

ln [P ] = ln [k] +
�
D

2

�
· ln [A]

D = 2 · ln [P ]− ln [k]
ln [A]

(3.7)

Unless the constant of proportionality k is known, there are two unknowns in Linear Equation
3.7. Linear regression solves for the unknown ln [k] by determining the y-intercept. More about
how this metric is a measure of LCLU complexity and potential LCLU occupancy can be found
in Frohn’s text, Remote Sensing for Landscape Ecology [Frohn, 1998] and Milne’s article, “Lessons
from Applying Fractal Models to Landscape Patterns” [Milne, 1991b] respectively.

3.2.4 Limitations

Each of these metrics are strong measures for interpreting landscape ecology, but there are short-
comings. What are shared between each landscape pattern metric are their image edge detection
by kernel-based operation, and precarious scalability. This focus on spatial edge pixel creates
problems:

4Using the Barnsley [1988] shadow theorem as his premise, Milne [1991b] suggests that individual patterns made

by some process creates a complete coverage, or shadow, on the landscape. Organisms that live long enough to inte-

grate in this way, perceive the landscape as more homogeneous than is apparent in an instantaneous representation

of the pattern. This eventual integration is a specie’s ecological equilibrium.
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Figure 3.7: On the left is a Landsat image of Las Vegas, Nevada path 39, row 35 taken on August 3,
1984. On the right is a Landsat image of Amazon, Brazil path 224, row 60 taken November 3, 2000.
The urban sprawl of Las Vegas has a quickly identifiable rectilinear structure that is characteristic
of developed areas of the earth. Brazil’s Amazon on the other hand, holds no real rectilinear shape,
but a characteristic fractal structure—as would be expected in natural landscapes. This fractal
structure of natural landscapes is seen especially along the Amazon river coastline.

Figure 3.8: From left to right an increase of Fractal Dimension is shown. With each additional de-
gree of complexity, the shape is developed from a simple one-dimensional line to a two-dimensional
triangle. These middle fractal shapes are what would be expected along the perimeter of natural
landscapes [Vassallo, 2007].

1. the measured spatial edge is hard to define and can cause LPM to behave unpredictably
across scales;

2. in the cases of Dominance and Contagion, a logarithmic measure of only pixel edge have no
physical spatial interpretation;

3. by monitoring an entire image’s edge pixels alone landscape pattern metrics are limited to
only report ecological change between adjacent classes [O’Neill et al., 1999];

4. and completely relying on edge measurement hamper LPM diversity.

Landscape Ecology edge detection methods are not defined as every possible edge pixel, but
only include a patch’s horizontal or vertical edge pixels [Gergel and Turner, 2003]. The typical
rule for defining what is a patch is referred to as the nearest-neighbor rule (see Figure 3.9). Where
for a given class pixel, the nearest-neighbor rule makes any horizontally or vertically neighboring
pixel of the same class part of an individual patch. In this rule pixels along the diagonal would
not be included as LCLU patch. To change LPM results, making them better reflect a particular
process, the rule can be more generalized to include diagonal parts. The generalizations of the
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nearest-neighbor rule are shown in Figure 3.9 as next-nearest- neighbor and third-nearest-neighbor

rules. Patch edges are then defined as the contiguous patch edge pixels after nearest-neighborhood
classification.

When the method of edge measurement changes from rule to rule so do the accuracy of landscape
pattern metrics that depend on their edge information. This is not a previously unknown source
of error. To prevent confusion, Turner and Gardner [2001] suggests authors report which nearest-
neighbor method has been used. What has not been addressed is the nearest-neighbor method’s
effect on measurement error. As the size of these nearest-neighbor methods decrease, so does the
average sampling accuracy. This source of error has not been addressed and is camera resolution
dependent.

Figure 3.9: Three major neighborhood rules: nearest-neighbor (b), next-nearest-neighbor (c), and
third-nearest-neighbor (d) [Gergel and Turner, 2003]. An example landscape class map is shown
in (a). The resulting neighborhood rule number for green class patches, and color key are shown
in shades of gray under their respective kernel rules. For this example the nearest-neighbor rule
produces eight separate green class patches, the next-nearest-neighbor rule produces two separate
green class patches, and the third-nearest-neighbor rule produces one green class patch.

A study of the literature shows that landscape patterns are known to nonlinearly change when
the spatial resolution of the satellite camera changes. Understanding this, O’Neill found that LPM
are fairly consistent, given different scales of spatial resolution [O’Neill et al., 1988]. However, all
landscape analysis has not shown consistency between LPM and spatial resolution change [O’Neill
et al., 1988]. Wu et al. [2002] studied nineteen LPM and found that only six of the metrics
were scaleable from one camera resolution to another. Even more scalable LPM were found by
Wu [2004], when he included within class patterns and landscape patterns. Examples of these
metrics include Number of Patches, Total Edge, and Landscape Shape Index (see Appendix A).
The Dominance, Fractal Dimension, and Contagion metrics are not in this list of scaleable metrics,
but Wu et al. [2002] points out that they are useful because of their strong relation to ecological
patches. This relationship could be stronger by eliminating any dependence on the image capture
method.
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LPM must not only be independent of the image capture method (i.e. the imaging system), but
they should also be unbiased measurements of ecologically relevant LCLU activity. Metapopluation
models and Island Biogeography theory have LCLU patches obtaining an increasing nonlinear
influence on its environment as it increases in size and as distances between other LCLU patches
become shorter. Contagion and Dominance incorporate a notion of LCLU size dependence in their
calculation through a measure of patch proportion information entropy:

Information Entropy : I (X) = ln
�

1
p (xi)

�
= − ln (p (xi)) (3.8)

In Equation 3.8, p (xi) can be exchanged for pj · qi,j or pj to respectively represent Contagion

and Dominance size weighting coefficients. These size weighting coefficients report a contrary
relationship to LCLU size influences than the theory supposes. Figure 3.10 shows how the metrics
report a decrease in LCLU patch influence as there is an increase in LCLU patch size. Also,
the weightings are similar to exponential—as understood by theory and observation—but trend
in a different direction than theory; a reflected, inverse exponential direction. More obviously,
Contagion and Dominance measurements are most misleading by completely ignoring the influence
of a physical distance between LCLU patches.

Figure 3.10: Weighting coefficient schema for Contagion and Dominance measurements. For a, the
proportion model of LCLU size is shown as a red dashed line, and increases directly as LCLU size
increases. It is an unbiased measurement of LCLU size. The b LCLU size weighting coefficients
decrease LCLU significance as LCLU size increase. This is opposite from observations and theory
of LCLU population dynamics. The result of applying these coefficients are shown in c. c is a
biased measurement of LCLU activity.

For an example of how Contagion average information entropy has no measure of distance, see
Figure 3.11. Figure 3.11 shows the contribution of information entropy for each LCLU class edge
pixel. Contagion reports the average information entropy in LCLU class edge, ignoring where in
the scene that edge information exists or how much influence a LCLU patch has on its surrounds.
A measure of Dominance for Figure 3.11 would be the same at every step, again reporting a
misleading measure of the physics as understood by Landscape Ecology theory and observation.
A LPM should increase LCLU patch influence as the distance between LCLU patches decreases.
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Figure 3.11: Measurement of Contagion’s edge information entropy in a LCLU map. The average
information for image edge pixel is measured using Contagion metric. The red and blue, two class,
LCLU map in the left column goes from the two classes being initially far apart (t = tinitial) to
finally near (at t = tfinal). As they come closer together over time t, there is no change in the
number of edge pixels or the Contagion value. This does not correspond to LCLU theory (see
Section 3.1.1)

Lastly, each landscape pattern metric has an expression of edges or edge related phenomena,
like area, in their calculation. This makes the diversity of information relayed by these metrics slim.
A well-known example of this is in the relationship between Contagion and Dominance, as shown
in Figure 3.12 [Frohn, 1998]. This dissertation work presents a physical approach to landscape
pattern metric generation that relieve these imaging system and metric operator dependent errors.

Figure 3.12: The correlation between Dominance (top) and Contagion (bottom) for patches on a
sequoia landscape [Frohn, 1998].
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Fractal Dimension Estimation

The Fractal Dimension is considerably more abstract than either of the Contagion or Dominance

LPM. So, before going into the background of how to approach understanding these LPM imaging
system dependencies, an entire section is devoted to the most complicated LPM considered in
this work. While we have already introduced the mathematical expression of Landscape Ecology’s
Fractal Dimension (see Section 3.2.3) and the previously discussed arguments on kernel-based
LPM limitations still apply, a clear approach to how to test for reliable fractal measurements
is presented here. First, an introduction to what fractals are and then a discussion on how to
consistently measure them.

The best reference for a conversation on fractals can be found in Liebovich’s text, Fractals and

Chaos Simplified for the Life Sciences [Liebovitch, 1998]. For fractals in Landscape Ecology, Milne
gives a clear description on how to interpret their results in Chapter 8 of Landscape Ecology [Burel
and Baury, 2003].

We see in Figure 3.13, that when a non-fractal LCLU patch is magnified no new features are
revealed. However, as a fractal LCLU patch is magnified increasingly finer features are revealed.
The shapes of the smaller features are similar to the shapes of the larger features in this particular
fractal’s magnification. The property that defines this fractal characteristic is called self-similarity.

Figure 3.13: Definition of a fractal patch. Non-fractal patches reveal no new features when mag-
nified. When fractal patches are magnified, they reveal similar shapes of the larger patch.

Half the size of the smallest feature in a non-fractal patch is called its characteristic scale.
When we measure the patch length and area in a spatial resolution that is lower than this charac-
teristic scale, all of the non-fractal patch features are included. This means the non-fractal patch
information is completely represented. Any length or area measurement made that is larger this
characteristic scale spatial resolution is correct.

On the other hand, a fractal patch has multiple characteristic scales. Multiple characteristic
scales that introduce features over a broad range of sizes. As we measure patch length or area at
higher spatial resolutions we include more of the fractal patch’s finer features. Inextricably, the
resolution used when measuring fractal patches effects any measure of patch length and area since
the characteristic scale is variable. Figure 3.14 show both a non-fractal, and fractal pattern at
multiple scales.

For self-similar fractals, features at one spatial resolution are related to features at another
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Figure 3.14: Characteristic non-fractal and fractal patches. Non-fractal patches have a singular
characteristic scale. Fractal patches have many different scales.

spatial resolution. The smaller features are smaller copies of the larger features. This makes patch
lengths measured at a higher spatial resolution longer as finer features are included. How measured
properties like length and area depend on the spatial resolution used to observe the fractal is called
the scaling relationship. Using Fractal Dimension provides a quantitative measure of scaling by
revealing how many new self-similar pieces of a patch are revealed as it is viewed at increasingly
higher spatial resolution.

Since LPM are used as correlated Landscape Indicators, landscape analysis of fractal measure-
ments is more interested in precision (consistency) rather than accuracy. Each fractal measurement
is normalized by the maximum fractal value possible before being correlated to a process. What
precision and accuracy are for LPM is discussed in Section 3.3.2. But until then, understand that
a measure of Fractal Dimension that is incorrect, though consistently so, is the acceptable goal for
Fractal Dimension LPM here.

One of the most popular applications of fractal models is to obtain consistent records of Fractal
Dimension estimates as a measure of resource density [Milne, 1991a, 1992, 1997, Morse et al., 1985,
Shorrocks et al., 1991]. If there are 10 LCLU patches of dimension 10, or 100 patches of dimension
1 a landscape of dimension 100 could hold those and any other factor combinations of LCLU patch
dimension (e.g. 2:50, 4:25, etc.). Understanding this, If a LCLU has a characteristic fractal dimen-
sion (i.e. ecological equilibrium) which landscapes would be amenable to that LCLU progression
or recession could be predicted quantitatively [Burel and Baury, 2003, Liu and Cameron, 2001,
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Rychener et al., 2004]. These applications of landscape pattern fractal models continue to extend
one into the other. Though, the appropriate measurement of fractals and fractal-like patches in
an image have remained an elusive task.

When Castelnovo et al. [2002], Saloma and Narisma [1995] recorded the effects of using multiple
sampling scenarios for estimating Fractal Dimension, they found the sampling error magnitude was
a significant source of statistical error. An error that was very dependent on the fractal pattern
being measured. Huang et al. [1994] and Leduc et al. [1994] also varied the number of fractal patch
data points being measured, but unlike Castelnovo, Saloma and Narisma they included quantiza-
tion error. After observing quantization error on the measurement of Fractal Dimension Huang
concludes that quantization error due to imaging system radiometric resolution limits the preci-
sion of measured Fractal Dimension rather than accuracy (i.e. the results are erratic)— especially
when estimating types of fractal patterns with small fractal dimensions. Kolibal and Monde [1998]
complete the imaging system perspective by evaluating Fractal Dimension measurements under
the existence of random noise, and found the significance of random noise is dependent on which
Fractal Dimension LPM is used. And still, Kolibal and Monde [1998] found the measured accuracy
and precision depend on what fractal pattern is being observed.

To get away from measurements dependent on the fractal pattern being observed, and to un-
derstand the effects an imaging system has on Fractal Dimension measurement, Fractal Dimension
measurements should be separated into two categories: inherent and apparent fractal property.
Separating fractal analysis into the inherent and apparent fractal properties clarifies the results
of these tests. Inherent fractal properties include the characteristics of a fractal discussed before:
characteristic scale, and self-similarity. The limitations to measuring these inherent characteristics
can be found by measuring a self-similar fractal with an increasing number of characteristic scales.
The ability of a LPM to measure Fractal Dimension as characteristic scales are removed effects the
LPM ability to measure Fractal Dimension captured by any imaging system. Just by observing a
fractal, resolution limited imaging systems decrease the number of characteristic scales. Apparent
fractal properties are the ways resolution limited imaging systems decrease characteristic scales:
spatial resolution, sampling resolution, and radiometric resolution.

The system error varied for analysis in this dissertation work, to measure the least squares
Fourier transform method (lsFT ) Fractal Dimension against relevant Fractal Dimension LPM,
and references for their previously made observations are:

1. Inherent fractal property

• fractal resolution [Brewer and Girolamo, 2006]

2. Apparent fractal property:

• spatial resolution [Castelnovo et al., 2002, Saloma and Narisma, 1995]
• sampling resolution [Castelnovo et al., 2002, Huang et al., 1994, Saloma and Narisma,

1995]
• radiometric resolution as random noise [Kolibal and Monde, 1998]

3.3 Systems Analysis

Every image reveals information about its scene. For satellite imagery that information is revealed
as horizontal and vertical landscape spatial variability; information that is characteristic for a
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particular set of spectral wavelengths, individual spectral wavelength, or some other radiometric
parameter. The satellite image is a representative signal of the landscape, and like all signals it can
be represented in many ways. For instance, a voltage signal v̂[t] can be represented as a function
of time t using the function v̂[t] = 2 · cos[2π · 10 · t] · V , with t being measured in seconds and
V the voltage amplification. Since 2 · cos[2π · 10 · t] = 2 · e−2π·10·t+e2π·10·t

2 by trigonometry, the
same voltage information is equally well represented using the sinusoid’s two 10[hz] exponential
temporal frequency ν components, in the form V̂ [ν] = (δ[ν−10]+δ[ν +10]) ·V . V̂ [ν] is the Fourier
representation of v̂[t]. The Fourier transform is an operator that changes any time-dependent
function like v̂[t] and reexpresses it as an equivalent frequency-dependent function like V̂ [ν]. While
each signal is a representation of the voltage V , they are interpreted within separate coordinate
systems (domains) of time (seconds) and frequency (hertz) [Easton, 2005, Gaskill, 1978, Hecht,
1987, Ozaktas et al., 2001].

The image being a two-dimensional signal of landscape spatial variability, a two-dimensional
Fourier Transform would produce an analogous two-dimensional spatial frequency representation—
revealing different ways of interpreting scene phenomena. Understanding an image as a parameter
driven representation of the landscape that can be transformed5 to reveal information is the Sys-
tems Perspective. Figure 3.15 shows examples of image signal transformations and their resulting
representations.

Figure 3.15: From left to right, each image reveals a different representation of the SPOT-3 sensor
satellite image of Dresden, Germany (see fig. 3.2): the original radiometric product, the original
radiometric product rotated 45o, and the log-scaled spatial frequency of the original radiometric
product.

A system comprises a rule or set of rules that map an input signal f to an output signal g.
These rules are called system operators and may alter6 the input image signal. Alter is being used
here as a transformation whose operation removes information from an input signal. A pattern
recognition system whose inputs are images, and outputs are labels of recognized images, alters
the input image signal. It is impossible to retrieve the original image information from a system
operator like this. These types of system operators are referred to as being not invertible. The
system model and some example imaging system operators are shown in Figure 3.16.

Not being aware of the effects imaging system operators like these have on LPM, compromises
LPM analysis. Figure 3.17 shows the imaging system operators that bias the Landscape Ecology
LPM approach to landscape analysis. While the effects caused by imaging system transformations
can be corrected for, the effects of imaging system alterations are permanent. To prevent incorrect

5A reversible operation.
6An irreversible operation.
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Figure 3.16: Examples of imaging system operations O{} on the input SPOT-3 sensor, image signal
of Dresden, Germany f [x, y] and their respective output image signals g[x, y]. Imaging system a

rotates the image signal by 45o, imaging system b takes the Fourier transformation of the image,
imaging system c is a pattern recognition imaging system that alters the image and labels spectrally
separable areas, and imaging system d alters the image by a threshold that returns the minimum
image signal digital count value.

LPM interpretation due to imaging system alterations, a general measure of confidence can be
recorded along with reported LPM. When understood as variable Fourier sampling, LCLU spatial
resolution is an invertible imaging system transformation. For the imaging system alterations
LCLU spectral and radiometric resolution, their effects can be measured through the precision and
accuracy of classification decisions made.

Figure 3.17: The effect an imaging system has on the LPM approach to landscape analysis. When
interpreting landscape pattern, an imaging system’s spatial, spectral, and radiometric parameters
influence observations. In the bullets, at the pattern level of analysis, a description of these imaging
system parameters is given.

3.3.1 Sampling Theory

Satellite sampling position and sampling area limit the interpretation of LCLU maps. These two
spatial parameters alter the image signal, but information is recoverable under certain conditions.
In sampling theory, the case for perfect signal (i.e. entire landscape) sampling and reconstruction
is described by Whittaker-Shannon’s sampling theorem [Easton, 2005]. The theorem for an infinite
length, one-dimensional landscape line-scan image signal f [x] can be extended to any multidimen-
sional, full extent landscape case f [x, y, z, t,λ]:

1. Samples of f [x] are generated by multiplying by a COMB function composed of unit-area

24



Dirac delta functions separated by intervals of width ∆x. The mathematics used in this
model will be explained later, but in Figure 3.18 this ideal detector array model of equally
spaced samples is shown.

Figure 3.18: One-dimensional sampling array composed of a series of infinitesimal support and
finite area Dirac delta functions separated by intervals ∆x.

2. If the width � of the smallest object being observed in the landscape f [x] is larger than twice
the sampling interval (i.e. � > 2 ·∆x), then f [x] can be recovered perfectly from the complete
(infinite) set of samples obtained at intervals n · ∆x (−∞ ≤ n ≤ +∞) along the detector
array in Figure 3.18.

3. f [x] is recovered from f [n ·∆x] through an interpolating method that estimates the interme-
diary signal between samples using each of the infinitesimal samples, while putting emphasis
on samples closest each other. This ideal interpolant is the SINC function, and is given by:

f [x] =
+∞�

n=−∞
f [n · ∆x] SINC

�
x− n · ∆x · �

�

�
(3.9)

An example of the SINC interpolant and a comparison with common interpolants is shown
in Figure 3.19. In this example, each interpolant reconstructs the signal, but only the SINC
interpolator accurately reconstructs the signal.

These conditions, however, are unrealistic for any real imaging system or experimental design:

1. It is not possible to sample the amplitude of f [x] exactly at any sampling location. Instead,
each sample location is an average across the area of the detector element d. Figure 3.20
shows this realistic sampling array.

2. It is impossible to infinitely sample the landscape f [x] to obtain perfect reconstruction of the
landscape signal. While in some cases the smallest element of interest � may be recoverable
(i.e. � > 2 · ∆x), no imaging system captures the entire extent of a landscape.

3. Reconstruction of any function requires filtering by an infinite-length bipolar SINC-function
interpolator. In reality, a filter can not have infinite length.

Given these limitations, realistic interpretation across image scale is done by considering the
spatial frequency bandpass (i.e. spatial frequency window) of the sampling array (i.e. detector).
As the detector element width d gets larger and the signal decreases resolvability fewer spatial
frequencies are passed, the spatial frequency window size decreases, and measurement accuracy
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Figure 3.19: One-dimensional interpolants. Each interpolant is labeled above their respective
reconstructions, and include: Nearest-Neighbor, Linear, Cubic, and SINC. Notice how the inter-
polations become increasingly smooth and approach the SINC interpolated reconstruction.

Figure 3.20: One-dimensional sampling array composed of rectangular elements of width d sepa-
rated by intervals ∆x.

decreases. These decreases in pixel measure confidence are quantifiable. The relationship between
a spatially varying lower resolution function f �[x] and a spatially varying higher resolution function
f [x] using detector element h[x

d ] is f �[x] ≡ f [x]∗h
�

x
d

�
=

�
α f [α] ·h[α−x

d ]∂α. When interpreting the
observed landscape along its spatial frequency, scale effects are introduced as a smoothly varying,
windowed, function of bandwidth. The relationship between a lower resolution’s spatial frequency
F �[ξ] and a higher resolution’s spatial frequency F [ξ] with detector spatial frequency response
function (i.e. bandwidth) d · H[d · ξ] is F �[ξ] ≡ F [ξ] · d · H[d · ξ]. Within the spatial frequency
window, so for reasonably unaliased frequencies, the trend of representative energy

�
| f �[x] |2 ∂x

from one detector resolution to another describes a decrease of effective image signal energy as the
detector size increases. This decreasing trend significantly effects any following image operation,
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especially in the case of landscape pattern metrics [O’Neill et al., 1988, Wu, 2004, Wu et al., 2002],
and is shown for some example LCLU images in Figure 3.21.

Figure 3.21: Decreases in image spatial frequency density as pixel size increases. Keeping the
imaging system height and orientation constant over a scene: as pixel size d increases, less pixels
can fit within a frame array and image resolution decreases. Using the labeled SPOT-3 sen-
sor image signal of Dresden, Germany a (see Figure 3.2) the log-scaled spatial frequency energy
log

��
| f �[x; d] |2 ∂x

�
for each detector frame array is reported. While the general trend is the

same, the mixed vegetation/soil land cover b, the different vegetation land cover c, and the water
land cover d each have separate trends. LCLU trends across image scales are scene dependent.

3.3.2 Precision and Accuracy

Within each of the system operations, every observation of f [x] can be affected by noise; where
observations f̂ [x] with error are modeled as f̂ [x] = a ·f [x]+c. The effects of system operator noise,
either multiplicative a or additive c, are quantifiable. By measuring how far away observations f̂ [x]
are from expectations f [x], system operator accuracy can be reported. With accuracy defined as
the closer the model f̂ [x] is to the expectation f [x]. A measure of confidence in how consistently
well an observation’s accuracy is measured is what is known as precision. An example of these
errors are shown in Figure 3.22.

One measure of confidence in what a system operation is reporting would be variance. When
looking across each point i of the observation f̂ [xi], the magnitude of any error from the expected
observation f [xi] would be the deviation. When the deviation is different at any point i, the average
model deviation, or variance, can be reported. The closer each individual deviation’s magnitude
| f [xi]− f̂ [xi] | is to 0, the more precise. A measure of confidence that satisfies measuring typical
observation deviation from what is expected is the residual sum of squares (RSS). RSS is shown
in Equation 3.10 using the observed multiplicative deviation ā and the observed additive deviation
c̄.
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Figure 3.22: A plot of FMP values for nine separate LCLU maps at 1[m] and 15[m] spatial
resolutions. The white 1[m] spatial resolution values are the real (accurate) values of FMP for
these LCLU maps. The upper and lower bound of the uncertainty are + and �, respectively. As
shown in the white text below the plot, all the 1[m] FMP values have perfect precision, ±0.00[units]
uncertainty. Inaccuracies can be seen in the red 15[m] spatial resolution values, where images 1
and 9 have perfect precision ±0.00[units] with 0.01[units] inaccuracy. For image 6, the precision
error is ±0.01[units], with 0.04[units] inaccuracy at 15[m] resolution.

RSS =
N�

i=1

(f [xi]− f̂ [xi])2 =
N�

i=1

(f [xi]− (ā · f [xi] + c̄))2; (3.10)

ā =
�N

i=1 f̂ [xi] · f [xi]−Nf̂ [xi] · f [xi]
�N

i=1(f̂ [xi])2 −N(f̂ [xi])2
,

c̄ = f [xi]− āf̂ [xi]

Each measure of difference at observation i is correlated, so equation 3.10’s step 1 linear differ-
ence at each observation point (f [xi]− f̂ [xi]) is mathematically allowed. For multiple uncorrelated
observations, RSS adds the deviations in quadrature

�n
i=1(f [xi] − f̂ [xi])2. In practice, when

reporting confidence of multiple system operators—for total system noise nt, and assuming the
observed noise is 0 on average—expected deviation of the complete system of uncorrelated system
operators do tend to add in quadrature as well [Schott, 2007]:

σ2
t = σ2

t [σ1 + σ2 + . . .] = σ2
1 + σ2

2 + . . . = RSS2
1 + RSS2

2 + . . . (3.11)

At every stage, in any level, a measure of error can be reported—σi. The total system measure
of confidence σ2

t is the quadratic sum of each operator error. The quadratic sum of each system
operator’s residuals is correct for a series of system operators, however the total system measure
of confidence from the product of two systems is called the joint variance, and shown in Equation
3.12.

σ2
t = σ2

t [σi · σj ] = σ2
i · f [xj ]

2
+ σ2

j · f [xi]
2

+ σ2
i · σ2

j (3.12)
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The LPM approach presented here includes precision estimates from each metric and the LCLU
map. The considered LCLU map confidence estimates are:

Spatial Confidence [Schott, 2007]

• Resolution: GSS, EIFOV , or GIFOV

• Registration: ∆x, ∆y

Spectral and Radiometric Confidence [Schott, 2007]

• LCLU map class likelihoods: target detection false negatives (see, Figure 3.24)

Background for LPM accuracy across multiple sensor scales and the precision of spectral and
radiometric observations are discussed in the Sensor Scale Spectral Density Analysis and
Receiver Operating Characteristics subsections below.

Sensor Scale Spectral Density Analysis

For this model, assume a one-dimensional sampling array constructed of identical rectangular
elements of width d centered at integer multiples of the sampling interval ∆x, as is shown in
Figure 3.23 and described for one of those detector elements in Equation 3.13. The measured
output signal at a sample is proportional to the integral of the input signal over the surface of the
identical detector. The signal evaluated at the element of the sample array is a function of x, and
x� is the sampled domain of the continuous function x.

Figure 3.23: One-dimensional sampling array composed of rectangular elements of width d sepa-
rated by intervals ∆x.

1
d

� x= d
2

x=−d
2

f [x]∂x =
� x=∞

x=−∞
f [x] · 1

d
RECT

�x

d

�
∂x (3.13)

This integral evaluates the average value of f [x] across the detector surface area d. The am-
plitude of the signal measured by a similar detector located at position x = n0 · ∆x along the
detector array, is obtained by translating the coordinate x to the position some integer number n0

of detector widths ∆x away. Equation 3.14 shows the detector array sampling function equation
for a single detector at position n0.

1
d

� x=n0∆x+ d
2

x=n0∆x− d
2

f [x]∂x =
� x=∞

x=−∞
f [x] · 1

d
RECT

�
x− n0∆x

d

�
∂x (3.14)
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Equation 3.14 describes a single detector sample of the input function f [x], but can be general-
ized for the detector samples at every location along the detector array. This is done in Equation
3.15 by varying integer position n0 to every integer value n, and placing the weighting of the de-
tector response at its respective detector sampling position δ[x�−n∆x

d ] where the sampled position
x = x�.

+∞�

n=−∞

1
d

� x=n∆x+ d
2

x=n∆x− d
2

f [x]∂x =
+∞�

n=−∞

� x=∞

x=−∞
f [x] · 1

d

� x�=∞

x�=−∞
RECT

�
x− n∆x

d

�
· δ

�
x� − n∆x

d

�
∂x�∂x

=
+∞�

n=−∞

� x�=∞

x�=−∞

� x=∞

x=−∞
f [x] · 1

d
RECT

�
x− x�

d

�
∂x · δ

�
x� − n∆x

d

�
∂x�

=
+∞�

n=−∞

� x�=∞

x�=−∞

� x=∞

x=−∞
f [x] · 1

d
RECT

�
x− x�

d

�
∂x · d · δ [x� − n∆x] ∂x�

=
+∞�

n=−∞

� x�=∞

x�=−∞
f [x�] � RECT

�
x�

d

�
· δ [x� − n∆x] ∂x� (3.15)

where � is the correlation operator

The integral property of the delta function was used in the first step of equation 3.15, the
linearity of the summation operator and the sifting theorem of the Dirac delta function were used
in the second step, and the Dirac Delta scaling property was used in the third. Equation 3.15 is the
mathematical equation for the sampled function obtained by integrating a continuous signal over
an array of identical rectangular detectors of width d. This means that the realistically sampled
signal is obtained by correlating the continuous input signal by the detector response function, and
then sampling that intermediate signal at the centers of each detector.

As mentioned before, the smooth, continuous trend in figure 3.21 represents image spectral
density for variable pixel detector sizes. Image spectral density which can be mathematically
expressed as the observation’s summed squared vector magnitude

�
|f [x]|2, has equivalent spatial

and spectral representations:

�∞
−∞ |f̂ [x]|2∂x =

� ∞

−∞
|F̂ [ξ]|2∂ξ,

where,

f̂ [x] =
+∞�

n=−∞

� x�=∞

x�=−∞

� x�=∞

x�=−∞
f [x�] � RECT

�
x�

d

�
· δ [x� − n∆x] ∂x�

=
+∞�

n=−∞

� x�=∞

x�=−∞

� x�=∞

x�=−∞

� ξ=∞

ξ=−∞
F [ξ] · SINC [d · ξ] ∗ 1

d
· e−ı2πn∆xξ · e+ı2πx�ξ∂ξ∂x�

(3.16)

Equation 3.16 shows the Fourier expansion of f̂ [x]. As the spectral window of that expansion
SINC [d · ξ] expands, the detector size increases, image-wide resolution decreases, and the spectral
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density is effected by 1
d . these effects are reflected in the smooth continuous trend of image spectral

density.

Receiver Operating Characteristics

In this subsection, a brief introduction to the concepts of target detection is made for the accurate
detection of LCLU map classification. An expansive introduction and multiple recipes for assigning
pixels to a thematic class can be found in Schott [2007] Chapter 9.2, Image Classification. Addi-
tionally, Fawcett [2004] provides a general introduction to receiver operator characteristics theory
for research scientists and engineers.

For this discussion on LCLU map uncertainty, only receiver operating characteristics (ROC)
curve confidence parameters are used. These parameters assume reference data is available, and
describe four pixel classification situations that may be observed:

1. True Positive: A pixel assumed to belong to class i, does belong to class i.

2. True Negative: A pixel assumed not to belong to class i, does not belong to class i.

3. False Positive: A pixel assumed to belong to class i, does not belong to class i.

4. False Negative: A pixel assumed not to belong to class i, does belong to class i.

Typically, reference data is an original source image of known LCLU class. Every pixel in
this image is compared to every pixel of the estimated LCLU map for ROC analysis. Hopefully,
True Positives and True Negatives are maximized, while False Positives and False Negatives are
minimized.

For pattern recognition systems without original source imagery, the reference data are any
class likelihood estimates used for pixel classification. These likelihoods are produced by Bayesian
supervised classification methods (see [Schott, 2007]). In supervised classification the user identifies
the type and number of LCLU classes in the scene; unlike with unsupervised classification methods
that develop decisions ad hoc without user intervention. Only the supervised classification method
accuracy will be addressed here.

As an example, Gaussian Maximum Likelihood (GML) supervised classification of satellite
imagery assigns normally distributed likelihoods to each pixel, according to the brightness value
of a pixel’s digital count:

pDC|j =
1�
2πσ2

j

e
− (DC−DCj)

2

2σ2
j ; (3.17)

DCj =
�Q

q=1 DCj,q

Q
,

σ2
j =

�Q
q=1

�
DCj,q −DCj

�2

Q− 1
.

The GML model class j average digital count DCj and class j digital count variance σ2
j are taken

from a sample of q = 1, 2, . . . , Q − 1, Q satellite image pixels that best represent the interested
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class. This is done for every LCLU class, and are conditional probabilities. Called conditional
probability pDC|j , because it describes the probability of a digital count DC occurring, on the
condition that it is in class j. These conditional probabilities are compared against each other
using pixel proportion, pj , to find the most likely LCLU class assignment, pj · pDC|j , for each pixel
brightness (see, Figure 3.24).

Figure 3.24: Two class conditional likelihood distribution. When the blue Class 1 Gaussian likeli-
hood of digital count p1 · pDC|1 is greater than the red Class 2 Gaussian likelihood of digital count
p2 · pDC|2, the respective digital count is to Class 1. The digital count is assigned to the red Class
2 Gaussian likelihood when it is the maximum likelihood. The vertical decision threshold for this
model occurs where blue Class 1 and red Class 2 likelihoods are the same.

By allowing model parameters to vary in time (i.e. DCj [t] and σ2
j [t]) , this supervised classi-

fication method becomes a population dynamics model for LCLU class spatial existence. Similar
to Metapopulation process models (see Section 3.1.1). LCLU class likelihoods pDC|j go from least
likely to exist pDC|j ≈ 0, to most likely to exist pDC|j ≈ 1 in an individual class. The GML
likelihood of LCLU existence varies exponentially in space, as do Metapopulation models. This
means that these class likelihoods have a potentially accurate spatial interpretation. The GML
discrimination metric has pixel digital counts DC that are most likely for class j, at the average
digital count value DCj [t], and each GML class likelihood decreases away from each class average
Digital Count value DCj [t], according to the digital count variance ≈ e−σ−2

j [t]. Contiguous patches
are most likely unmixed pixels and have high values of likelihoods. Small patches and patch edges
would most likely be mixed pixels and have the least likely class likelihood values.

In the LPM presented here uncertainty in a pixels’ class likelihood will have degrees of uncer-
tainty. The lower bound LCLU pixels have likelihoods of class j True Positive pixels TP , the upper
bound LCLU pixels have likelihoods of class j True Positive and False Negative pixels TP + FN ,
and the observed LCLU pixels have likelihoods of class j pixels between the two bounds, TP + FN

2 .
Three, two-class, GML prediction scenarios with uncertainty assignments are shown in Figure 3.25.
LPM are applied to each map of class j pixels associated with the Lower Bound, Upper Bound,
and Observed uncertainties to produce Lower Bound, Upper Bound, and Observed LPM values.
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Figure 3.25: Statistical pattern recognition measures of confidence for the red Class 2 decision.
For each class decision, the uncertainty assignments lower bound (LB), upper bound (UB), and
observed (OBS) are shown by the yellow arrows. Each ROC likelihood is labeled as True Positive
(TP), True Negative (TN), False Positive (FP), and False Negative (FN). The ROC legend is
boxed on the right. Notice how the observed likelihood for Class 2, assigned at TP + FN

2 , is at
the statistical average of the False Negative parameter.

3.4 Fourier

In Section 3.1 we obtained a workable knowledge of Landscape Ecology theory. Emphasizing the
concepts concerning whole map analysis using LCLU shape characteristics. Section 3.2 reviewed
relevant LCLU landscape pattern metrics, as well as what they attempt to measure and the po-
tential limitations of their approach. And, Section 3.3 discussed the systems based approach, and
the system operator models used here.

The tool used to bring all these ideas into application is the Fourier transform. How each of
these ideas relate will be answered in this section. An explanation of the Fourier transform from
Fourier sinusoids will reveal the intuitive, geometric interpretation of Fourier mathematics. Whole
class map LCLU functions will be introduced as vector inputs into the Fourier transform. And,
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the benefit of Fourier analysis for the interpretation of a general LCLU shape will be examined by
Fourier theorem and properties.

3.4.1 Fourier Series

In 1822 politician, mathematician, and historian Jean Baptiste Joseph Fourier published, “The

Analytical Theory of Heat” [Fourier, 1822]. Fourier’s thesis studied how temperature varied in
time after some initial temperature distribution f [x]. For the way that heat flows from one part
of the body to another part of the body Fourier proposed a governing model.

He began with a heated ring, with some initial temperature f [x], where x is a point on the
circle. The initial temperature distribution is assumed to cool down and redistribute itself as a
function u(x, t) (i.e. the temperature at position x at time t).

Periodicity enters the model as periodicity along the ring in space. The temperature at x and
x + π · r2 are equal when the temperature is periodic as a function of position x on the ring.
Mathematically, this is expressed as:

f [x] = f [x + T ], (3.18)
u[x, t] = u[x + T, t]. (3.19)

The initial temperature distribution f [x] is periodic, with period T , as a function of x. These
equations assume observations of any (temperature) distribution u[x, t] at position x for constant
time t to have a periodicity, T .

Fourier proposed a series of sinusoids to accurately model periodic phenomena. Using a sum-
mation of weighted, complex exponentials, he expressed the model as:

u[x, t] =
∞�

k=−∞
Ck[t]eı2πkx. (3.20)

The variable temperature distribution u[x, t] is periodic in the spatial variable, so the variable in
the periodic complex exponential is x. The time dependence is in the coefficient Ck[t].

To solve for the time dependent coefficients, Fourier observed that independent of periodicity
or initial temperature distribution heat flow is governed by a partial differential equation related
to time. The partial differential heat equation states:

ut = a · uxx, (3.21)

the time-derivative of a temperature ut is proportional to the second x derivative uxx, where a = 1
2

is a constant.
Using the partial differential equation in Equation 3.21 on u[x, t] in Equation 3.20, the Fourier

equation for heat diffusion along a ring is:
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∞�

k=−∞
C �

k[t]eı2πkx =
1
2
·

∞�

k=−∞
Ck[t](−4π2k2)eı2πkx

from,

ut =
∞�

k=−∞
C �

k[t]eı2πkx, (3.22)

uxx =
∞�

k=−∞
Ck[t](ı2πk)2eı2πkx

=
∞�

k=−∞
Ck[t](−4π2k2)eı2πkx. (3.23)

Equating the coefficients to maintain periodicity,

C �
k[t] = (−2π2k2) · Ck[t]. (3.24)

We can obtain an ordinary differential equation solution for the time-dependent coefficients Ck[t]:

Ck[t] = Ck[0]e−2π2k2t. (3.25)

The initial temperature distribution coefficient Ck[0] at time t = 0, can be found using the
model assumptions in equation 3.18. By construction, any initial temperature distribution at time
u[x, t = 0] is f [x]. This means,

f [x] = u[x, t = 0] =
∞�

k=−∞
Ck[t = 0]eı2πkx,

where, by deduction,

u[x, t] =
∞�

k=−∞
f̂ [k; t = 0]e−2π2k2teı2πkx. (3.26)

The deduction goes as: f [x] as a periodic function, is an expansion of f [x] in terms of the harmonics
eı2πkx, so the coefficients Ck[t] in terms of f [x] must be the Fourier coefficients of f [x]. This means,
the coefficients are the Fourier coefficients of f [x], Ck[t = 0] = f̂ [k]. The transform must be able to
go from the function to the series f [x]→ f̂ [k], but also from the series to the function f̂ [k]→ f [x].
Given an initial temperature distribution f [x], the temperature of any point x on the ring at any
time t is the Fourier series of f [x].

Instead of making observations of a temperature distribution u[x, t] for any time t, we are
interested in making observations of a LCLU spatial distribution f [x, t] as it changes in time t.
The analysis of LCLU change in time is found in Fourier’s coefficients Ck[t], and these coefficients
are interpreted geometrically.
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Fourier Geometry

Fourier showed that the Fourier Series could be used as an accurate, physically representative
model of any periodic phenomena. When solving for the Fourier Coefficients in equation 3.24 the
different complex exponentials are said to be completely independent, or orthogonal to each other,
and have a magnitude, or length, unit-normalized to 1 over a single period T . Mathematically that
is called orthonormality and looks like,

� T=1

t=0
e2πınt · e−2πımt∂t =

� T=1

t=0
e2πı(n−m)t∂t = 0 n �= m

1 n = m
, (3.27)

where the length of a function, or norm of a vector f̃ , is defined by the inner product:

< f̃ , f̃ >= f̃ • f̃
∗ = ||̃f ||2 =

� T=1

t=0
|f [t]|2∂t. (3.28)

These physical notions of length and orthogonality are extensions of geometry interpreted for
Fourier mathematics. The definition and property of length comes from the Pythagorean Theorem:
f̃ is orthogonal to g̃ if and only if ||̃f + g̃||2 = ||̃f ||2 + ||g̃||2 if and only if < f̃ , g̃ >= 0.

The Pythagorean theorem comes about through vector addition. Where for two vectors ũ and
ṽ,

||ũ + ṽ||2 = ||ũ||2 + ||ṽ||2. (3.29)

This geometry holds only when the two vectors are perpendicular to each other (see Figure 3.26).

Figure 3.26: The ũ–ṽ vector space. Here, ũ and ṽ are perpendicular to each other, and ũ + ṽ is
the combination of the two vectors.

Extending Pythagorus’ theorem from vectors to functions, and reasoning by analogy, geometric
intuition can be used to interpret Fourier math. The Fourier coefficient in equation 3.26 is a
geometric projection. We obtain the coefficients through the inner product with the function f̃

against a complex exponential,

< f̃ , e2πınt >=
� T=1

t=0
f(t) · e−2πınt∂t = f̂ [n]. (3.30)

The nth Fourier coefficient is exactly the projection of the function against the nth complex expo-
nential:
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f [t] =
∞�

k=−∞
f̂ [t]e2πıkt =

∞�

k=−∞
< f̃ , e2πınt > e2πıkt, (3.31)

and every individual and combination of Fourier coefficients is a vector component of the original
function—just like with vectors ũ and ṽ in Figure 3.26. Whole class map LCLU shapes are
vector inputs into the Fourier transform, and can be interpreted geometrically by vector space
mathematics, as sinusoidal decompositions or reorientations (Section 3.3) into the Fourier domain.

3.4.2 Fourier Transform

The generalized Fourier series is the Fourier transform:

f [x, y] =
� ξ=+∞

ξ=−∞

� η=+∞

η=−∞
F [ξ, η]eı2π(ξ·x+η·y)∂ξ∂η (3.32)

F [ξ, η] =
� x=+∞

x=−∞

� y=+∞

y=−∞
f [x, y]e−ı2π(x·ξ+y·η)∂x∂y (3.33)

where ξ is the horizontal spatial frequency, and η is the vertical spatial frequency.
When using the Fourier Transform to model the cosine, only two coefficients are necessary.

Equation 3.34 sums these two coefficients and shows how the coefficients are calculated; each
unique and predictable [Easton, 2005]. By monitoring the model coefficient values at each sinusoid,
Fourier analysis provides additional information about the modeled phenomena. For instance, how
any system operation that only resonates with frequencies other than at |ξ| = 0.16[m−1] will never
effect the Cosine function:
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For
y = f [x] = cos[2π.16x],

if

f [x] =
� ξ=+∞

ξ=−∞

1
2
· (δ[ξ − .16] + δ[ξ + .16])eı2πξ·x∂ξ

= 0 ·
�
eı2πx

�−∞ + . . . + 0 ·
�
eı2πx

�−2 + . . . +
1
2
·
�
eı2πx

�−.16 + . . .

+
1
2
·
�
eı2πx

�.16 + . . . + 0 ·
�
eı2πx

�2 + . . . + 0 ·
�
eı2πx

�∞

=
1
2
·
�
eı2πx

�.16 +
1
2
·
�
eı2πx

�−.16

=
1
2
· eı2π.16x +

1
2
· e−ı2π.16x

=
1
2
· cos[2π.16x] +

1
2
· i sin[2π.16x] +

1
2
· cos[2π.16x]− 1

2
· i sin[2π.16x]

= cos[2π.16x]
then,

F [ξ] =
� x=+∞

x=−∞
cos[2π.16x]e−ı2πx·ξ∂x =

1
2
· δ[ξ − .16] +

1
2
· δ[ξ + .16].

(3.34)

Similarly, Fourier analysis provides a quantitative measure of how similar two modeled functions
(shapes) are related. This will be reviewed in the Fourier theorem and properties below.

3.4.3 Discrete Fourier Transform

The Fourier transform of equation 3.32 is for an infinitely continuous function f [x, y]. When the
continuous function is sampled and bounded in space, like with an image, the Fourier transform
operator becomes the discrete Fourier transform operator. The discrete Fourier transform operator,
Equation 3.35, assumes the bounded function f [x, y] is periodic with period M in the x-direction
and N in the y-direction of a M × N function f [x, y]. Periodicity is a governing assumption of
Fourier mathematics (see equation 3.18 with corresponding discussion). The periodic assumption
is shown in Figure 3.27 for the Lena image.

f [n, m] =
1

N · M

N−1�

k=0

M−1�

l=0

F [k, l]eı2π (k·n+l·m)
N·M , (3.35)

F [k, l] =
1

N · M

N−1�

n=0

M−1�

m=0

f [n, m]e−ı2π (n·k+m·l)
N·M , (3.36)

here, n and m are discrete spatial variables analogous to x and y, and k and l are discrete spatial
frequency variables analogous to ξ and η.
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Figure 3.27: The original Lena image a is assumed periodic b in all directions when using the
discrete Fourier transform operator.

As was done for the Cosine in equation 3.34, the discrete Fourier transform of the now obser-
vation vector f [n] is also projected onto sinusoidal vectors of increasing frequency (e ı2πn

N )k. The
sinusoidal vectors have a square matrix form (e ı2π

N )nk, and is used for efficient evaluation of the
discrete Fourier transform [Easton, 2005]:

F [k] =
N−1�

n=0

(e
−ı2π

N )nkf [n] (3.37)

As an example, the discrete Fourier transform matrix form for the N = 2 case is shown in
Equation 3.38:

�
F [0]
F [1]

�
=

�
A[0, 0] A[0, 1]
A[1, 0] A[1, 1]

� �
f [0]
f [1]

�
=

�
(e− ı2π0

2 )0 (e− ı2π1
2 )0

(e− ı2π0
2 )1 (e− ı2π1

2 )1

� �
f [0]
f [1]

�

=
�
+1 +1
+1 −1

� �
f [0]
f [1]

�
=

�
f [0] + f [1]
f [1]− f [1]

�
(3.38)

Additionally, the N = 4 case is shown in Equation 3.39:





F [0]
F [1]
F [2]
F [3]



 =





(e− ı2π0
4 )0 (e− ı2π1

4 )0 (e− ı2π2
4 )0 (e− ı2π3

4 )0

(e− ı2π0
4 )1 (e− ı2π1

4 )1 (e− ı2π2
4 )1 (e− ı2π3

4 )1

(e− ı2π0
4 )2 (e− ı2π1

4 )2 (e− ı2π2
4 )2 (e− ı2π3

4 )2

(e− ı2π0
4 )3 (e− ı2π1

4 )3 (e− ı2π2
4 )3 (e− ı2π3

4 )3









f [0]
f [1]
f [2]
f [3]





=





+1 +1 +1 +1
+1 −ı −1 +ı
+1 −1 +1 −1
+1 +ı −1 −ı









f [0]
f [1]
f [2]
f [3]



 ; (3.39)

F [0] = f [0] + f [1] + f [2] + f [3] = (f [0] + f [2]) + (f [1] + f [3]),
F [1] = f [0]− ıf [1]− f [2] + ıf [3] = (f [0]− f [2])− ı(f [1]− f [3]),
F [2] = f [0]− f [1] + f [2]− f [3] = (f [0] + f [2])− (f [1] + f [3]),
F [3] = f [0] + ıf [1]− f [2]− ıf [3] = (f [0]− f [2]) + ı(f [1]− f [3]).
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The elements of the 2-pixel and 4-pixel discrete Fourier transform are just sums and differences
of the sampled amplitudes. Each of the discrete Fourier transforms are plotted in the Argand
diagrams of Figure 3.28. These Argand diagrams can be extended to any size N [Easton, 2005],
and represent the Fourier system space that operations are held in. Input vectors f [x, t] can exist
along any of the N Argand vector directions.

Figure 3.28: Argand diagrams of the complex weights applied in the discrete Fourier transform for
a N = 2 (left) and N = 4 (right) -pixel image.

Fourier Theorem and Properties

Fourier mathematics have many well known properties and theorems, but the few that will be
referred to most in this thesis can be used to describe a shape’s activity. They are the scaling
property, translation property, and Parseval’s theorem. Each are presented here with spatial
variable function f [x] and spatial frequency variable Fourier representation F [ξ].

1. Scaling Property. The observed function f [x] may be scaled by a width parameter b as
f [x

b ], as it grows within a landscape. The scaling theorem shown in Equation 3.40 determines
the effect of this paramater b on the LCLU Fourier representation area.

F1

�
f

�x

b

��
= |b| · F [b · ξ]. (3.40)

2. Translation Property. The Fourier transform of a LCLU function f [x] that has been
translated by a distance ±x0 has a Fourier representation:

F1 {f [x ± x0]} = |F [ξ]|eı(φ{f [ξ]}±2πξx0). (3.41)

The Fourier representation of a shifted LCLU function is the transform of the original LCLU
function multiplied by a complex sinusoid whose phase is proportional to the distance trav-
eled.

3. Parseval’s Theorem. The Fourier representation F [ξ] is related to the projection of f [x]
onto itself as,
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� ∞

−∞
|f [x]|2∂x =

� ∞

−∞
f [x]f∗[x]∂x =

� ∞

−∞
F [ξ]F ∗[ξ]∂ξ =

� ∞

−∞
|F [ξ]|2∂ξ. (3.42)

In words, the vector length
�∞
−∞ |f [x]|2∂x of a spatial function f [x] is unchanged when rep-

resented by Fourier methods.

3.5 Gardner’s 1999 Rule: Map Generation and Spatial Anal-
ysis Program

A database of progressive LCLU patches in the environment, at appropriate scales, and for a
single area would be useful for Fourier analysis of LPM but is not available. Instead the Rule

multifractal map generation tool can be used to model characteristic pattern change. Robert
Gardner created the Rule software for null-hypothesis tests of significant LCLU pattern change
[O’Neill et al., 1991]. Gardner’s null-hypothesis is, “The LCLU change observed is completely
random, and ecologically irrelevant.” By comparing a randomly generated map to a real LCLU
map, and assuming the null-hypothesis is true, Gardner asks,“What is the probability of observing
a value for the test statistic that is at least as extreme as the value that was actually observed?”
Gardner’s null-hypothesis test indicate how much confidence can be had that any LCLU change
in pattern has affected the landscape.

After generating a series of maps with a different number of LCLU patches, LCLU patch
proportions, and LCLU patch edge fractal dimension the ability of LPM to report these multifractal
maps can be recorded. Placing maps in an increasing order of complexity, they could serve as LCLU
models for progressive pattern observations and tests for LPM precision.

Simple random maps are created by specifying the number of rows and columns in the map, the
number of LCLU classes to be generated, and the probabilities associated with each LCLU class,
as is shown in Table 3.2. The Visual Basic code uses a random number generator placed within
two nested do loops with the variables irow and jcol defining the number of rows and columns
of the map, in map, to be generated. For one class with a probability that any given site in the
map will be occupied by the LCLU class of interest pr, the code that is sufficient for generating a
simple random map with a single LCLU class is [Gardner, 1999]:

do i = 2, irow + 1
do j = 2, jcol + 1

y = ran1( iseed )
if ( y .le. pr ) then

in_map( i, j ) = 1
else

in_map( i, j ) = 0
endif

enddo
enddo

Multifractal maps like in Figure 3.29 are generated by a midpoint displacement algorithm
[Saupe, 1988] that creates a map of real numbers by successive division, interpolation, and random
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Table 3.2: Log file for a 256 by 256 multifractal random map with: Hurst dimension 1; LCLU
probabilities of r[x] = 0.4, s[x] = 0.24, t[x] = 0.36; and generated within one iteration. The actual
LCLU probabilities generated were r[x] = 0.397292, s[x] = 0.240794, and t[x] = 0.361914.

Qrule (v 4.1) Landscape Pattern Analysis 11/20/08
Map choice: M
Maxlevel 8 H = 1.00000
Rows x Columns = 256 x 256
n Wrap = F
Random number seed: -5
Rule choice is: 2
Map classes = 2
The normalized probabilities are:

P CumP
0 0.4000 0.4000
1 0.2400 0.6400
2 0.3600 1.0000

N_Reps = 1
Map output choice = G
Output file for generated map: m8_1n..522.4.24.361g
Analysis method: RULE

Resolution: 300.000 meters

Mean Association Matrix
Avg ChiX = 477716. w/ 4 df (FXceed ( 9.4480) = 1.0000)

0 1 2
0 0.391728 0.005564 0.000000
1 0.005564 0.227880 0.007349
2 0.000000 0.007349 0.354565

p’s 0.397292 0.240794 0.361914

Time in: [hr 21 m 13 s 47 (ms 612)]
Time in: [hr 21 m 14 s 29 (ms 846)]

perturbation. Two parameters are used by this method: the variance associated with the random
perturbations, and H, the parameter describing the correlation between points. Values of H range
between 0.0 and 1.0. Adjustment of the value of H between 0.0 to 1.0 result in maps that range
from extremely fragmented to highly aggregated, like in Figure 3.6. Rule converts the grid of
real numbers into integers representing the proportion of LCLU classes specified by the input
probabilities [Gardner, 1999]
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Using version 4.1 of Rule takes 9 input parameters:

1. The map type to be analyzed.

2. The size of the map to be generated and Hurst exponent (Hurst exponent, H is Dfractal =
Dreal −H).

3. The initial value for the pseudorandom number generator.

4. The Neighborhood rule (see section 3.2.4).

5. The number of LCLU classes and the probabilities of occurrence associated with each LCLU
class.

6. The number of iterations of maps to be generated and analyzed.

7. Form of output map.

8. The analysis methods and output desired.

9. Resolution along the side of each grid element in meters.

The input parameters for multifractal random maps (see Table 3.2) generated here are:

1. Multifractal map.

2. 256 × 256.

3. -5.

4. Nearest-neighbor rule.

5. LCLU maps of two cover types with probabilities
p[x] ∈ [.1, .9; ∆ = .1];
q[x] = 1− p[x];

and

LCLU maps of three cover types with probabilities
t[x] ∈ [.1, .9; ∆ = .1];
r[x] = (1− t[x]) · p[x];
s[x] = (1− t[x]) · q[x].

6. One iteration.

7. Generated.

8. No analysis.

9. 300 meters (this value does not effect the results, any value would be fine).
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Figure 3.29: Multifractal map generated by Rule. The map input parameters are r[x] = 0.4,
s[x] = 0.24, t[x] = 0.36, and the log file is shown in Table 3.2.

3.6 Interactive Data Language (IDL) Synthetic Noise Mod-
els

Each of the Rule software LCLU maps generated for analysis are enhanced to model spatial,
radiometric, and spectral noise variability (see Section 3.3.2). This section discusses the details
of how each map introduces noise variability. Only techniques will be discussed here, not code.
While Research Systems Incorporation’s (RSI) Interactive Data Language (IDL) was used, each of
these noise models are reproducible using any image processing mathematical software.

3.6.1 Spatial Model (Spatial Resolution)

A change in spatial resolution for real data is observed as increased pixel area. As shown in Figure
3.30, variable spatial resolution in satellite imagery not only changes the coverage of a pixel but the
radiometric value may change as well. Each of these phenomena are captured in the IDL spatial
resolution model discussed here.

Figure 3.30: The effect of pixel size on the visual appearance of an area. The first image is a
SPOT image of 10[m] 160× 160 image size derived by merging a SPOT panchromatic image with
a SPOT multispectral image. The subsequent images show the effects of digitizing the same area
with larger pixel sizes of an 80× 80 scene with 20[m] pixels, a 40× 40 scene with 40[m] pixels, and
a 20× 20 scene with 80[m] pixels.
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The IDL software first shrinks the 256×256 Rule LCLU map by a factor equal to the modeled
pixel size. For instance, assuming the original 256 × 256 LCLU map has 1[m] pixels, to model a
15[m] LCLU map the image is downsampled to a 256

15 ×
256
15 = 17× 17 image size then upsampled

to a 256× 256 image size by nearest-neighbor interpolation. The increased pixel area, and LCLU
map value are shown in Figure 3.31.

Figure 3.31: The IDL model for spatial resolution variability in LCLU maps. The original 256×256
LCLU image is downsampled to desired resolution, and then upsampled to the original 256× 256
image frame.

3.6.2 Radiometric Model (Detector Noise Error)

A change in individual detector values for real data can mislead LCLU classification decisions. The
variable detector noise in satellite imagery modeled here is equally likely across the entire scene (i.e.
fixed pattern noise), as is shown in Figure 3.32 for SAR data. Variable increases or decreases in
individual pixel brightness values make originally unique samples seem equal, and originally equal
samples seem unique. Each of these phenomena are captured in the IDL radiometric model used
here, where LCLU decisions reveal the expected variable confusion across the scene by uniformly
switching LCLU class decisions.

The IDL software does this by increasing fixed pattern noise in a 256 × 256 reference scene.
This noise has pixel values that vary between 0 and LCLU class map values. An example of
this reference fixed pattern noise is shown in Figure 3.33. Scenes like that shown in Figure 3.33
exchange new pixel values with the original LCLU class map. Where pixels are not zero in the
reference noise scene the LCLU class pixel at the same position obtains the new value. Conversely,
where pixels are zero in the reference noise scene the LCLU class pixel at the same position keeps
its current value.

3.6.3 Spectral Model (Increased Class Accuracy)

A change in spectral accuracy for real data is observed with better sampling schemes or better
algorithm decision models. This increase in class accuracy happens within the areas of mixed
pixels, where phenomena confusion occurs. As shown in Figure 3.34, mixed pixels are typically
located along the edges of each LCLU class, where class cover may intersect, instead of inside
contiguous pure pixel patches. For this reason the spectral model for increased class accuracy
uniformly increases pixel variability along LCLU class edge to model the better unmixing of a
mixed pixel.

The spectral model uses the same fixed pattern noise technique discussed in Section 3.6.2. This
time the reference error map only effects the LCLU class pixels along class edges instead of across
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Figure 3.32: Detector noise in a subscene from the Netherlands. The ERS SAR image to the left
was captured on 23 May 1993. To the right is a pixel-by-pixel averaged image of 11 superimposed
SAR scenes from 1993 (one each month with the exception of July). Detector noise in both scenes
is observed as white noise.

Figure 3.33: Uniformly generated fixed pattern noise error modeled for LCLU likelihood decision
confusion. From left to right, these three maps represent 8.2 × 10−3% (537 out of 65536) noise
effected pixels, 46.3 × 10−3% (3034 out of 65536) noise effected pixels, and 0.19% (1245 out of
65536) noise effected pixels.

the entire scene. Additionally, only LCLU class pixel values between the shared class edges are
used in the reference map. The results of the spectral model are shown in Figure 3.35.
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Figure 3.34: Increased LCLU map class accuracy. An increase in spectral model accuracy along
the river bed produces scattered assignments of mixed pixels between coastal land and water.

Figure 3.35: LCLU class map spectral model. The model edge spread increases from left to right
as ±0 pixels, ±1 pixels, ±2 pixels, and ±3 pixels of modeled unmixed class pixels.
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Chapter 4

Approach

It was discussed in Chapter 3 Section 3.3.1, how pixel size, or system resolvability in general, is
best characterized as the image spatial frequency bandwidth. This spatial frequency bandwidth
that can be scaled across resolutions as image power (see Figure 3.21). To capitalize on these
spatial frequency properties, Fourier metrics dependent on spatial frequency bandwidth have been
developed.

This chapter will present the proposed metrics of LCLU change in Sections 4.1–4.3. Each
proposed metric concept and derivation is reviewed, and the performance of these metrics to
indicate ecologically relevant LCLU variability is addressed in Section 4.4.

4.1 Metric of Landscape Composition

The simplest LPM focus on the composition of a landscape (e.g. which classes are present and how
much of the classes there are), ignoring the spatial arrangement of the classes on the landscape.
This section proposes a composition metric that models not only spatial composition correctly,
but accounts for the temporal progression of composition as well. The proposed Fourier Metric of

Proportion (FMP ) concept and derivation are presented.

4.1.1 Fourier Metric of Proportion

The idea is to have a metric that is unit-normalized by landscape coverage of equal LCLU class
Proportion (see equation 3.2), represented as scalable Fourier spatial frequency that trends expo-
nentially as class proportions change. The final FMP expression in Equation 4.8 is very simple,
but a conceptual derivation will help to interpret what is being measured.

To reveal how evenly the Proportions of cover types occur, each component LCLU class f1[x, y]+
f2[x, y] + f3[x, y] + . . . is separated from the total LCLU map f [x, y] and their Fourier vector
magnitudes are found:

f [x, y] = f1[x, y] + f2[x, y] + f3[x, y] + . . .

= F−1{| F1[ξ, η] |2 e−ıφf1 + | F2[ξ, η] |2 e−ıφf2 + | F3[ξ, η] |2 e−ıφf3 + . . .} (4.1)
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Each scalar LCLU class spectral density Sj , in Equation 4.2, are equal in length if the Propor-

tions are the same, and unequal in length otherwise. Example spectral densities for a three class
LCLU map would be:

S1 =
� ξ=∞

ξ=−∞

� η=∞

η=−∞
| F1[ξ, η] |2 ∂ξ∂η,

S2 =
� ξ=∞

ξ=−∞

� η=∞

η=−∞
| F2[ξ, η] |2 ∂ξ∂η,

S3 =
� ξ=∞

ξ=−∞

� η=∞

η=−∞
| F3[ξ, η] |2 ∂ξ∂η (4.2)

The similarity of each class spectral density is revealed by referencing every spectral density
by the maximum spectral density Proportion. The scalar, three class, maximum spectral density
would be:

Smax ≡ MAX(S1, S2, S3) (4.3)

These spectral densities can be thought of as radii of a hyperellipsoid referenced against a
unit-hypersphere. Here the hyperellipsoid volume is a singular variable representing every possible
LCLU spectral density combination. The unit-hypersphere makes reference to every instance where
LCLU has the same amount of landscape area. Figure 4.1 shows this concept for the first three
dimensions.

Figure 4.1: The hyperellipsoid concept for FMP derivation. The hyperellipsoid becomes a unit-
hypersphere if each class spectral density Sj are equal. Each spectral density Sj is normalized by
the maximum class spectral density Smax, and are radii for the hyperellipsoid. The hyperellipsoid
volume will be smaller than a unit-hypersphere volume if the Proportions are not equal, so the
hyperellipsoid volume is always less than (inside) or equal to the unit-hypersphere volume.

The general volume VD(R1, R2, . . . , RD−1, RD) for a hyperellipse with radii Rj , and number of
radii D is:
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VD(R1, R2, . . . , RD−1, RD) =
π

D
2 RD

j

Γ
�

D
2 + 1

� (4.4)

Γ(·) is the Gamma function.
For the unit-hypersphere volume V̄D, each radius Rj = 1. The full equation for the class

spectral density hyperellipse volume VD(S̃1, S̃2, . . . , S̃D−1, S̃D) has the radii of normalized class
spectral density

S̄j =

� ξ=∞
ξ=−∞

� η=∞
η=−∞ | Fj [ξ, η] |2 ∂ξ∂η

� ξ=∞
ξ=−∞

� η=∞
η=−∞ | Fmax[ξ, η] |2 ∂ξ∂η

=
Sj

Smax
(4.5)

as a series of products:

VD(S̃1, S̃2, . . . , S̃D−1, S̃D) =
π

D
2 ·

�D
j

R ξ=∞
ξ=−∞

R η=∞
η=−∞|Fj [ξ,η]|2∂ξ∂η

R ξ=∞
ξ=−∞

R η=∞
η=−∞|Fmax[ξ,η]|2∂ξ∂η

Γ
�

D
2 + 1

� (4.6)

Fourier Metric of Proportion is the fraction of normalized class spectral density hyperellipsoid
volume to unit-hypersphere, which can be expressed as:

FMP (S̃1, S̃2, . . . , S̃D−1, S̃D) ≡ VD(S̃1, S̃2, . . . , S̃D−1, S̃D) ·
�
V̄D

�−1

=
π

D
2 ·

�D
j

R ξ=∞
ξ=−∞

R η=∞
η=−∞|Fj [ξ,η]|2∂ξ∂η

R ξ=∞
ξ=−∞

R η=∞
η=−∞|Fmax[ξ,η]|2∂ξ∂η

Γ
�

D
2 + 1

� ·
Γ

�
D
2 + 1

�

π
D
2 · 1D

=
D�

j

� ξ=∞
ξ=−∞

� η=∞
η=−∞ | Fj [ξ, η] |2 ∂ξ∂η

� ξ=∞
ξ=−∞

� η=∞
η=−∞ | Fmax[ξ, η] |2 ∂ξ∂η

(4.7)

This can be simplified by Parseval’s theorem:

FMP (S̃1, S̃2, . . . , S̃D−1, S̃D) ≡
D�

j

� x=∞
x=−∞

� y=∞
y=−∞ | fj [x, y] |2 ∂x∂y

� x=∞
x=−∞

� y=∞
y=−∞ | fmax[x, y] |2 ∂x∂y

=
D�

j

p�j

=
D�

j

total number of pixels in class j

total number of pixels in largest class

(4.8)

Equation 4.7 and 4.8 tell us that FMP values can be compared to other FMP values that
integrate over the same spatial

�
x,y, and thereby spatial frequency

�
ξ,η, extent—this means images

must be in the same geographic coordinate system before calculation. FMP reports composition
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in reference to variable maximum Proportion (i.e. a proportion with reference to a single area),
so the physical landscape location [x, y] of the landscape should remain the same. When reporting
FMP values of different landscape locations it should be stated.

Since each spectral density is reported with reference to the largest spectral density (see equation
4.5), multiple (i.e. temporal) FMP values can be interpreted with reference to the largest LCLU
class. For example, the expectation that any process associated with the largest LCLU class
in the landscape scene (say, eutrophication) should become increasingly relevant as that LCLU
grows, would be revealed as a direct relationship between temporal FMP values and temporal
observations of that process. The further from a direct relationship between FMP and whatever
process is an indication of a competing dependency, possibly outside of the satellite image captured
landscape extent.

Figure 4.2: Analysis of FMP as a landscape indicator. Correlating the FMP landscape pattern
metric to a landscape process dependent on areal coverage, deviation from a linear temporal
relationship would indicate a competing influence on the observed process. FMP1(t) in black,
is the expected relationship for FMP and some observed process; and FMP2(t) in red, is the
nonlinear relationship suggesting process influence(s) outside of the currently observed landscape.

Using FMP , the influence any LCLU class has on another LCLU class is expressed at a higher
rate than Dominance by multiplying each proportion

�D
j p�j . Still, as was for Dominance, FMP

is a measure of class diversity ranging from 0 to 1. Values near 1 indicate a landscape dominated by
many different cover types of similar proportion, while values near 0 indicate that a single LCLU
class is dominant across the landscape.

FMP Uncertainty

Uncertainty is introduced into FMP values by using the ROC parameters explained in Section
3.3.2. Upper bound (UB) , lower bound (LB) and observed (OBS) FMP values are expressed as:
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FMPOBS ≡
D�

j

p�j,OBS

+
�D

j p�j,UB

−
�D

j p�j,LB

=
D�

j

p�j,TP+ F N
2

+
�D

j p�j,TP

−
�D

j p�j,TP+FN

. (4.9)

4.2 Metric of Landscape Configuration

With increased complexity, LPM for LCLU configuration describe the interaction between LCLU
classes. Methods to quantify class spatial position and patch influence have been developed to
describe landscape configurations that effect LCLU change. However, the measurement of these
factors in multiple resolution images have come under considerable error (see Section 3.2.4). In
this section the proposed Fourier Metric of Fragmentation (FMF ) concept and derivation are
presented, along with a brief review of the theory behind its interpretation for landscape configu-
ration.

4.2.1 Fourier Metric of Fragmentation

Attempts to quantify patterns of fragmentation (i.e. the incursion of one class onto another)
has produced deterministic models and a general theory of class population that follow very close
to LCLUC observations. Especially in the field of population dynamics, where Richard Levins’
Metapopulation model tracks the succession and recession of local (class) populations from one
type to another. The model assumes that across the entire set of LCLU class populations a general
measure of species health (e.g. survival or extinction) is indicated by an individual class’s size and
relative distances, and that the class’s succession or recession rates of change are logistic-sigmoid
with time t (see Equation 4.10). The logistic-sigmoid model in Figure 4.3 initial stage of growth
for some set P is approximately exponential; then, as saturation begins, the growth slows, and at
maturity, growth stops:

∂P (t)
∂t

= P (1− P )

P (t) =
1

1 + e−t
(4.10)

In Equation 4.11, Levin’s model for landscape population, p is the fraction of patches occupied
at some time. Each occupied patch can become unoccupied with an extinction probability ε, and
populated by migration at some constant rate m. The fraction of unoccupied patches is (1 − p).
(m · p) is interpreted as the fraction of unoccupied patch to be colonized, and (ε · p) is the fraction
of occupied patch to recede. For each change in time step ∂p

∂t , the change in the proportion of
occupied patches is:

∂p

∂t
= m · p · (1− p)− ε · p (4.11)

52



Figure 4.3: Levin’s Metapopulation model assumed rate of growth for an individual class. The
logistic-sigmoid function’s initial stage of growth, before the reference time t = 0, for some per-
cent capacity P (t), is approximately exponential. As saturation begins the growth slows, and at
maturity growth stops at 100% LCLU capacity.

The Metapopulation model assumes, as an initially exponential and further logistic-sigmoid
function of LCLU class growth, that distance to harmful species and relative population sizes are
indicators of populous health. And, appropriately models the observed process of fragmentation.
Fourier Metric of Fragmentation (FMF ) recognizes each of these assumptions and measures each
function with greater sensitivity as LCLU patch growth slows, and at maturity when LCLU patch
cover stops.

The FMF metric has two scalar components: Φ̂fi,fk,l phase—a distance measure of spatial
similarity between the fragmenting classes; and M̂fi,fk spectral density—the normalized spectral
density measurement of populated area by the LCLU class being observed. Since the distance
between two classes is the same from one class to another, the M̂fi,fk parameter determines the
direction of fragmentation from fi → fk or fi ← fk. The Fourier fragmentation description used
by FMF is compared to Contagion in Figure 4.4.

FMF–Phase

By way of the phase-only matched (POM) filter [Homer and Gianino, 1984] a measure of physically
accurate between-class distance can be derived. The POM filter produces a measure of physically
relevant distance by taking advantage of the Fourier shifting theorem seen in Equation 4.12.
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Figure 4.4: Contagion is a measure of the change in phase between two classes i and j, and their
respective class vector magnitudes during fragmentation. The two classes are i, the white LCLU
in the binary class map, and a general, all other classification j, represented as black in the binary
class map. As the LCLU class becomes more fragmented, the phase difference ∆Φi,j between the
LCLU of interest i and all other LCLU classes j decrease. Their Fourier magnitudes come closer
as Mi � Mj . Under fragmentation, the LCLU across the landscape becomes increasingly similar.

F{f [x ± x0, y ± y0} =
� x=∞

x=−∞

� y=∞

y=−∞
f [x ± x0, y ± y0]e[−2πı(ξ·x+η·y)]∂x∂y

For u ≡ x ± x0 , v ≡ y ± y0 =
� u=∞

u=−∞
f [u]e[−2πıξ(u∓x0)]∂u

� v=∞

v=−∞
f [v]e[−2πıη(v∓y0)]∂v

= e[±2πıξx0] · e[±2πıηy0] · F [ξ] · F [η]
= e[±2πı(ξx0+ηy0)]F [ξ, η]
= | F [ξ, η] | e[ı(φ{F [ξ,η]}±ı2π(r̃0•ρ̃))]

where |̃r0| ≡
�

x2
0 + y2

0 and |ρ̃| ≡
�

ξ2 + η2 (4.12)

In step four of the Fourier shifting theorem derivation the shifted distance from a defined origin
is in the exponential phase term. Using two images f1[x, y] to f2[x, y] whose only difference between
them is their position f2[x, y] = f1[x ± x0, y ± y0] the POM filter leverages the exponential phase
term to find the distance between the two scenes. The POM filter is able to describe radial shifts
r̃

T
0 = [x0, y0] between two scenes because it assumes the Fourier spatial frequency vectors F1[ξ, η]

and F2[ξ, η] share the same magnitude | F1[ξ, η] |=| F2[ξ, η] | and have the same inherent phase
φ{F2[ξ, η]} = φ{F1[ξ, η]}):
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POM{f1[x, y], f2[x, y]} = F−1
�
| F2[ξ, η] | e[ı(φ{F2[ξ,η]}±2π(r̃0•ρ̃))]· | F1[ξ, η] |−1 e[−ıφ{F1[ξ,η]}]

�

= F−1

�
| F2[ξ, η] |
| F1[ξ, η] |e

[ı(φ{F2[ξ,η]}−φ{F1[ξ,η]}±2π(r̃0•ρ̃))]

�

= F−1
�

e[±ı2π(r̃0•ρ̃))]
�

= δ[̃r± r̃0] (4.13)

By the second step of Equation 4.13 it is seen how any shift between f1[x, y] and f2[x, y] is revealed
as a vector change in slope r̃0 of an otherwise linear phase term ρ̃.

In both equations 4.12 and 4.13 the exponential phase term e[ıφ] is separated from the magnitude
| F [ξ, η] | to find these descriptions of distance. This separation is the first of two steps for the
FMF metric. The phase transfer function ΦTFfi,fj for the FMF metric phase can be expressed
as:

ΦTFfi,fj [ξ, η] ≡ Fi[ξ, η]
| Fi[ξ, η] | ·

F ∗
j [ξ, η]

| F ∗
j [ξ, η] | = e[ı(φ{Fi[ξ,η]}−φ{Fj [ξ,η]})]

= e[ı(φ{Fi[ξ,η]}−φ{Fj [ξ,η]}+2π(r̃•ρ̃))] (4.14)

The FMF metric phase transfer function ΦTFfi,fj measures shape similarity across the land-
scape, seen between LCLU classes fi and fj . Under Levins’ logistic-sigmoid Metapopulation model
assumption (see equation 4.10), FMF has an increased sensitivity to an early indication of frag-
mentation because of the ΦTFfi,fj exponential shape similarity measurement in Equation 4.14.
The transfer function between the observed landscape Metapopulation model in Figure 4.3, and
the measured FMF metric can be effectively tuned to provide increasingly early (i.e. sensitive)
measures of fragmentation detection: (ΦTFfi,fj )l. The tuning factor l is interpreted as an increased
spatial sensitivity for every l−1 units of pixel distance across the landscape. At l = 1

2 , (ΦTFfi,fj )l

is twice as sensitive to changes on the landscape; at l = 1
3 , (ΦTFfi,fj )l is three-times as sensitive

to changes on the landscape, and so on.
Levins described Metapopulation as a collection of relatively isolated, spatially distributed,

local populations bound together by occasional dispersal between populations (see Section 3.1.1).
This can be modeled as a landscape with two isolated classes of extreme locality: δ[x− x0, y− y0]
and δ[x−x1, y−y1]. For this scenario (ΦTFfi,fj )l =

�
e[+2π(r̃•ρ̃)]

�l, where the distance between the
two classes is | r̃ |=

�
(xi − xj)2 + (yi − yj)2. The transfer function is shown in Figure 4.5. The

LCLU system in Figure 4.5 assume the rates of space and time are directly related δx
δt ∝

δt
δx . This

is why the system INputs and OUTputs are a function of unit time/distance.
The FMF transfer functions in Figure 4.5 are generated for a specific case, but LCLU system

interpretation is generally applicable. This predator-prey scenario is similar to Figure 3.3 b. The
distance between separate objects in the scene model (green ball vs. cyan ball) is still directly
proportional to the green object’s existence. Still, cyan identifies the predator and green identifies
the prey. However now, the distance between the two increases. In response, The green LCLU
population increases the further it is away from the cyan LCLU. This is all shown in the scene

model of Figure 4.5.
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Initially, at t = 0, the logistic-sigmoid model is set to a 0.67% LCLU prey population, at only
4.32% of the distance away from its LCLU predator population. Finally, at t = 1, the logistic-
sigmoid model is set to a 99.33% LCLU prey capacity, at 100.00% of the distance away from
its LCLU predator population (i.e. FMF = 1). With sensitivity parameter l ∈ [1, 7; ∆l = .5],
the transfer function reports increased FMF sensitivity to an early detection of fragmentation
for every value. For an individual scene, l effects spatial frequencies by amplifying higher fre-
quencies. This amplification increases FMF sensitivity to individual and contiguous pixel patch
pattern, as well as noise. The complete FMF metric phase is a distance-normalized scalar�
i.e.

� ξ=∞
ξ=−∞

� η=∞
η=−∞ 2π(r̃max • ρ̃)∂ξ∂η

�
, as shown in Equation 4.15:

0 < Φ̂fi,fj (r̃max, l) ≡



e

" R ξ=∞
ξ=−∞

Rη=∞
η=−∞ φ{Fi[ξ,η]}−φ{Fj [ξ,η]}+2π(r̃•ρ̃)∂ξ∂η

R ξ=∞
ξ=−∞

Rη=∞
η=−∞ 2π(r̃max•ρ̃)∂ξ∂η

!#



l

≤ 1 (4.15)

Where, in the phase
� ξ=∞

ξ=−∞
� η=∞

η=−∞ 2π(r̃max • ρ̃)∂ξ∂η is a summation of the landscape’s largest
phase. This is a product of the landscape’s furthest possible distance r̃max between classes i and
j.

Figure 4.5: The FMF transfer function for LCLU fragmentation, assuming Metapopulation:
logistic-sigmoid function of LCLU existence. There are 13 FMF transfer functions for sensi-
tivity parameter l ∈ [1, 7; ∆l = .5]—the FMF transfer functions are shown as shades of yellow
l = 1 to dark blue l = 7. A direct measure of LCLU fragmentation would be the 1 : 1 red line. The
Scene Model is of two distant delta functions growing further apart along a direct and linear spatial
path. The shared transfer function crossing point TTF = 1 occurs at 68.91% of the distance away.
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FMF Phase Uncertainty

Uncertainty is introduced into Φ̂fi,fj (r̃max, l) values by error in the phase. In real Fourier imaging
applications, the phase has to be unwrapped from only cycling between ±π

2 [Easton, 2005]. This
phase unwrapping introduces phase error ±∆φ. Additionally, the spatial translation in the phase
r̃ can only be as precise as the spatial resolution. The observed position is assumed to be at the
center of the pixel, with uncertainty bounded by the extent of the pixel’s sides ±∆r̃. Observed
FMF values are expressed as:

Φ̂fi,fj (r̃max, l) =



e

" 
(R ξ=∞

ξ=−∞
Rη=∞
η=−∞ φ{Fi[ξ,η]}−φ{Fj [ξ,η]}+2π((r̃±∆r̃)•ρ̃)∂ξ∂η)±∆φ

R ξ=∞
ξ=−∞

Rη=∞
η=−∞ 2π(r̃max•ρ̃)∂ξ∂η

!#



l

(4.16)

FMF–Magnitude

The scalar magnitude M̂fj is the condition-normalized spectral density of whichever class spectral
density is being considered—either the class being observed to increase as it fragments across some
landscape, or the class being observed to fragment into extinction, out of some landscape. The
chosen class spectral density Sj is normalized for every class spectral density condition Sj + Sk

being investigated for fragmentation:

0 ≤ M̂fj ,fk(Sj , Sk) ≡
� ξ=∞

ξ=−∞ | Fj [ξ, η] |2 ∂ξ∂η
� ξ=∞

ξ=−∞
� η=∞

η=−∞ | Fj [ξ, η] |2 ∂ξ∂η +
� ξ=∞

ξ=−∞
� η=∞

η=−∞ | Fk[ξ, η] |2 ∂ξ∂η
≤ 1

(4.17)
Equivalently, by Parseval’s theorem

M̂fj ,fk(Sj , Sk) ≡ Sj

Sj + Sk
=

total number of pixels in class j

total number of pixels in classes j and k
(4.18)

Where, k is any combination of the other classes in a LCLU map.

FMF Magnitude Uncertainty

Uncertainty is introduced into FMF magnitude values by ROC parameters explained in Section
3.3.2. Upper bound (UB), lower bound (LB), and observed (OBS) FMF magnitude values are
expressed as:

M̂fj ,fk ≡
D�

j

M̂fj ,fk,OBS
+

�D
j M̂fj ,fk,UB

−
�D

j M̂fj ,fk,LB

=
D�

j

M̂fj ,fk,TP+ F N
2

+
�D

j M̂fj ,fk,TP

−
�D

j M̂fj ,fk,TP+FN
. (4.19)
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FMF

The FMF scalar magnitude 0 ≤ M̂fj ,fk ≤ 1 of Equation 4.18 reveals how relatively large M̂fj ,fk ≈
1, or small M̂fj ,fk ≈ 0, class j is within some landscape. The scalar FMF phase 0 < Φ̂fj ,fk,l ≤ 1
of equation 4.15 reveals how close Φ̂fj ,fk,l ≈ 0, or far Φ̂fj ,fk,l ≈ 1, class j is from class k.

The FMF metric follows fragmentation trends directly. As the class cover increases M̂fj ,fk → 1
and as between class distance decreases Φ̂fj ,fk,l → 0, the potential of class i fragmentation increases.
FMF ≈ 0 is interpreted as low fragmentation, and FMF ≈ 1 is interpreted as high fragmentation:

0 ≤ FMF (Sj , Sk, r̃max, l) ≡ M̂fj ,fk · (1− Φ̂fj ,fk,l) < 1 (4.20)

FMF Uncertainty

Uncertainty is introduced into FMF values by joint FMF magnitude uncertainty and FMF phase
uncertainty. These uncertainties are joined by the joint variance expression in equation 3.12.

FMF (Sj , Sk, r̃max, l) ≡ M̂fj ,fk,OBS · (1− Φ̂fj ,fk,l,OBS) ± ∆FMF ;

∆FMF = σ2
Φ̂fi,fj

· M̂2
fj ,fk,OBS + σ2

M̂fj,fk

· (1− Φ̂2
fi,fj ,OBS) + σ2

Φ̂fi,fj

· σ2
M̂fj,fk

.

(4.21)

4.3 Metric of Landscape Occupancy

Unlike in the previous sections, there is no proposal of new metric material here. Instead, an
introduction to a different type of Fractal Dimension estimation for Landscape Ecology LCLU
maps is presented. For fractal dimension estimation of statistically self-similar LCLU classification
patches (see section 3.2.4), the Yuen et al. [2004] least squares method of the Fourier power
spectrum is proposed. After linearizing the Fourier power spectrum, the Hough transform is used
to estimate the Hurst dimension H and thereby fractal dimension Dfr.

The least squares Fourier power spectrum method varies smoothly across resolution, and so
maintains accuracy, but decreases precision with increases in pixel size [Brewer and Girolamo,
2006]. To increase lsFT precision the Hough transform, known to be robust to outliers, is adapted
for estimation. The least squares Fourier power spectrum method written in a linear form takes
advantage of the Hough transform addition.

4.3.1 Yuen et al. [2004] Least Squares Fourier Transform Fractal Di-
mension Estimation

The 2-D Fourier power spectrum Pfr[ξ, η] for a Fourier fractal signal Ffr[ξ, η] is statistically equal
to the least squares Fourier power spectrum estimator:

Pfr[ξ, η] =| Ffr[ξ, η] |2≡ A

(ξ2 + η2)H+1
, where Dfr = 3−H, (4.22)

A is a proportional constant, Dfr is the fractal dimension, and H is the Hurst exponent.
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The true fractal signal ffr[x, y] and fractal noise �[x, y], have power spectrum Pfr[ξ, η] and
�[ξ, η], respectively. The composite signal f [x, y] = ffr[x, y] + �[x, y] has power spectrum P [ξ, η]:

P [ξ, η] = Pfr[ξ, η] + �[ξ, η]. (4.23)

Solving for Pfr in Equation 4.23, and taking the logarithm of both sides in Equation 4.22
linearizes the least squares Fourier power spectrum equation.

log [P [ξ, η]− �[ξ, η]] = log [A]− (H + 1) · log
�
ξ2 + η2

�
(4.24)

So,
log [A] = (H + 1) · log

�
ξ2 + η2

�
+ log [P [ξ, η]− �[ξ, η]]

≈ (H + 1) · log
�
ξ2 + η2

�
+ log [P [ξ, η]] . (4.25)

In the last step, fractal noise �[x, y] is assumed negligible. Here, the least squares Fourier trans-
form method for estimating fractal dimension is best expressed to take advantage of the Hough
transform’s precision. Each possible linear trend is counted in Hough space, then the most likely
linear trend is accepted for derivation of the Hurst parameter H = 3−Dfr.

4.4 Landscape Pattern Metric Evaluation

It has been shown that each of these metrics can be interpreted spatially, and separately for
individual LCLU classes. The FMP conceptual derivation suggested a way to interpret the most
significant LCLU process effecting the landscape. The FMF derivation and theory gave proof for
its ability to detect the Metapopulation fragmentation process early while using spatially relevant
variables. And, the Yuen et al. [2004] least squares Fourier transform method (lsFT ) increases
accuracy and precision of LCLU fractal dimension estimation.

Still, how separable the measures of these landscape pattern metrics are and how much they
explain both pattern and process in the landscape has not been answered. The evaluation of LPM
LCLU pattern relevance can be done by factor analysis. An approach to LPM factor analysis,
taken by Ritters et al. [1995], is be extended for this purpose. As a preliminary experiment to
the Ritters et al. landscape pattern structure model the proposed LPM are evaluated for how
independent they are to LCLU imaging system pressures (see section 5). A factor analysis of these
imaging system spatial, spectral and radiometric inaccuracies in LCLU maps is also examined.

To evaluate the proposed LPM ability to explain landscape process LCLU data would need
to coincide with ground truth. So, evaluation of metrics to wetland variability is performed by
extending the Smith et al. fecal coliform South Carolina case study, using their data sources. A
LPM model for fecal coliform compromised watersheds is trained using 1992 SC sampling data,
and the developed LPM model performance is evaluated using 2001 SC sampling data.

4.4.1 Ritters et al. [1995] Landscape Pattern and Structure Model

Ritters et al. statistically compared multiple LPM to find how well each metric responds to relevant
LCLU map change. Their experiment is repeated here, this time including my proposed LPM and
other recently developed LPM from the literature (see Appendix A). Success is interpreted with
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regard to how well each metric independently responds to relevant landscape change. The best
metrics from this experiment would be the ones whom are clearly not repeats of an existing metric.

Figure 4.6 shows the steps involved. Data values of each observed LPM vector,

LPM
�
= [LPM

�

1,LPM
�

2, ...,LPM
�

p], (4.26)

are used to populate a correlation matrix �Σ that can reveal the observed metric’s ability to explain
variable landscapes. Through Principal Components Analysis (PCA) an eigenvector matrix �E
is produced whose eigenvector columns provide the most general description for LPM ability to
explain t variable landscapes. This general description comes by way of the uncorrelated, maximum
variance, linear combinations produced through PCA:

Y1 = a
�

1LPM = a11LPM1 + a12LPM2 + · · · + a1(p·t)LPMp·t

Y2 = a
�

2LPM = a21LPM1 + a22LPM2 + · · · + a2(p·t)LPMp·t

...

Yp = a
�

pLPM = ap1LPM1 + ap2LPM2 + · · · + ap(p·t)LPMp·t.

(4.27)

These linear combinations are ranked from 1 to p by descending descriptive ability, and are
composed of individually weighted LPMi

�
= [LPM1, LPM2, ..., LPMt] from all the t 7.68× 7.68

[km] National Land Cover Data (NLCD) LCLU areas. This [
�

t aj,tLPMt] weighted presence of
an individual vector LPM is that LPM’s contribution to landscape description. So, the more
contribution to independent landscape descriptions Yj a LPM tends to make, the more uniquely
able (i.e. independently) to describe (i.e. responds with high variance to) a landscape the LPM
is.

To obtain this measure for unique, typically descriptive LPM the dot product unit magnitude
of individual metric correlation vectors to each eigenvector can be used for the % explanation of an
individual metric to relevant landscape variability. The more uncorrelated any metric correlation
column vector is to any individual eigenvector column vector, the less of a relationship there is
between that metric and the variable landscape condition—this allows us to say to what degree the
observed metric and variable landscape are unrelated. Projecting each correlation column vector
Yp, created from every LPM column vector (FMP, FMF, LsFT, etc.), into the original metric
space,

�LPMj =
�EYj

|Yj |
, (4.28)

a direct measure of LPM ability to explain the p observed LCLU map changes compared to the
full set of metrics, including Appendix A, is obtained. Each element in ˜LPMj is the % LPMj,t=k

contributed to landscape k explanation. Summing across every k landscape and averaging over
the p observed variances, the typically explained variance for the LPM is obtained:

σ̄LPM =
p�

j=1

�t
k=1 LPMj,t

p
. (4.29)
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This Factor Analysis is done using the SAS FACTOR analysis statistical software.

Figure 4.6: The LCLU observation factor analysis flow chart. Vectors for each LPM, from variable
landscape values, are produced. With these metric vectors the correlation matrix for observed
LPM is populated. Principal Component Analysis eigenvectors that most explain the variable
landscapes, are then used to find the % explanation of each proposed metric: FMP , FMF , and
LsFT .

Fifty-six maps have been selected from the 1992 National Land Cover Data (NLCD). The
selection is intended to represent a rough transect of landscape patterns across physiographic
regions of the United States [Hunsaker et al., 1994]. 1992 National Land Cover Data (NLCD) is
a 21-category land cover classification scheme (see Table 4.1) that has been applied consistently
over the conterminous United States. It is based primarily on the unsupervised classification of
Landsat TM (Thematic Mapper) 1992 imagery. Ancillary data sources include topography, census,
agricultural statistics, soil characteristics, other land cover maps, and wetlands data. The NLCD
1992 classification is raster data with a spatial resolution of 30 meters. The seamless product is
cast to the Albers Equal-Area Conic projection, referenced to the North American Datum of 1983
(NAD83), and divided into 256× 256 GeoTIFF image blocks (see Figure 4.7).

These NLCD maps cover Ecoregions, which are ecosystems of regional extent, in the United
States. Four levels of detail are included that encourage unique landscape pattern. The largest
ecosystems are Domains, or groups of related climates, that are defined based on precipitation and
temperature. Divisions represent the climates within Domains and are differentiated based on
precipitation levels and patterns as well as temperature. Divisions are subdivided into Provinces,
which are differentiated based on vegetation or other natural land covers. The finest level of
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Table 4.1: Descriptions of LCLU attribute class colors for 1992 NLCD [Anderson et al., 1976].
LCLU class color Anderson Level II attribute class description
Blue Open Water
Yellow Low Intensity Residential
Orange High Intensity Residential
Red Commercial, Industrial, Transportation
White Bare Rock, Sand
Purple Quarry, Strip Mine
Magenta Transtional Barren
Light Green Deciduous Forest
Dark Green Evergreen Forest
Green Mixed Forest
Lavender Grassy, Herbaceous
Light Tan Pasture, Hay
Brown Row Crops
Tan Small Grains
Gray Other Grasses
Light Blue Woody Wetlands
Very Light Blue Herbaceous Wetlands

Figure 4.7: A 256 × 256 chip of National Land Cover Database (NLCD) Glens Falls, NY land
cover.

detail is described by subregions, called Sections, which are subdivisions of Provinces based on
terrain features. Also identified are mountainous areas that exhibit different ecological zones based
on elevation. Each of these pattern and process influenced Ecoregions provide ample landscape
variability to test these metrics, and are shown in Appendix C. In the Appendix, Table B.1
describes Land Use Data Analysis (LUDA) LCLU attribute class codes used by Ritters et al. for
a comparison to Table 4.1.
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4.4.2 Smith et al. [2001] South Carolina Case Study

States, territories and tribal lands are required to monitor local water quality every two years to
comply with section 305 of the Clean Water Act. Part of this assessment includes identification,
listing, and prioritization of the water bodies that do not meet water quality standards, referred
to as the 303(d) list. After identification States and other jurisdictions develop Total Maximum
Daily Loads (TMDL) (i.e. pollution budgets) for the water bodies on the 303(d) list, and in doing
so create a georeferenced record of polluted locations and amounts.

Smith et al. [2001] reports on LPM for a majority (≈ 65%) of the sites placed on the 303(d)
list due to fecal coliform—the bacteria that usually reside in the digestive tract of warm blooded
animals, and are used as a surrogate for the presence of pathogens in water bodies. High con-
centrations of fecal coliform are indicative of pollution that cannot be tracked to a single source
discharging into a water body. Exactly the type of process Landscape Ecology provides a descrip-
tion of. For 1998 the LPM of Smith et al. indicated LCLU characteristics of the watershed may
be a contributing factor to South Carolina’s non-point source fecal coliform problem, particularly
for watersheds with large proportions of urban land cover and agriculture on steep slopes (> 9%)
[Jennings et al., 2004, Jones et al., 2001, Smith et al., 2001, Vogelmann et al., 2001, Wickham
et al., 2000].

Using updated watershed delineations from the National Hydrography Dataset (NHD) [NHD,
2009]; the 303(d) list [SCD] for 1998, 2000 and 2002; and U.S. Multi-Resolution Land Character-
istics Consortium (MRLC) National Land Cover Data (NLCD) [MRL], the proposed LPM ability
as temporal, ecologically relevant indicators is evaluated. The metrics proposed here are compared
to those used by Smith et al. [2001] for their ability to predict presence of fecal coliform. The
successful metrics would covary along with fecal coliform measurements from large proportions of
urban and agricultural LCLU.
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Chapter 5

Preliminary Results

The results of this chapter will detail some of the proposed metrics’ improvements, capabilities,
and application. Several landscapes of different proportions, positions, and complexity have been
generated in Interactive Data Language (IDL) and by using Gardner’s “Neutral model for testing
landscape hypotheses” Rule software [Gardner, 2007] (see Sections 3.5 and 3.6). Each of the
measured synthetic scene parameters are given for every case.

The independence of each metric to LCLU system noise is found for Rule generated LCLU maps
of two and three class types. These are the same class map combinations discussed in Section 3.5.
For this preliminary metric review eighty-one LCLU maps were generated; each having dimensions
256× 256, and variable parameters:

1. Percent noisy pixels

2. 15[m], 30[m] and 200[m] spatial resolution

3. Edge spread of ±1 to ±10 edge pixels

4. LCLU maps of two cover types with probabilities
p[x] ∈ [0.1, 0.9; ∆ = 0.1];
q[x] = 1− p[x];

and

LCLU maps of three cover types with probabilities
t[x] ∈ [0.1, 0.9; ∆ = 0.1];
r[x] = (1− t[x]) · p[x];
s[x] = (1− t[x]) · q[x].

5. Variable Hurst dimension [0, 1; ∆H = 0.1] for LCLU maps of two cover types.

6. Variable fractal resolution.

This preliminary review is divided into several sections. Each section introduction will review
IDL variables and the process being observed in each experimental design. A discussion on each
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metric’s performance under imaging system spatial, spectral, and radiometric variability then
follows. The review begins in Section 5.1 with a simple one-dimensional calculation of the Fourier
Metric of Fragmentation (FMF ), followed by a series of experiments that reveal the ability of
FMF to measure the presence of LCLU on a landscape. Section 5.2 compares the proposed
metric of landscape composition, Fourier Metric of Proportion (FMP ), against the current metric
of landscape composition, Dominance. Additionally, Section 5.2 reveals the independence of FMF
and FMP , unlike the high correlation between Contagion and Dominance. Last in this preliminary
review, is the Least Squares Fourier Transform Fractal Dimension Estimation (LsFT ), in Section
5.3. Section 5.3 discusses the performance of LsFT under multiple imaging system conditions (see
Section 3.2.4).

5.1 Fourier Metric of Fragmentation (FMF )

Here, we observe the FMF ability to measure landscape configuration and its performance for
15[m], 30[m], and 200[m] imaging system spatial resolution. Examples used to explain what FMF
is measuring in an image are presented with increasing complexity. All of the examples covered in
this section are:

5.1.1 A one-dimensional FMF exercise. Using the discrete Fourier transform (see equa-
tion 3.37), the FMF phase Φ̂fj ,fk,l relationship with distance and the application of phase
normalization are explored.

5.1.2 The FMF ability to measure LCLU class existence. Each of these examples assume
the observed LCLU class map has 100% cover, and are measures of FMF in space and
time. These observed class maps are line scans of a 1024× 192 scene. Indicative of the base
FMF metric precision, the degree of error introduced by Fourier phase unwrapping (see
Section 4.2.1) is measured. And, each experimental design reveals these aspects of Island
Biogeography concepts (see Section 3.1.1):

• when using multiple sensitivity parameters l = .5, 2, 4, and 6;
• when a LCLU patch is in motion;
• when a smaller sized LCLU patch is in motion;
• when multiple LCLU patches are in motion;
• when a LCLU patch is growing;
• when two LCLU patches initially have and eventually lose a shared growth and extinc-

tion process;
• when the growth and extinction process of two LCLU classes are inextricably linked.

5.1.3 The FMF performance under variable imaging system spatial resolution. Exam-
ples of FMF on a 512× 512 map are considered:

• when using multiple sensitivity parameters l = .5, 2, 4, and 6, at 15[m], 30[m], and 200[m]
spatial resolution;

• when at 200[m] spatial resolution, and the direction the LCLU patch travels is at θ =
30◦, and 60◦ from the horizontal;
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Where ∆ξ = 1
N ·∆x in Step 1 is the Fourier vector spatial frequency resolution (see Section 3.3.1).

The differences between positions |n1 − n2| is the distance between LCLU class map 1 and
LCLU class map 2. This is described by the FMF phase Φ̂FMF,l in step 6. The FMF magnitude
M̂f1,f2(S1, S2) calculation is trivial and shown in equation 4.18.

5.1.2 The FMF ability to measure LCLU class existence

The time-series LCLU map experiments discussed here reveal the ability of FMF to measure the
influence one LCLU class has on the colonization and emigration rates of another. The two classes
being observed are of a 512 [units of pixel distance] line scan covering the red LCLU class and
white LCLU class, from within a 512× 192 LCLU map. The Figures shown here will display four
observations:

a.) on top—the observed LCLU map with a referenced green line scan across red and white LCLU
class patches;

b.) on the middle-left—a plot of observed FMF values for the two classes when some distance
apart;

c.) on the middle-right—a plot of the observed unwrapped phase, that leads to a measure of FMF
values (see the example in Section 5.1.1;

d.) along the bottom—a plot of observed FMF values between the two classes when some distance
apart plotted against the error due to phase-unwrapping.

The LCLU map action is varied continuously, and FMF a priori and priori class likelihood
is assumed to be 100% for clarity (i.e. this is the only class in the landscape and it is perfectly
classified). Each experiment reveals the success of FMF to measure the proximity effects in Island
Biogeography activity which are listed in section 5.1.3.

FMF observed when using multiple sensitivity parameters l = .5, 2, 4,and 6.

Aspects of FMF shown in this section are–

• The ability of FMF phase to report distance information between two similar LCLU classes

using their phase difference:

Figures 5.2 and 5.3 show FMF values between LCLU red and white class patches that cover
1 pixel and steadily separate from each other. The white LCLU class patch continuously goes
from 1 [units of pixel distance] away to 512 [units of pixel distance] away from the red LCLU class
patch, imitating a decreasing influence of the red LCLU class patch on the white LCLU class patch.
The different l-sensitivity values are in Table 5.1, along with their initial FMF values and color
references.

Comparing Figure 5.2 to Figure 5.3, we observe that the area under the unwrapped phase
difference between LCLU class 1 and LCLU class 2 increases as the distance between LCLU class
1 and LCLU class 2 increases. Just as was shown in Step 3 of Section 5.1.1, the phase difference
is directly related to the distance between LCLU classes.
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Table 5.1: Variable Sensitivity Parameter l, for a 1 pixel LCLU class patch.
l-value Plot Color Initial Value Value at x = 300 Final Value

0.5 Yellow 0.39 0.19 0.00
2.0 Blue 0.86 0.56 0.00
4.0 White 0.98 0.81 0.00
6.0 Magenta 1.00 0.92 0.00

Figure 5.2: FMF values between LCLU red and white class patches that cover 1 pixel at a distance
x = 300 [units of pixel distance]. The white LCLU class patch has continuously moved, by 1 [units

of pixel distance] away, to 300 [units of pixel distance] away from the red LCLU class patch. The
green line across the LCLU map in a is the area covered by the line scan plot in b. The effect
on FMF by the different l-sensitivity values in plot b are referenced in Table 5.1. A plot of the
unwrapped phase red-class to white-class phase difference is shown in c. All observed FMF values
and phase error are plotted in d, with the phase error axis displaying values for 0.3 ≤ ∆Φ ≤ −0.3
(i.e. within ± 30% FMF ).

• The direct relationship of FMF phase to patch influence according to Island Biogeography:

After the summed phase is wrapped into an exponential function and placed into the FMF
phase (see Steps 5-6 of Section 5.1.1), plot c of both Figures 5.2 and 5.3 show how FMF values de-
crease with increasing distance. FMF values inversely trend with LCLU class patch distance, but
directly trend with potential LCLU class patch influence in accordance with Island Biogeography
theory.

• The adjustable early detection rate l, and its effect on reported FMF values:
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Figure 5.3: FMF values between LCLU red and white class patches that cover 1 pixel. The white
LCLU class patch has continuously moved, by 1 [units of pixel distance] away, to 512 [units of pixel

distance] away from the red LCLU class patch. The green line across the LCLU map in a is the
area covered by the line scan plot in b. The effect on FMF by the different l-sensitivity values in
plot b are referenced in Table 5.1. A plot of the unwrapped phase red-class to white-class phase
difference is shown in c. All observed FMF values and phase error are plotted in d, with the
phase error axis displaying values for 0.3 ≤ ∆Φ ≤ −0.3 (i.e. within ± 30% FMF ).

The multiple FMF sensitivity value plots have increasing early detection rates with increasing
sensitivity parameter l, and decreasing near detection rates with increasing sensitivity parameter l.
When LCLU class patches are close to each other, a high sensitivity parameter may not significantly
report the difference between small between-class patch movements. For instance for a high FMF
sensitivity parameter l = 6, one-pixel distance reports FMFf1,f2,l=6 = 0.99752125 while a two-
pixel distance reports FMFf1,f2,l=6 = 0.99749194. The difference observed is on the order of the
ten-thousandth 1× 10−4 decimal unit.

• The effects of phase precision and accuracy on reported FMF values:

The phase error ±∆φ (see Section 4.2.1) limits FMF precision to only be significant above
≈ ±1 × 10−8. The observed effects of phase error are far below any significant change in the
1× 10−4 unit pixel distance limit. The inaccuracy introduced by phase error is ≈ 1× 10−17 units
of FMF , and reported as average phase error in both Figures. The imprecision and inaccuracy
due to phase error does not significantly effect FMF values.

FMF observed when one class patch is in motion.

Aspects of FMF shown in this section are–
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Table 5.2: Variable Sensitivity Parameter l, for a 200 pixel LCLU class patch.
l-value Plot Color Initial Value Value at x = 300 Final Value

0.5 N/A 0.39 0.19 0.00
2.0 N/A 0.86 0.56 0.00
4.0 White 0.98 0.81 0.00
6.0 N/A 1.00 0.92 0.00

• The ability of FMF phase to report distance information between two dissimilar LCLU

classes;

• and the direct relationship of FMF to patch influence according to Island Biogeography:

Figure 5.4 show FMF values between a red LCLU class that covers 1 pixel, and a white LCLU
class that covers 200 pixels. The white LCLU class patch continuously goes from 1 [units of pixel

distance] away to 312 [units of pixel distance] away from the red LCLU class patch, imitating a
decreasing influence of the red LCLU class patch on the white LCLU class patch of a different size.
The plotted FMF values use sensitivity parameter l = 4. The different l-sensitivity values are in
Table 5.2, along with their FMF values. Though the patch sizes are different, the FMF value
relationship to distance is the same as was observed between similar LCLU classes.

Observing the unwrapped phase plot in Figure 5.4, we see that the area under the unwrapped
phase difference between LCLU class 1 and LCLU class 2 is the same as the area under the
unwrapped phase plot of the previous Figure 5.2, which is also at x = 300 [units of pixel distance]
away. As shown in Step 3 of section 5.1.1, the phase difference is directly related to the distance
between LCLU classes.

The summed phase is wrapped into an exponential function and placed into the FMF phase
(see Steps 5-6 of Section 5.1.1). When these values are then expressed as FMF they inversely trend
with LCLU class patch distance, but directly trend with potential LCLU class patch influence in
accordance with Island Biogeography theory.

• The adjustable early detection rate l, and its effect on reported FMF values;

• and the effects of phase precision and accuracy on reported FMF values:

The phase error ±∆φ (see section 4.2.1) for a 200-pixel LCLU class patch can be seen in plot
c. The phase error shows up as white phase deviations from the linear red unwrapped phase. This
phase error limts a 200-pixel LCLU class patch FMF precision, at a distance x = 300 [units of

pixel distance] and for a sensitivity parameter l = 4, to be significant within ±8.26× 10−6 units of
FMF . The 1-pixel LCLU class patch of Figure 5.2, at a distance x = 300 [units of pixel distance]
and for a sensitivity parameter l = 4, has a FMF precision that is siginficant within ±5.36×10−9.
These observed effects of phase error for a 200-pixel LCLU class patch are generally higher across
the entire 312 pixel landscape than for a 1-pixel LCLU class patch. Still, they are far below any
significant change in the 1 × 10−4 unit pixel distance limit (see Section 5.1.2). The inaccuracy
introduced by phase error is ≈ 1× 10−14 units of FMF for a 200-pixel LCLU class patch, and is
reported as average phase error in Figure 5.4. The imprecision and inaccuracy due to phase error
does not significantly effect FMF values.
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Figure 5.4: FMF values between a red LCLU class that covers 1 pixel, and a white LCLU class
that covers 200 pixels at a distance x = 300 [units of pixel distance] away. The white LCLU class
patch has continuously moved, by 1 [units of pixel distance] away, to 300 [units of pixel distance]
away from the red LCLU class patch. The green line across the LCLU map in a is the area covered
by the line scan plot in b. The FMF values are reported with a sensitivity parameter l = 4. A
plot of the unwrapped phase red-class to white-class phase difference is shown in c. All observed
FMF values and phase error are plotted in d, with the phase error axis displaying values for
0.3 ≤ ∆Φ ≤ −0.3 (i.e. within ± 30% FMF ).

FMF observed when multiple class patches are in motion.

Aspects of FMF shown in this section are–

• The adjustable early detection rate l, and its effect on reported FMF values;

• and the ability of FMF phase to report distance information of complex shaped LCLU classes:

Figure 5.5 shows FMF values between a red LCLU class that covers 1 pixel, and a patterned
white LCLU class cover of two 75 pixel-width patches separated by 50 pixels. This pattern of
the white LCLU class patch cover exists over the same 200 pixel area of the previous LCLU class
map in Figure 5.5. The white LCLU class patch continuously goes from 1 [units of pixel distance]
away to 312 [units of pixel distance] away from the red LCLU class patch, imitating a decreasing
influence of the red LCLU class patch on the white LCLU class patch. The plotted FMF values
use sensitivity parameter l = 4. The different l-sensitivity values are in Table 5.3, along with their
FMF values, reporting increasing rates of early change detection with increasing l.

Observing the unwrapped phase plot in Figure 5.5, we see that the area under the unwrapped
phase difference between LCLU class 1 and LCLU class 2 is different from the area under the
unwrapped phase plotted for either of the previous examples in Figure 5.2 and Figure 5.4; which
are also at x = 300 [units of pixel distance] away. This difference is due to an increase in linear
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Table 5.3: Variable Sensitivity Parameter l, for two 75 pixel LCLU class patches.
l-value Plot Color Initial Value Value at x = 300 Final Value

0.5 N/A 0.39 0.18 0.00
2.0 N/A 0.86 0.54 0.00
4.0 White 0.98 0.79 0.00
6.0 N/A 1.00 0.91 0.00

Figure 5.5: FMF values between a red LCLU class that covers 1 pixel, and a white LCLU class
that cover 75 pixels each, at a distance of 50 pixels apart. This white LCLU class is at a distance
x = 300 [units of pixel distance] away from the red LCLU class. The white LCLU class patches
have continuously moved, by 1 [units of pixel distance] away, to 300 [units of pixel distance] away
from the red LCLU class patch. The green line across the LCLU map a is the area covered by the
line scan plot b. The FMF values are reported with a sensitivity parameter l = 4. A plot of the
unwrapped phase red-class to white-class phase difference is shown in c. All observed FMF values
and phase error are plotted in d, with the phase error axis displaying values for 0.3 ≤ ∆Φ ≤ −0.3
(i.e. within ± 30% FMF ).

phase estimation error. Though, just as was shown in Step 3 of Section 5.1.1, the phase difference
continues to be directly related to the distance between LCLU classes and the phase error continues
to be negligible (i.e. precision on the order of ±1 × 10−8 and inaccuracies beyond ≈ 1 × 10−17

FMF units).

• The direct relationship of FMF to patch influence according to Island Biogeography;

• and the direct relationship of FMF to landscape fragmentation:
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The summed phase is wrapped into an exponential function and placed into the FMF phase
(see Steps 5-6 of Section 5.1.1). When these values are expressed as FMF they inversely trend
with LCLU class patch distance, but directly trend with potential LCLU class patch influence in
accordance with Island Biogeography theory.

The expected Island Biogeography proximity effects are also shown in the values of table 5.3.
All FMF values observed at x = 300 [units of pixel distance] of Table 5.3 are lower than either of
the values in Tables 5.1 and 5.2. FMF values decrease with increased spatial complexity happening
in only one LCLU (i.e. spatial pattern that is independent of colonization and emigration). This
means FMF assumes increased pattern within a single LCLU works to prevent colonization,
emigration, and fragmentation between LCLU.

• The effects of phase precision and accuracy on reported FMF values:

The phase error ±∆φ (see Section 4.2.1) for a patterned LCLU class cover of two 75 pixel-width
patches separated by 50 pixels can be seen in plot c. The phase error shows up as white phase
deviations from the linear red unwrapped phase. This phase error limits a patterned LCLU’s FMF
precision, at a distance x = 300 [units of pixel distance] and for a sensitivity parameter l = 4, is
significant within ±1.98× 10−4 units of FMF . The observed effects of phase error for a patterned
LCLU class cover of two 75 pixel-width patches separated by 50 pixels is generally higher across
the entire 312 pixel landscape, than for any previously observed LCLU class patch experiment.
Still, these observed effects of phase error are far below any significant change in the 1× 10−4 unit
pixel distance limit (see Section 5.1.2). The inaccuracy introduced by phase error is ≈ 1 × 10−13

units of FMF for a patterned LCLU class cover of two 75 pixel-width patches separated by 50
pixels, and is reported as average phase error in Figure 5.5.

FMF observed when a LCLU class patch is growing.

Aspects of FMF shown in this section are–

• The adjustable early detection rate l, and its effect on reported FMF values;

• and the ability of FMF phase to report distance information between one active and another

inactive LCLU class:

Figures 5.6 and 5.7 show FMF values between a white LCLU class that covers 1 pixel, and a
red LCLU class that independently increases its patch cover. The red LCLU class patch growth
shrinks the distance between each patch from 512 [units of pixel distance] to 1 [units of pixel

distance]. The plotted FMF values use sensitivity l = 4. The different l-sensitivity values are in
Table 5.4, along with their FMF values, reporting increasing rates of early change detection with
increasing l.

Comparing Figure 5.6 to Figure 5.7, we observe that the area under the unwrapped phase
difference between LCLU class 1 and LCLU class 2 decreases as the distance between LCLU class
1 and LCLU class 2 decreases. Just as was shown in Step 3 of Section 5.1.1, the phase difference
is directly related to the distance between LCLU classes.

• The direct relationship of FMF to patch influence according to Island Biogeography:
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Table 5.4: Variable Sensitivity Parameter l, for a growing LCLU class patch.
l-value Plot Color Initial Value Value at x = 300 Final Value

0.5 N/A 0.00 0.25 0.39
2.0 N/A 0.00 0.69 0.86
4.0 White 0.00 0.90 0.98
6.0 N/A -0.01 0.97 1.00

Figure 5.6: FMF values between a white LCLU class that covers 1 pixel, and a red LCLU class
that increases its patch cover. This red LCLU class is at a distance x = 300 [units of pixel distance]
away from the white LCLU class. The red LCLU class patch has continuously moved, from 512
[units of pixel distance] away, to 1 [units of pixel distance] away from the red LCLU class patch.
The green line across the LCLU map a is the area covered by the line scan plot b. The FMF
values are reported with a sensitivity parameter l = 4. A plot of the unwrapped phase red-class to
white-class phase difference is shown in c. All observed FMF values and phase error are plotted
in d, with the phase error axis displaying values for 0.3 ≤ ∆Φ ≤ −0.3 (i.e. within ± 30% FMF ).

After the summed phase is wrapped into an exeptional function and placed into the FMF phase
(see Steps 5-6 of Section 5.1.1), plot c of both Figures 5.6 and 5.7 show how FMF values decrease
with increasing distance. FMF values inversely trend with LCLU class patch distance, but directly
trend with potential LCLU class patch influence in accordance with Island Biogeography theory.

• The effects of phase precision and accuracy on reported FMF values:

The phase error ±∆φ (see Section 4.2.1) for a growing LCLU class patch, can be seen in plot
c. The phase error shows up as white phase deviations from the linear red unwrapped phase. This
phase error limits a growing LCLU class patch FMF precision, at a distance x = 300 [units of
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Figure 5.7: FMF values between a white LCLU class that covers 1 pixel, and a red LCLU class
that increases its patch cover. The red LCLU class patch has continuously moved, from 512 [units

of pixel distance] away, to 1 [units of pixel distance] away from the red LCLU class patch. The
green line across the LCLU map a is the area covered by the line scan plot b. The FMF values are
reported with a sensitivity parameter l = 4. A plot of the unwrapped phase red-class to white-class
phase difference is shown in c. All observed FMF values and phase error are plotted in d, with
the phase error axis displaying values for 0.3 ≤ ∆Φ ≤ −0.3 (i.e. within ± 30% FMF ).

pixel distance] and for a sensitivity parameter l = 4, to be significant within ±2.28 × 10−12 units
of FMF . The observed effects of phase error for a growing LCLU class patch is generally higher
across the entire 512 pixel landscape, than for any previously observed LCLU class patch. Still,
these observed effects of phase error are far below any significant change in the 1× 10−4 unit pixel
distance limit (see Section 5.1.2). The inaccuracy introduced by phase error is ≈ 3 × 10−14 units
of FMF for a growing LCLU class patch, and is reported as average phase error in Figure 5.6 and
Figure 5.7.

FMF observed for initially connected LCLU patches.

Aspects of FMF shown in this section are–

• The adjustable early detection rate l, and its effect on reported FMF values;

• and the ability of FMF phase to report distance information between two active LCLU

classes:

Figures 5.8, 5.9, and 5.10 show FMF values between a 1-pixel red LCLU class and 112-pixel
white LCLU class patches that are separated by 399 [units of pixel distance]. The red LCLU
class patch continuously goes from 399 [units of pixel distance] away to 1 [units of pixel distance]
away from the white LCLU class patch. For the first 112 [units of pixel distance], the red LCLU
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Table 5.5: Variable Sensitivity Parameter l, for a initially connected LCLU class patches.
l-value Plot Color Initial 112 Averaged Value at x = 300 Final Value

0.5 N/A 0.10 ±0.79× 10−3 0.25 0.39
2.0 N/A 0.35 ±2.68× 10−3 0.69 0.86
4.0 White 0.58 ±2.05× 10−3 0.90 0.98
6.0 N/A 0.72 ±1.27× 10−3 0.97 1.00

class patch colonization rate is equal to the white LCLU class patch extinction rate. There is no
relationship between the two class patches after the first 112 [units of pixel distance] movement.
The plotted FMF values use sensitivity parameter l = 4. The different l-sensitivity values are in
Table 5.5, along with their FMF values, reporting increasing rates of early change detection with
increasing l.

Figure 5.8: FMF values between a white LCLU class that covers 112 pixels, and a red LCLU class
that increases its patch cover. This red LCLU class is at a distance x = 399 [units of pixel distance]
away from the white LCLU class. The red LCLU class patch will continuously move, from 399
[units of pixel distance] away, to 1 [units of pixel distance] away from the red LCLU class patch.
The green line across the LCLU map in a is the area covered by the line scan plot b. The FMF
values are reported with a sensitivity parameter l = 4. A plot of the unwrapped phase red-class to
white- class phase difference is shown in c. All observed FMF values and phase error are plotted
in d, with the phase error axis displaying values for 0.3 ≤ ∆Φ ≤ −0.3 (i.e. within ± 30% FMF ).

Comparing Figures 5.8, 5.9, and 5.10, we observe that the area under the unwrapped phase
difference between the growing red LCLU class patch and the extinguishing white LCLU class is
statistically constant when their respective patch extinction rate and colonization rate are equal.
The area under the unwrapped phase difference between the red LCLU class patch and the white

77



Figure 5.9: FMF values between a white LCLU class that covers 112 pixels, and a red LCLU class
that increases its patch cover. This red LCLU class is at a distance x = 300 [units of pixel distance]
away from the white LCLU class. The red LCLU class patch has continuously moved, from 399
[units of pixel distance] away, to 1 [units of pixel distance] away from the red LCLU class patch.
The green line across the LCLU map in a is the area covered by the line scan plot b. The FMF
values are reported with a sensitivity parameter l = 4. A plot of the unwrapped phase red-class to
white- class phase difference is shown in c. All observed FMF values and phase error are plotted
in d, with the phase error axis displaying values for 0.3 ≤ ∆Φ ≤ −0.3 (i.e. within ± 30% FMF ).

LCLU class patch after 112 [units of pixel distance] decreases as the distance between the LCLU
class patches decreases. As shown in Step 5.1.1, the phase difference used in FMF is directly
related to the distance between LCLU classes.

• The direct relationship of FMF to patch influence according to Island Biogeography:

After the summed phase is wrapped into an exponential function and placed into the FMF
phase (see Steps 5-6 of Section 5.1.1), both Figures show how FMF values increase with decreasing
distance. FMF values inversely trend with LCLU class patch distance, but directly trend with
potential LCLU class patch influence, as according to Island Biogeography theory.

• The effects of phase precision and accuracy on reported FMF values:

The phase error ±∆φ (see Section 4.2.1) for a growing LCLU class patch, can be seen in plot c,
the unwrapped phase plot. There, phase error is plotted as white phase deviations from the linear
red unwrapped phase. The vertical white lines in plot c of Figure 5.8 are errors not included in
the phase calculation. This phase error limits a growing LCLU class patch FMF precision, at a
distance x = 300 [units of pixel distance] and for a sensitivity parameter l = 4, to be significant
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Figure 5.10: FMF values between a white LCLU class that covers 112 pixels, and a red LCLU
class that increases its patch cover. The red LCLU class patch has continuously moved, from 399
[units of pixel distance] away, to 1 [units of pixel distance] away from the red LCLU class patch.
The green line across the LCLU map in a is the area covered by the line scan plot b. The FMF
values are reported with a sensitivity parameter l = 4. A plot of the unwrapped phase red-class to
white-class phase difference is shown in c. All observed FMF values and phase error are plotted
in d, with the phase error axis displaying values for 0.3 ≤ ∆Φ ≤ −0.3 (i.e. within ± 30% FMF ).

within ±2.28 × 10−12 units of FMF . The observed effects of phase error for an initially related,
growing LCLU class patch are far below any significant change in the 1× 10−4 unit pixel distance
limit (see Section 5.1.2). The inaccuracy introduced by phase error is ≈ 1× 10−14 units of FMF
for an initially connected, growing LCLU class patch. This is reported as the average phase error
in plot d of Figure 5.8, 5.9, and 5.10.

FMF observed for connected LCLU patches.

Aspects of FMF shown in this section are–

• The adjustable early detection rate l, and its effect on reported FMF values;

• and the ability of FMF phase to report distance information between two related LCLU

classes:

Figure 5.11 show FMF values between a red LCLU class patch that has an extinction rate
that is equal to the colonization rate of a white LCLU class patch. The white LCLU class patch
grows from 1 [units of pixel distance] to 512 [units of pixel distance], while at the same rate the
red LCLU class patch extinguishes from 512 [units of pixel distance] to 1 [units of pixel distance].
The plotted FMF values use sensitivity parameter l = 4. The different l-sensitivity values are in
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Table 5.6: Variable Sensitivity Parameter l, for connected LCLU class patches.
l-value Plot Color Averaged FMF Values

0.5 N/A 0.39 ±1.44× 10−5

2.0 N/A 0.86 ±1.25× 10−5

4.0 White 0.98 ±0.10× 10−5

6.0 N/A 1.00 ±0.00× 10−5

Table 5.6, along with their FMF values, reporting increasing rates of early change detection with
increasing l. The reported FMF values remain statistically constant.

Figure 5.11: FMF values between a white LCLU class that increases its patch cover, and a red
LCLU class that decreases its patch cover. This red LCLU class is initially covering 512 [units

of pixel distance], and the white LCLU class is initially covering 1 [units of pixel distance]. This
relationship is exchanged as the red LCLU class patch continuously extinguishes and the white
LCLU class patch continuously grows. The green line across the LCLU map in a is the area
covered by the line scan plot b. The FMF values are reported with a sensitivity parameter l = 4.
A plot of the unwrapped phase red-class to white-class phase difference is shown in c. All observed
FMF values and phase error are plotted in d, with the phase error axis displaying values for
0.3 ≤ ∆Φ ≤ −0.3 (i.e. within ± 30% FMF ).

• The direct relationship of FMF to patch influence according to Island Biogeography:

Observing the FMF values plot in Figure 5.8, we see that the FMF values and error between
the red and white LCLU classes are statistically constant. This observed constant relationship for
exclusively related LCLU patches is consistent with Island Biogeography theory.
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• The effects of phase precision and accuracy on reported FMF values:

The phase error ±∆φ (see section 4.2.1) for continuously connected LCLU patches can be seen
in plot c, the unwrapped phase plot. There, the phase error is plotted as white phase derivations
from the linear red unwrapped phase. This phase error limits description of connected LCLU
patches, using a sensitivity parameter l = 4, to an average FMF value of 0.98 ±0.10× 10−5. The
observed effects of phase error for exclusively connected LCLU class patches remains the 1× 10−4

unit pixel distance limit (see Section 5.1.2); and so is negligible error. The observed inaccuracy
from phase error for a connected set of LCLU class patches is ≈ 2× 10−14 units of FMF . This is
reported as average phase error in Figure 5.11 d.

5.1.3 The FMF in a LCLU map

The time-series LCLU map experiments discussed here reveal the ability of FMF to measure
the influence of one LCLU class on another, within a 512 × 512 LCLU map. To report FMF
values a white LCLU patch is observed in reference to a 1-pixel LCLU class patch located in the
lower left-hand corner. This 1-pixel LCLU class patch is necessary since FMF must have a point
of reference for calculation. The white LCLU patch being observed moves continuously in one
direction across the LCLU map. The Figures shown here will display a plot of observed FMF
values reported as the two classes moved some distance away from each other, plotted against the
corresponding phase-unwrapping phase error. As the LCLU moves, the FMF a priori and priori

class likelihoods are assumed to be 100%, (i.e. this is the only class in the landscape and it is
perfectly classified) unless otherwise stated. Each experiment reveals the FMF ability to measure
Island Biogeography activity for variable 15[m], 30[m], and 200[m] spatial resolution. And, each of
these maps hold a LCLU class patch that covers a 4[km]× 4[km] area as are shown in Figure 5.12.

Figure 5.12: 15[m], 30[m], and 200[m] LCLU maps of a white LCLU patch that covers a 4[km]×
4[km] area. The maps are of: 15[m] spatial resolution on the left, 30[m] spatial resolution in the
center, and 200[m] spatial resolution on the right. Each map is gridded into 8[km]× 8[km] areas,
by their green bars.
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Table 5.7: Variable Sensitivity Parameter l, for a 4[km]× 4[km] LCLU patch.
Resolution l-value FMF for x = 0[m] FMF for x = 5430.58[m]

15[m]
0.5 0.394 ±0.71× 10−3 0.221 ±0.91× 10−3

2.0 0.865 ±0.63× 10−3 0.632 (+1.72/− 1.73)× 10−3

4.0 0.982 ±0.17× 10−3 0.865 ±1.27× 10−3

6.0 0.998 ±0.03× 10−3 0.950 ±0.70× 10−3

30[m]
0.5 0.395 ±1.42× 10−3 0.222 ±1.82× 10−3

2.0 0.866 (+1.25/− 1.26)× 10−3 0.634 (+3.41/− 3.44)× 10−3

4.0 0.982 (+0.33/− 0.34)× 10−3 0.866 (+2.50/− 2.53)× 10−3

6.0 0.998 ±0.07× 10−3 0.951 (+1.36/− 1.40)× 10−3

FMF for x = 4525.48[m]
200[m]

0.5 0.403 (+9.26/− 9.40)× 10−3 0.268 (+11.35/− 11.53)× 10−3

2.0 0.873 (+7.71/− 8.20)× 10−3 0.713 (+17.41/− 18.53)× 10−3

4.0 0.984 (+1.90/− 2.16)× 10−3 0.917 (+9.70/− 11.00)× 10−3

6.0 0.998 (+0.35/− 0.42)× 10−3 0.976 (+4.06/− 4.89)× 10−3

FMF observed when using multiple sensitivity parameters l = .5, 2, 4,and 6, at 15[m], 30[m],
and 200[m] spatial resolution.

Aspects of FMF , reported from two-dimensional scenes, shown in this section are–

• The adjustable early detection rate l, and its effect on reported FMF values for imagery;

• and the performance of FMF across multiple sensor scales:

Figure 5.13 show FMF values for a 15[m], 30[m], and 200[m] LCLU map that moves in a
direction, θ = 45◦ up from the horizontal, away from the lower-left corner of a map (see Figure
5.12). FMF values for different l sensitivities are in Table 5.7, along with their respective map
spatial resolution, reporting increasing rates of early change detection with increasing l.

Observing the initial FMF values in Table 5.7, we see that the previous examples of one-
dimensional FMF values are the same values observed here. The imprecision increases with each
decrease in l-sensitivity value and each decrease in spatial resolution. However, this decrease in
precision tends to reliably report above 1×10−3 units of FMF . When imprecision increases above
1× 10−3 units of FMF the reported upper and lower bounds are symmetric, making imprecision
statistically negligible (i.e. an average can be taken to obtain the true value).

• The direct relationship of FMF phase to patch influence in imagery, according to Island

Biogeography:

In Figure 5.13 the set of FMF values for each spatial resolution decreases with increasing
distance. FMF values inversely trend with LCLU class patch distance, but directly trend with
potential LCLU class patch influence in accordance with Island Biogeography theory.
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Figure 5.13: FMF values for a white LCLU class patch that covers a 4[km] × 4[km] area, using
sensitivity parameter l = 4, for separate LCLU map spatial resolution. The plots from a to b have
15[m], 30[m], and 200[m] LCLU map spatial resolution. All observed FMF values and total error
are plotted with the phase error axis displaying values for 0.3 ≤ ∆Φ ≤ −0.3 (i.e. within ± 30%
FMF ).

FMF observed at 200[m] spatial resolution, and in the direction θ = 30◦, and 60◦ from

the horizontal.

Aspects of FMF , reported from two-dimensional scenes, shown in this section are–

• The ability of FMF phase to consistently report distance information along any angular

distance:

FMF values for a 200[m] LCLU map that continuously moves θ = 30◦, and 60◦ from the
horizontal away from the lower-left corner of a map (see Figure 5.12) are exactly the same for
FMF values for a 200[m] LCLU map that continuously moves θ = 45◦ away. FMF values for
different l-sensitivities and the trend of these values across the landscape are in Table 5.7.

FMF observed at 15[m] spatial resolution, for a complex LCLU pattern.

Aspects of FMF , reported from two-dimensional scenes, shown in this section are:

• The adjustable early detection rate l, and its effect on reported FMF values in imagery;
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Table 5.8: Variable Sensitivity Parameter l, for a complex 4[km]× 4[km] LCLU patch.
Resolution l-value Plot Color FMF for x = 0[m] FMF for x = 5430.58[m]

15[m]
0.5 N/A 0.385 (+0.72/− 0.72)× 10−3 0.266 (+0.86/− 0.86)× 10−3

2.0 N/A 0.857 (+0.67/− 0.67)× 10−3 0.709 (+1.36/− 1.36)× 10−3

4.0 White 0.980 (+0.19/− 0.19)× 10−3 0.915 (+0.80/− 0.80)× 10−3

6.0 N/A 0.997 (+0.04/− 0.04)× 10−3 0.975 (+035/− 0.35)× 10−3

• The direct relationship of FMF to patch influence according to Island Biogeography;

• The ability of FMF phase to report distance information of complex shaped LCLU classes

in imagery.

Figure 5.14 show FMF values for a patterned white LCLU patch on a 15[m] spatial resolution
LCLU map. FMF values for different l-sensitivities are in Table 5.8, along with their respective
map spatial resolution, reporting increasing rates of early change detection with increasing l.

Figure 5.14: FMF values for a complex, white LCLU class patch that covers a 4[km]×4[km] area
outside and is missing a 2[km]× 2[km] inside. The LCLU map has a 15[m] resolution. The LCLU
map with LCLU patch is shown in a. A shaded surface of the LCLU class map is shown in b. All
observed FMF values and total error are plotted in c, with the phase error axis displaying values
for 0.3 ≤ ∆Φ ≤ −0.3 (i.e. within ± 30% FMF ).
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Table 5.9: Variable Sensitivity Parameter l, for a 4[km] × 4[km] LCLU patch and variable patch
likelihoods, in a 200[m] LCLU map.

Likelihood l-value FMF for x = 0[m] FMF for x = 4525.38[m]
P = 0.95, AP = 1.00

0.5 0.393 ±0.013 0.384 ±0.013
2.0 0.851 (+0.025/− 0.026) 0.843 ±0.026
4.0 0.959 ±0.025 0.957 ±0.025
6.0 0.973 ±0.024 0.973 ±0.024

P = 0.50, AP = 1.00
0.5 0.302 (+0.028/− 0.029) 0.295 (+0.027/− 0.028)
2.0 0.655 ±0.112 0.648 ±0.110
4.0 0.738 ±0.137 0.736 ±0.137
6.0 0.748 ±0.140 0.748 ±0.140

P = 0.95, AP = 0.50
0.5 0.287 (+0.024/− 0.025) 0.280 ±0.024
2.0 0.622 ±0.096 0.616 (+0.094/− 0.095)
4.0 0.701 ±0.118 0.699 ±0.117
6.0 0.711 ±0.120 0.712 ±0.120

Comparing Table 5.7 and 5.8 for the 15[m] spatial resolution map, we see that the patterned
LCLU patch FMF values are lower. FMF values directly relate to LCLU class patch existence,
and so directly relate to potential LCLU class patch influence on one another in accordance with
Island Biogeography theory. Also observed is how the imprecision increases as the l-sensitivity
value decreases. Still, the decrease in precision stays below the reported 1× 10−3 units of FMF .

Figure 5.14 is sampled for every pixel within the 8[km]×8[km] scene, reporting each spatial res-
olution FMF value decreasing with increasing distance. FMF values inversely trend with LCLU
class patch distance, but directly trend with potential LCLU class patch influence in accordance
with Island Biogeography theory.

FMF observed for variable priori and a priori LCLU class patch likelihoods.

Aspects of FMF , reported from two-dimensional scenes, shown in this section are–

• The adjustable early detection rate l, and its effect on reported FMF values for imagery;

• The performance of FMF for multiple priori and a priori class likelihoods.

FMF values for different l-sensitivities and class patch likelihoods are in Table 5.9, at a 200[m]
LCLU map spatial resolution. The characteristic reported FMF trend seen in previous Figures is
the same here, but is now reported for variable class patch likelihoods.

Observing the FMF values in Table 5.9, imprecision increases with each decrease in l-sensitivity
value. A decrease in precision is also observed for the decrease in priori class likelihood and
considerably so for the decrease in a priori class likelihood. This decrease in precision tends
to reliably report above 1 × 10−3 units of FMF . And again, when imprecision increases above

85



1× 10−3 units of FMF the reported upper and lower bounds are symmetric, making imprecision
statistically negligible (i.e. an average can be taken to obtain the true value).
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Table 5.12: Landscape Pattern Metric detector noise ranked sensitivity. The metrics are ranked
from least to most sensitive to observed detector noise.

1[m] 15[m] 30[m]
FMP FMP FMP

Dominance Dominance Dominance
Contagion Contagion Contagion

FMF (Class 1 vs Class 2) FMF (Class 1 vs Class 2) FMF (Class 1 vs Class 2)
FMF (Class 2 vs Class 3) FMF (Class 2 vs Class 3) FMF (Class 2 vs Class 3)
FMF (Class 1 vs Class 3) FMF (Class 1 vs Class 3) FMF (Class 1 vs Class 3)

Every Landscape Pattern Metric
FMP (30[m])
FMP (15[m])

Dominance (30[m])
Dominance (15[m])
Contagion (30[m])

FMP (1[m])
Contagion (15[m])
Dominance (1[m])

FMF (Class 1 vs Class 2) (30[m])
FMF (Class 2 vs Class 3) (30[m])

Contagion (1[m])
FMF (Class 1 vs Class 2) (15[m])
FMF (Class 2 vs Class 3) (15[m])
FMF (Class 1 vs Class 3) (30[m])
FMF (Class 1 vs Class 3) (15[m])
FMF (Class 1 vs Class 2) (1[m])
FMF (Class 2 vs Class 3) (1[m])
FMF (Class 1 vs Class 3) (1[m])

5.3 Yuen et al. [2004] Fractal Dimension Estimation (lsFT ).

Here, we observe the lsFT ability to consistently measure landscape occupancy for variable imaging
system spatial, spectral, and radiometric parameters. Two currently used LPM based on the
Fractal Dimension method are presented for comparison: the Largest Patch Index (LPI) and Mean

Patch Fractal Dimension (MPFD) (see Appendix A). How useful these dimension estimators are
for LCLU are in their ability to consistently measure some notion of real fractal dimension (see
Section 3.2.4). So, this analysis is not concerned with metrics reporting an accurate measure
of the real fractal dimension but a consistently precise one—it should be understood that all of
these estimators measure some notion of fractal dimension. Each example operates on 512 × 512
LCLU maps generated in IDL software, which also produces the error introduced into the maps
(see Section 3.6). This system analysis for measuring binary LCLU maps of fractals, using the
proposed fractal dimension estimators, include error estimates for:

1. Inherent fractal property
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Figure 5.20: FMP values for LCLU maps with increased data accuracy. LCLU maps before the
edge spread are shown for 1[m] spatial resolution in the upper-left, and 15[m] spatial resolution
in the lower-left. LCLU maps after the edge spread are shown for 1[m] spatial resolution in the
upper-right, and 15[m] spatial resolution in the lower-right. In a, FMF values are shown above
FMP values in c. In b, Contagion values are shown above Dominance values in d. Landscape
pattern metric data for all 1[m] LCLU maps are shown in white, and landscape pattern metric
data for all 15[m] LCLU maps are shown in red. FMF numerical values are not shown.

Table 5.13: Landscape Pattern Metric Classification Accuracy Sensitivity.
Landscape Pattern Metric 1[m] 15[m] 30[m]
FMF (Class 1 vs Class 2) 1.12× 10−18 3.36× 10−14 6.51× 10−12

FMF (Class 2 vs Class 3) 6.37× 10−18 2.41× 10−14 8.35× 10−11

FMF (Class 1 vs Class 3) 1.68× 10−29 7.04× 10−15 7.77× 10−10

Contagion 8.95× 10−6 1.36× 10−4 7.77× 10−10

FMP 4.23× 10−9 2.57× 10−6 4.25× 10−3

Dominance 4.04× 10−14 6.13× 10−6 4.46× 10−4

• fractal resolution

2. Apparent (i.e. imaging system) fractal property:

• noise
• sampling resolution
• pixel size

Since the Sierpinski Circle fractal observed here is a complete fractal observed at its character-
istic scale, the system sampling resolution is not considered in any of the examples. And lastly,
observations of every LPM are presented separately for each set of fractals.
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Figure 5.24: From left to right, the increased LCLU accuracy generations for a Sierpinski circle.

Figure 5.25: From left to right, the generations of a Sierpinski circle under decreased spatial
resolution 1[m], 15[m], and 30[m]. The respective metric values are: LPI-0, MPFD-1.130, lsFT -
1.525 for 1[m]; LPI-0.527, MPFD-1.621, lsFT -1.249 for 15[m]; and LPI-0.135, MPFD-1.416,
lsFT -1.136 for 30[m].

5.4 Summary of Preliminary Results

These preliminary results discussed improvements of each proposed Fourier LPM against imaging
system errors and for increased accuracy to interpret the existence of landscape configuration,
landscape composition, and landscape occupancy. This ability of LPM to report on landscape
existence is the ability for LPM to describe the colonization and emigration relationships within
and between LCLU. For this reason eleven experiments were presented for analysis of the FMF
LPM, three experiments were presented for analysis of the FMP LPM along with a comparison of
current versus proposed metric performance under imaging system pressures, and four experiments
were presented for analysis of the lsFT LPM under imaging system pressures while being compared
to currently used fractal dimension LPM.

The eleven experiments used to analyze the FMF ability to record landscape configuration
were: 5.1.2 FMF observed when using multiple sensitivity parameters l = .5, 2, 4, and 6, 5.1.2
FMF observed when one class patch is in motion, 5.1.2 FMF observed when multiple class patches

are in motion, 5.1.2 FMF observed when a LCLU class patch is growing, 5.1.2 FMF observed for

initially connected LCLU patches, 5.1.2 FMF observed for connected LCLU patches, 5.1.3 FMF
observed when using multiple sensitivity parameters l = .5, 2, 4, and 6, at 15[m], 30[m], and 200[m]
spatial resolution, 5.1.3 FMF observed at 200[m] spatial resolution, and in the direction θ = 30◦,
and 60◦ from the horizontal, 5.1.3 FMF observed at 15[m] spatial resolution, for a complex LCLU

pattern, and 5.1.3 FMF observed for variable priori and a priori LCLU class patch likelihoods.
In each FMF existence of landscape configuration experiment the metric always correctly

imitated patterns of Island Biogeography influence across the landscape. Whether for variable
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l-sensitivities, different colonization and emigration rates, or patterned LCLU relationships influ-
ential distances were consistently reported by FMF . When reporting influential distances with
early rates of detection, by using high l = 6 sensitivity, precision increased up from lower l-
sensitivities to ±0.03× 10−3 units of FMF . However, the ability to see pixel-position differences
for near LCLU (i.e. late detection conditions) decreased. With a 1×10−4 unit pixel distance limit
(see Section 5.1.2) the increased l = 6 precision was greater than the reported FMF value. When
using this high l = 6 sensitivity, a change in FMF values along LCLU edges could not be seen
until the third or fourth pixel distance difference |n1 − n2| > 4.

With increased pattern, independent growth, or separated single LCLU patches FMF values
reported lower than for contiguous, actively related, compact LCLU patches. This observation
means FMF assumes increased pattern, independent, and separate patches within a single LCLU
works to prevent colonization, emigration, and fragmentation between LCLU. These experimental
results prove that the definition of fragmentation interpreted as FMF through Fourier phase is
correct (see Figure 4.4).

The three experiments used to analyze the FMP ability to record landscape composition when
under imaging system pressures were: 5.2.1 the FMP observed in a noiseless imaging system,
5.2.2 the FMP observed under detector noise, and 5.2.3 the FMP observed under increased data

accuracy.
The FMP existence of landscape composition experiments recorded increased sensitivity for

LCLU combination change, especially for when no imaging system errors effected values of FMP
(see Figure 5.17). The LPM is least sensitive to changes between dominant and moderately dom-
inant class coverage and most sensitive to large spatial resolution (i.e. 30[m]) fixed pattern noise.
Only a 0.04 units of FMP difference is reported between dominant and moderately dominant
30[m] class coverage, while for that same type of class coverage low 30[m] spatial resolution fixed
pattern noise report statistically negligible ±0.01 - ±0.04 units of FMP (see Figure 5.19). When
compared to the currently used Dominance LPM for landscape composition the FMP imprecision
and inaccuracy is increased, however, even with these errors the tendency to report earlier patterns
of composition is maintained.

The four experiments used to analyze the lsFT ability to record landscape occupancy when
under imaging system pressures were: conditions of fractal resolution in 5.3.1 Inherent Fractal

Property, and imaging system conditions of fixed pattern noise, increased classification accuracy
and variable spatial resolution in 5.3.1 Apparent Fractal Property.

In every LPM experiment for landscape occupancy the lsFT metric performed better than
either currently used fractal dimension measure, except for the low spatial resolution imagery case.
The least error being seen for interpreting fractal dimension in fixed pattern noise (±0.004), and
most error for interpreting fractal dimension in low spatial resolution imagery (±0.0269).

This preliminary record has shown that every proposed LPM is capable, even when under
imaging system effects, to reliably report independent measures and trends of landscape pattern.
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Chapter 6

Uniqueness of Fourier Landscape
Pattern Metrics

6.1 Introduction

However reliable (i.e. accuracy and precision from Chapter 5) the reported Fourier Landscape
Pattern Metrics are, they are useless if they report similar or exactly the same values as currently
used LPM. For this reason this chapter discusses the uniqueness of the proposed Fourier metrics,
measured as degree of correlation to other LPM, and ability to generally describe a landscape.
Data values from 56 landscape pattern metrics (see Appendix A), including the proposed Fourier
metrics, were used to populate a correlation matrix. This correlation matrix quantifies the ability
of landscape pattern metrics to explain seamless USGS 1992 Land Cover Land Use (LCLU) across
the conterminous United States.

Through Principal Components Analysis (PCA) an eigenvector matrix was produced: from
which the first 3 Principal Components (PC’s) explain 92.2% of the variation from the 59 metrics,
the first 2 PC’s explained 86.28% of the variation from the 59 metrics, and the first PC explained
74.24% of the variation from the 59 metrics. Three of the entire fifty-nine PC’s explained most
of the landscape pattern variability measured, suggesting that many of these LPM are measuring
similar landscape pattern.

The metrics that contributed most to explained variability were Jackson’s Contagion statistic
(P005) typically contributing to 97% of the explained variability, the Fourier Metric of Fragmen-
tation (FMF ) typically contributing to 65% of the explained variability, and average LCLU class

lacunarity (TLAC) typically contributing to 62% of the explained variability. Explained variabil-
ity is defined as the variability, or landscape LPM LCLU information, that is most distinct (i.e.
independently varies from other types of landscape information)—this is mathematically described
in each Principal Component. The three assumptions made to analyze this work are that:

1. the 59 LPM values were directly related to LCLU information, making every metric is equally
reliable and results comparable;

2. the chosen 59 metrics produced a representative sample of LCLU information, so the corre-
lation metric analyzed is the true seamless USGS 1992 LCLU correlation matrix;

99



3. and that all LPM information are relevant, meaning every Principal Component should be
included for analysis.

The proposed Fourier LPM FMF , the Least Squares Fourier Transform Fractal Dimension
Estimation (LsFT ), and the Fourier Metric of Proportion (FMP ) respectively contributed 65%,
50%, and 12% to the explained variability. The values reported by each of the proposed Fourier
metrics are revealed to be distinct among commonly used LPM by having a low correlation to the
other 58 LPM. Due to the second and third assumption, these reported values have also shown
themselves to be capable to explain general landscape pattern variability by contributing to the
explained landscape variability in each Principal Component.

Ritters et al. statistically compared multiple LPM to find how well each metric responded to
relevant LCLU map change. Their experiment is repeated here. This time including the proposed
Fourier LPM and other LPM considered as most developed in the literature (see Appendix A).
Results are interpreted with regard to how well each metric independently responds to relevant
landscape change.

This evaluation is an extension for LPM that have shown their potential to be used as Land-
scape Indicators (LI) when correlated with landscape level ecology. The most robust metric for
measuring ecological processes emerging as landscape pattern would resist inaccuracies caused by
image data, and clearly reveal what ecology drives their measured pattern. The utility when using
a combination of these robust metrics are in their independence from one another, and ability
to explain many types of pattern. These statistical characteristics of independence and ubiquity
increase their joint ability to best describe relevant variable pattern.

This statistical evaluation proves the proposed Fourier LPM to be both independent against
commonly used LPM, and generally applicable for landscape pattern interpretation. This conclu-
sion is especially for the conterminous United States Ecoregions, where a diversity of landscape
pattern can be seen across each of the Environmental Protection Agency (EPA) Provinces.

6.2 Methods

The proposed Fourier LPM and frequently used LPM are found for 7.68× 7.68 [km] NLCD LCLU
areas. As previously discussed and shown in chapter 5, the proposed Fourier LPM are applied to
each LCLU class then reported as an average. These proposed metrics are evaluated along with
each metric in Appendix A for PCA factor analysis. Each of the metric references and algorithm
details are also shown in Appendix A. The NLCD data used and the factor analysis details used
in this chapter can be reviewed in Section 4.4.1.

6.3 Analysis

Interpreting a landscape’s ecology when using landscape pattern is best done with a combination of
robust LPM. The utility when using a combination of these robust metrics are in their independence
from one another, and ability to explain many types of pattern. These statistical characteristics
of independence and ubiquity increase their joint ability to best describe relevant variable pattern,
which are quantitatively described and discussed in this section.

This statistical evaluation proves the proposed Fourier LPM to be both independent against
commonly used LPM, and generally applicable for landscape pattern interpretation. Separated
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into two subsections, these conclusions are revealed for the conterminous United States Ecoregions,
where a diversity of landscape pattern can be seen across each of the Environmental Protection
Agency (EPA) Provinces. The two subsections are Independence of Fourier LPM measured by
the degree of correlation to commonly used LPM and Ubiquity of Fourier LPM measured by the
typical amount contributed to explained landscape variability in each Principal Component.

6.3.1 Independence of Fourier LPM

The scree plot in Figure 6.1 trails off significantly by the third Principal Component (PC) Factor,
with the combination of these first three Factors explaining 92% of the landscape pattern variability.
It would be a mistake to interpret this as meaning that most of the observed landscape pattern
variability can be revealed using only three LPM parameters. Since the PC only reveal how much
information (i.e. explained variability) the landscape holds, and not which equation best parses
that information for interpretation, it can only be said that the 59 LPM values are generally
reporting redundant (i.e. highly correlated) values.

Figure 6.1: A Scree plot of Eigenvalues and cumulative % explained variance when observing
NLCD 1992 LCLU data.

For more specific analysis, correlation values for each LPM in the 59× 59 correlation matrix is
shown in Appendix D. Also, the most related LPM for greater than .95, .97, and .98 correlation
are shown in Figure 6.2, Figure 6.3, and Figure 6.4 respectively. These figures also show the most
independent metrics, those metrics that report actual or near 0 correlation values. These most
independent metrics are underlined in Table 6.2. While the ability of these most independent
metrics to generally explain landscape variability is discussed in Section 6.3.2, their reliability,
relevance and interpretation are not understood.

101



Figure 6.2: The number of LPM correlated greater than .95 points. Fourier metrics LsFT , FMP ,
and FMF are correlated to 9, 5, and 12 other LPM respectively.

The least frequently correlated Fourier metric is LsFT . This small amount of between metric
correlation is not observed in every Fractal Dimension LPM, like those seen in Appendix A.5, A.8,
and A.9. This makes the values reported by LsFT the most independent Fourier description of
landscape occupancy pattern. The most correlated Fourier metric is FMF . These FMF reported
values were the least independent description of landscape pattern. The four highest correlated
LPM to the Fourier metrics are shown in Table 6.1.

The four leading metrics in Table 6.1 seem to report redundant Fourier landscape pattern
information, though none of them have as physical a description of pattern and processes as their
Fourier relatives. For instance, though FMP values are very related to SHCO, n − Q, PSCV ,
and LOAX only FMP is directly related to and interprets itself along the physical migration and
extinction rates between LCLU patches. Meanwhile, the Contagion SHCO method has shown itself
to be unreliable in Section 5.2; n−Q is an inter-quartile abundance that has only a mathematical,
no physical, interpretation; and both PSCV and LOAX measure of how different patch sizes are
within a landscape, using the nearest−neighbor patch definition (see Section 3.2.4 for a discussion
on the errors in this approach).

6.3.2 Ubiquity of Fourier LPM

To see how well each LPM performed using their individual definitions for relevant pattern vari-
ability we can observe the amount of explained variability each metric contributes to these PC
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Figure 6.3: The number of LPM correlated greater than .97 points. Fourier metrics LsFT , FMP ,
and FMF are correlated to 3, 5, and 12 other LPM respectively.

Table 6.1: The top four LPM most correlated to Fourier metrics when observing seamless conter-
minous United States NLCD 1992 LCLU.

LsFT FMP FMF
PORO SHCO DLFD
TEDG n-Q NASQ
IEDG PSCV LOAX
KT-Q LOAX PSCV

Factors. The ranking for all PC Factors is shown in Table 6.2. The metrics that contributed most
to explained variability were Jackson’s Contagion statistic (P005) typically contributing to 97%
of the explained variability, the Fourier Metric of Fragmentation (FMF ) typically contributing to
65% of the explained variability, the average LCLU class lacunarity (TLAC) typically contributing
to 62% of the explained variability, and the Least Squares Fourier Transform Fractal Dimension
Estimation (LsFT ) typically contributing to 50% of the explained variability—the Fourier Metric
of Proportion (FMP ) typically contributed to about 12% of the explained variability. While LPM
like P005, and TLAC define landscape pattern that explain landscape pattern variability well,
they both fall short of the criteria to measure physical variables while P005 also uses the error
limited nearest-neighbor method (see Section 3.2.4).

103



Table 6.2: The LPM ranked by most expected contribution to the explanation of seamless con-
terminous United States NLCD 1992 LCLU. This ranking reveals how well each metric generally
relates to landscape variability, ignoring any ability to reliably or relevantly interpret that vari-
ability. Highly independent metrics are underlined, and the Fourier Metrics are in bold.

LPM Expected Correlation Contribution LPM Expected Correlation Contribution
P005 97.46%
FMF 64.76% SIHO 7.75%
TLAC 61.54% PD 7.39%
LsFT 50.06% OCFC 7.01%
ABRA 38.76% RGYR 6.52%
BETL 33.04% SICO 6.45%
OIFC 32.05% n-Q 6.28%
SqP 30.93% PA-1 6.19%

PVAR 28.35% TVAR 6.09%
MPFD 27.32% NYTP 6.06%
PSSD 26.52% DLFD 5.96%
OIFT 25.11% AWMSI 5.89%
PLAC 24.80% BRRA 5.88%
OEFT 18.72% NFTD 5.88%
OPER 18.59% KT-Q 5.70%
NASQ 18.35% MCDI 5.67%
PENT 17.72% OEDG 5.06%
PMAS 17.72% AWMPFD 4.83%
PSIZ 17.72% CCRA 4.80%
SHDI 15.98% PA-2 4.34%
SHHO 15.46% IEDG 4.22%
TMAS 15.42% TEDG 4.22%
SUMD 13.55% PORO 4.22%
ABFT 13.15% TENT 2.84%
NACI 11.94% PSCV 2.65%
FMP 11.81% LOAX 2.54%
P050 11.67% P500 2.14%
LSI 10.48% OEFC 2.14%

DSTA 10.42% SHCO 2.07%
SIDI 9.67% SHEV 2.03%
MSI 9.31% OCFT 1.11%
SIEV 9.07% TE .95%
PSI 8.82% LPI .61%

MCEV 7.79% NPAT .23%
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Figure 6.4: The number of LPM correlated greater than .99 points. For Fourier metrics LsFT ,
FMP , and FMF are correlated to 0, 5, and 12 other LPM respectively.

6.4 Summary of Uniqueness of Fourier Landscape Pattern
Metrics

The values reported by each of the proposed Fourier metrics have been shown to be independent
from commonly used LPM by having a low correlation to the other 56 LPM—with the lowest cor-
related Fourier LPM being LsFT , and the highest correlated Fourier LPM being FMF . The high
correlation of other landscape pattern metrics to the FMF is expected, as other LPM approximate
physical distance by flawed LPM edge and nearest-neighbor measures.

These reported Fourier pattern metric values have also shown themselves to be capable to
explain general landscape pattern variability by contributing to the explained landscape variability
in each Principal Component, again with exceptional results from LsFT and FMF respectively
contributing 50.06% and 64.76% to explained pattern variability. This Fourier explained pattern
variability is reported consistently against imaging system error. In the following Chapter 7 the
relevance of these reliable and unique Fourier LPM for connecting an ecological process to landscape
pattern and interpreting the cause is observed.
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Chapter 7

Relevance of Fourier Landscape
Pattern Indicators to predict Fecal
Coliform

7.1 Introduction

Now being assured of the reliability (i.e. accuracy and precision from chapter 5) and uniqueness
(i.e. the independence and ubiquity shown in chapter 6) of these Fourier metrics, their relevance for
pollutant load prediction can be determined. Extending the results in Smith et al. [2001], a model
valid for decadal studies targeting fecal coliform compromised South Carolina watersheds was
developed. Introducing landscape pattern metrics (LPM) more sophisticated than the previously
applied proportion LPM, this model attempts to identify the maximum number of compromised
watersheds within the SC border. The model parameters were land-cover land-use (LCLU), %
slope, and streamline relevant proportion, Fourier Metric of Fragmentation (FMF ), Fourier Metric
of Proportion (FMP ), and Least Squares Fourier Transform Fractal Dimension Estimation (LsFT )
when observing 1992 National Land Cover Data (NLCD) LCLU within fecal coliform compromised
watersheds. This model was then validated using 2001 NLCD LCLU to identify fecal coliform
compromised watersheds.

The most significant model parameters were along stream bare rock LsFT (with 99.33% typ-
ical contribution to explained variance), FMF between urban/recreational grasses and evergreen
forests (with 99.32% typical contribution to explained variance), and FMF between deciduous
forests and high density residential areas (with 98.66% typical contribution to explained variance).
These metrics contribute significantly more than the best proportion descriptor: proportion of
urban/recreational grasses (with 45.12% typical contribution to explained variance).

In training the proposed model correctly identified 92% of the compromised watersheds, how-
ever, using the Smith et al. [2001] Beaulac and Reckhow [1982] proportion LPM only model, 94%
of the compromised watersheds were correctly identified. The results of this study point to the
significance of the proposed Fourier metrics to the interpretation of landscape level ecological pro-
cesses and the necessity for more appropriate models to take advantage of sophisticated landscape
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level tools.
The land-use appropriation of States, territories and tribal lands have altered hydrologic con-

nectivity between landscapes, groundwater, and streams. This has led to more efficient delivery of
contaminants to receiving waters through nonpoint source pollutants. Loss of natural headwater
streams and floodplain wetlands associated with LCLU change decreases retention capacity, in-
creases erosion, and may further contribute to nonpoint source contaminants downstream [Kaushal
et al., 2010].

In part to prevent aggressive loads of nonpoint source pollutants into local waters, environmen-
tal assessments of waters are obtained on a biennial schedule under section 305 of the Clean Water
Act (CWA). Part of this assessment includes identification, listing and prioritization of the water
bodies that do not meet water quality standards, referred to as the 303(d) list. Under the Clean
Water Act States and other jurisdictions are required to develop Total Maximum Daily Loads
(TMDL) (i.e. pollution budgets) for the water bodies on the 303(d) list, toward the prevention of
these water bodies being compromised.

Smith et al. [2001] reports on LPM for a majority (≈ 65%) of the sites placed on the 303(d)
list due to fecal coliform—the bacteria that usually reside in the digestive tract of warm blooded
animals, and are used as a surrogate for the presence of pathogens in water bodies. High concen-
trations of fecal coliform are indicative of pollution that cannot be tracked to effluent emanating
from a pipe discharging into a water body. Exactly the type of process Landscape Ecology provides
a description of. For 1998, the LPM of Smith et al. indicated LCLU characteristics of the wa-
tershed may be a contributing factor to South Carolina’s non-point source fecal coliform problem,
particularly for watersheds with large proportions of urban land-cover and agriculture on steep
slopes (> 9%) [Jennings et al., 2004, Jones et al., 2001, Smith et al., 2001, Vogelmann et al., 2001,
Wickham et al., 2000], but their work did not identify which watersheds suffered from these LCLU
characteristics. In part, the analysis shown here extends the Smith et al. work to not only identify
likely causes of Fecal Coliform loadings, but uses that information to predict which watersheds
may be compromised in the future.

Using updated watershed delineations from the National Hydrography Dataset (NHD) [NHD,
2009], the 303(d) list [SCD] for 1992 and 2001, and U.S. Multi-Resolution Land Characteristics
Consortium (MRLC) National Land Cover Data (NLCD) [MRL] the proposed Fourier metrics’
abilities as temporal and ecologically relevant indicators are evaluated. Along with the Smith
et al. landscape pattern indicators the proposed Fourier LPI ecological relevance are interpreted
through factor analysis, extending the Smith et al. analysis of likely causes of Fecal Coliform loads
to indications of Fecal Coliform sources (i.e. watersheds). An additional extension to the Smith
et al. analysis done here is to use LPI determined as relevant to predict future Fecal Coliform
compromised watersheds.

7.2 Methods

Multiple geographic information system (GIS) data layers were used to identify and create land-
scape pattern metrics (LPM) cognizant of geographical and sociological variability. Land-cover
land-use products compiled with the CWA fecal coliform census and recent 14-digit NHD stream
and watershed delineations are the base component map this LPM model is built upon. Each of
these datasets aggregate into a product where nonpoint source fecal coliform transport potential
can be surmised. This surmisal is done by proxy using historical nitrogen load export coefficients,
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since fecal coliform export coefficients have not been developed. The equivalence of nitrogen export
coefficients to fecal coliform export coefficients is explained further in section 7.2.4.

7.2.1 National Land Cover Data

1992 and 2001 National Land Cover Data (NLCD) are a 21-category LCLU classification scheme
(see Table 7.1) and a 19-category LCLU classification scheme (see Table 7.2). Outside of the 21-to-
19-category difference it is equivalent to the NLCD 1992 data, and the details of their component
parts and characteristics can be found in the discussion of Section 4.4.1.

An example of the NLCD LCLU products for Columbia, SC 1992 and 2001 are shown in Figure
7.1. Class descriptions and codes for NLCD 1992 and NLCD 2001 were derived from components
of Anderson Level I and II [Anderson et al., 1976] and National Oceanic and Atmospheric Ad-
ministration (NOAA) Coastal Change and Analysis Program (C-CAP) land-cover classes MRL
[2010]. The accuracy between 2001 and 1992 data have not been settled, however the increased
2001 NLCD LCLU detail is most obvious along streams, like in Figure 7.1.

Table 7.1: Descriptions of LCLU attribute class codes for 1992 NLCD [Anderson et al., 1976].
LCLU class code Anderson Level II attribute class description
11 Open Water
12 Perennial Ice/Snow
21 Low Intensity Residential
22 High Intensity Residential
23 Commercial, Industrial, Transportation
31 Bare Rock, Sand
32 Quarry, Strip Mine, Gravel Pits
33 Transtional Barren
41 Deciduous Forest
42 Evergreen Forest
43 Mixed Forest
51 Shrubland
61 Orchards, Vineyards, Other
71 Grassy, Herbaceous
81 Pasture, Hay
82 Row Crops
83 Small Grains
84 Fallow
85 Urban, Recreational Grasses
91 Woody Wetlands
92 Emergent Herbaceous Wetlands

To maintain LPM model precision between 1992 and 2001, all datasets are registered to the
same general LCLU code used by Smith et al. [2001]. The LCLU code includes: urban (11, 21, 22,
23, 31, 32, 33), natural vegetation (41, 42, 43, 52, 71, 90, 91, 92, 95), and agriculture (81, 82, 85).
To be clear, statistical analysis and interpretation is done for the full 1992 LCLU code in Table
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Table 7.2: Descriptions of LCLU attribute class codes for 2001 NLCD [Anderson et al., 1976], and
1992 replaced codes.

LCLU class code (1992 retrofit) Anderson Level II attribute class description
11 Open Water
12 Perennial Ice/Snow
21 (85 ) Developed, Open Space
22 Developed, Low Intesnity
23 Developed, Medium Intensity
24 Developed, High Intensity
31 (32, 33 ) Barren Land, Rock, Sand, Clay
32 Unconsolidated Shore in Coastal Areas
41 Deciduous Forest
42 Evergreen Forest
43 Mixed Forest
52 (51 ) Shrub, Scrub
71 Grassy, Herbaceous
81 Pasture, Hay
82 (83,84 ) Cultivated Crops
90 (91 ) Woody Wetlands
91 Palustrine Forested Wetland in Coastal Areas Only
92 Palustrine Scrub/Shrub Wetland in Coastal Areas Only
95 (92 ) Emergent Herbaceous Wetlands

7.1. It is only when LPM are incorporated into the model that the general urban, vegetation, and
agriculture codes from Smith et al. are used.

7.2.2 National Hydrography Dataset

Digital coverage of the 2001 14-digit hydrologic unit code (HUC) S.C. watersheds were obtained
from the South Carolina Department of Health and Environmental Control (DHEC). They are
1,032 watersheds that range in size from 4.5 to 226 [km2]. These watersheds were clipped to
South Carolina’s border, with those watersheds on the South Carolina-North Carolina border not
delineated by interfluves removed. The 14-digit HUC NHD is cast to the Albers Equal-Area Conic
projection, referenced to the North American Datum of 1983 (NAD83), and rasterized using a cell
size of 30 [m].

7.2.3 The 1992 and 2001 SC 303(d) list

Which watersheds were compromised by fecal coliform in 1992 and 2001 were obtained from the
South Carolina Department of Health and Environmental Control (DHEC) archived 303(d) lists.
Two basic sampling strategies were employed in gathering the water quality data. Primary test
points, which are established near high-use waters, are tested every month throughout the year;
while secondary points, located near areas with a history of impairment problems, are tested for
six months of the year during the summer.
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Figure 7.1: A chip of the National Land Cover Database (NLCD) Columbia, SC 1992 and 2001
land-cover.

A map of the 2001 303(d) list fecal coliform compromised watersheds is shown in Figure 7.2.
Out of the total 1,032 watersheds, 471 (46%) were compromised in 1992 and 436 (42%) in 2001.

7.2.4 Modified Beaulac and Reckhow [1982] LPM Model

Nutrient export coefficients are numbers multiplied by the amount (area) of a given LCLU type
to estimate the amount of nutrients received by waters from that type. When modeling the
likelihood of increased nutrient loads as a result of differences in land-cover composition, broad
LCLU categories (i.e. urban, natural vegetation, and agriculture) can be estimated reliably across
watersheds [Vogelmann et al., 1998a,b, Zhu et al., 2000].

The modified Beaulac and Reckhow [1982] LPM model developed here identifies potentially
compromised watersheds due to increased fecal coliform nutrient loads. Using parameters of LCLU
composition within a watershed, Beaulac and Reckhow [1982] modeled nitrogen and phosphorus
loads as:

N,P =
n�

i

ci · Ai. (7.1)

N and P loads are estimated as the product of the area A of LCLU type i and its export
coefficient ci summed across all LCLU types in the watershed. This equation can be used in two
ways. If areal estimates are known for the different LCLU types, Equation 7.1 provides a weighted
average estimate of nutrient load. In this case units would be in kilograms per year [Kg

yr ]. Or, LCLU
types could be considered as proportion of different LCLU types like in Equation 7.2. Equation
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Figure 7.2: A map of S.C. watersheds that were compromised in 2001. The watersheds compro-
mised are shown as black, while areas not effected by inordinate fecal coliform loadings are shown
as pink.

7.2 provides a weighted average estimate of a nutrient export coefficient. Its units are in kilograms
per hectare per year [ Kg

ha·yr ]:

ĉN , ĉP =
n�

i

ci · A · pi. (7.2)

Equation 7.2 was used in the Smith et al. analysis of likely causes of Fecal Coliform loads.

Average-Based Model

Modifying equation 7.2, connectivity of LCLU within watersheds can be incorporated into this
LCLU composition model. Taking the average of the j proposed LCLU Fourier composition and
connectivity metrics FMP , FMF , and LsFT , and modulating the proportion metric by mi,
Equation 7.3 completes the increased nutrient load likelihood model:

cN , cP =
n�

i

ci · A · pi · mi =
n�

i

ci · A · pi ·
�M

j mij

M
. (7.3)

This model applies equal emphasis on each type of watershed sub-basin LCLU connectivity (i.e.
pattern) by averaging the proposed connectivity LPM into a connectivity modulation mij .
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Vector-Based Model

Instead of using Equation 7.3, assuming any connected cover describes nutrient transport in general
for a modulation factor mij , we can use models that emphasize other types of connected LCLU
relationships. This can be done by way of vector products between a unit vector ũ whose values
are all 1, and the LPM vector ṽ ≡ [mij ] whose values are every j watershed sub-basin landscape
indicator for one of the i = 3 watershed sub-basin’s urban, natural vegetation or agricultural
aggregate LCLU:

|ṽ × ũ|2 = |ṽ|2|ũ|2 − (ṽ · ũ)2. (7.4)

Equation 7.4 is a LCLU simmilarity based model. The unit reference vector and the LPM
vector are the same if the LPM vector is composed of all ones. This vector would be the LPM
response for a landscape that is compact from FMF = 1, well connected from FMP = 1, and
evenly grouped from LsFT = 1. Comparing the LPM unit vector for how similar it is to this LCLU
extreme is mathematically expressed as the similarity between the two vectors, or the vector dot
product:

cos[θ] =
(ṽ · ũ)
|ṽ||ũ| . (7.5)

Conversely, comparing the LPM unit vector to how dissimilar it is to this LCLU extreme is
mathematically expressed as the dissimilarity between the two vectors, or the vector cross product:

sin[θ] =
|ṽ × ũ|
|ṽ||ũ| =

�
|ṽ × ũ|2
|ṽ||ũ| =

�
|ṽ|2|ũ|2 − (ṽ · ũ)2

|ṽ||ũ| . (7.6)

Equation 7.6 is a LCLU dissimilarity based model. A high measure of dissimilarity from Equa-
tion 7.6 would indicate a landscape cover that is sparse, not very diverse and that lay in no
structured pattern. Using the original model parameters from Equation 7.3, expressions for LCLU
similarity and dissimilarity look very similar to the average based model:

cos[θ] =
�M

j mij�
mijM

⇒ cN , cP =
n�

i

ci · A · pi ·
�M

j mij�
mijM

; (7.7)

sin[θ] =

�M
j

�
mijM −m2

ij
�

mijM
⇒ cN , cP =

n�

i

ci · A · pi ·

�M
j

�
mijM −m2

ij
�

mijM
. (7.8)

Model Interpretation

The best of these three models for mi would modulate the existing LCLU pi to more accurately
predict potentially compromised watersheds. The LCLU mi that increases accuracies also provides
the conditions additional to proportion of LCLU that are related to non-point source fecal coliform.
Those additional conditions, tested here, being: any connection between LCLU describes nutrient
transport in general (ref. the average-based Equation 7.3); LCLU must be compact, well connected,
and evenly grouped to best describe nutrient transport (ref. the similarity-based Equation 7.7); or
LCLU must be sparse, not very diverse, and lay in no structured pattern to best describe nutrient
transport (ref. the dissimilarity-based Equation 7.8).
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For use in a decadal model of fecal coliform compromised watersheds, export coefficients ci for
fecal coliform nutrient transport are necessary. However, significant differences in nutrient export
coefficients across urban, natural vegetation, and agriculture LCLU have not been developed for
fecal coliform. Nutrient export coefficients are well-documented for nitrogen loadings, which relate
to fecal coliform.

Fecal Coliform Export Coefficients

Fecal coliform is the bacteria that usually reside in the digestive tract of warm blooded animals,
and are used as a surrogate for the presence of pathogens in water bodies. Sources of anthropogenic
nitrogen to streams include sewage, animal wastes, fertilisers, and natural sources such as organic
matter. This means, levels of nitrogen can be used to indicate the impact of human settlements
and land use on the natural environment, provided ”natural” sources are assumed negligible. The
importance of this measure may increase as nitrate contamination of groundwater, such as that
around some rural-residential areas, increases [Sta, 2010]. Due to increased activity, this condition
is satisfied in fecal coliform compromised S.C. watersheds: likely dominant anthropogenic sources
of nitrogen. It is assumed that fecal coliform export coefficients covary with nitrogen export
coefficients in these compromised watersheds since their anthropogenic sources are nearly identical.
Nitrogen export coefficients are treated as a suitable substitute of fecal coliform export coefficients.

The export coefficients used here are shown in Table 7.3. These export coefficients indicate
the potential LCLU annual nitrogen load in kilograms, across 1 hectare. When used as areal
loads in the LPM model (see equation 7.3), the three LCLU aggregates are taken as relevant
export coefficient LCLU code averages: urban (450[ kg

ha·yr ]), natural vegetation (173.4[ kg
ha·yr ]), and

agriculture (610[ kg
ha·yr ]).

Table 7.3: Descriptions of LCLU nitrogen export coefficients [Jeje, 2006].
2001 LCLU class code Description Nitrogen export coefficient [ Kg

ha·yr ]
21 Urban 5.50 [Reckhow et al.]
22 Urban, Residential 6.15 [Reckhow et al.]
23 (24 ) Industrial 2.25 [Reckhow et al.]
31 Subalpine 3.75 [Bondelid et al., 2001]
32 Strip mines/barren land 8.60 Group [1998]
33 Mostly urban 0.79 [USEPA, 2002]
41 Forest 2.50 [USEPA, 1976]
42 Forest 2.50 [USEPA, 1976]
43 (52,71 ) Forest 2.46 [Reckhow et al.]
81 Pasture 5.10 [of Environmental Quality, 2001]
82 Row Crops 8.20 [of Environmental Quality, 2001]
85 Urban 5.00 [USEPA, 1976]
91 (90 ) Watershed wetlands 0.55 [Group, 1998]
92 (95 ) Watershed agricultural basin 0.60 [Associates, 1999]

The allowed S.C. DHEC watershed nitrogen load is 200
100 [ cfu

ml ]–where the units [ cfu
ml ] are colony

forming units per milliliter [of Health and Control, 2008]. Using S.C. DHEC suggested, typical
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watershed, gallons per minute flow rate this 200
100 [ cfu

ml ] limit can be expressed as 2986[Kg
yr ]. An

allowed limit in [Kg
yr ] is comparable to the predicted LPM model potential loads in [Kg

yr ], and is
the threshold used to determine whether a watershed is, or is not, modeled as compromised.

7.2.5 Factor Analysis

The approach to factor analysis is the same as was discussed in Section 4.4.1. However, here the
correlation matrix �Σ is populated with LPM values from each of the t watersheds, that reveal
the observed metric’s ability to explain compromised watersheds. The [

�
t aj,tLPMt] weighted

presence of an individual vector LPM is now the LPM’s potential to predict fecal coliform loadings.
So, the more contribution to independent fecal coliform descriptions Yj a LPM tends to make, the
more uniquely able (i.e. independently) to describe (i.e. responds with high variance to) fecal
coliform the LPM is—this allows us to say to what degree the observed metric and fecal coliform
are unrelated.

In this factor analysis a direct measure of LPM ability to explain the p observed LCLU water-
shed changes compared to the full set of metrics (i.e. % slope, and streamline relevant proportion,
FMF , FMP , and LsFT ) is obtained. Each element in ˜LPMj is the % LPMj,t=k contributed to
the kth compromised watershed fecal coliform explanation. Summing across every k compromised
watershed and averaging over the p observed LPM responses, the typically explained fecal coliform
loading for the LPM is obtained:

σ̄LPM [F.C.] =
p�

j=1

�t
k=1 LPMj,t

p
. (7.9)

Only the most relevant 1992 LPM, and LPM coefficients, were included in the models for
indication of compromised watersheds. The condition of LPM relevance and detailed descriptions
are discussed in the Section 7.3.

After the LPM model parameters have been trained on the S.C. 1992 LCLU watersheds, how
effective the model is to predict compromised watersheds is determined by applying the model to
S.C. 2001 LCLU watersheds. The measure of success is the 1992 trained model’s ability to identify
2001’s fecal coliform compromised watersheds.

7.3 Analysis

304 parameters were used in the 1992 LPM training model, of which only 19 typically contributed
to greater than 50% of the explained compromised watershed LCLU variability. Only these 19
LPM and their contribution are considered as relevant, having contributed to greater than 50% of
the 1992 explained compromised watershed LCLU variability, and are shown in Figure 7.3. Each
of the model parameters determined to be relevant at a > 50% significance level were proposed
Fourier metrics. The proportion LPM used by Smith et al. [2001] typical contributions are shown in
Figure 7.4, which correspond to the proportion LPM published in their general prediction results.
However, these proportion LPM are generally less significant than the proposed Fourier metrics.

Using the average-based Beaulac and Reckhow [1982] model in equation 7.3, and the generalized
LCLU code export coefficients, the 1992 model is trained to a 91.72% accuracy. The 1992 average-
based LPM model identified 432 out of 471 fecal coliform compromised watersheds. Using the
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Figure 7.3: LPM model parameters that typically contribute greater than 50% to the explained
compromised watershed LCLU variability. These LPM parameters are all Fourier based and ranked
from left-to-right as most-to-least significant.

original Beaulac and Reckhow [1982] model, as was used by Smith et al. [2001] (see equation
7.2), the 1992 LCLU prediction accuracy increases to 93.63%—identifying 441 out of the 471 fecal
coliform compromised watersheds. When applied to the 436 compromised watersheds in 2001 the
average-based LPM model identified 81.42% (355 out of 436) of the fecal coliform compromised
watersheds. Both of the vector-based models performed near the same level or better than the
original Beaulac and Reckhow [1982] model, in training and testing data results. A summary of
these model performances and the other modified model predictions is shown in Table 7.4.

Table 7.4: Landscape Indicator Model Fecal Coliform Load Prediction.
1992 Training Data
Results

2001 Testing Data
Results

Smith et al. [2001] Model 93.63% 91.51%
Average-Based Model 91.72% 81.42%
Similarity-Based Model 93.64% 89.22%
Dissimilarity-Based Model 99.36% 98.62%
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Figure 7.4: LPM model parameters of Smith et al. [2001] proportion. These LPM parameters are
separated between within watershed (blue) and along stream (red) within watershed proportion.
They are also based and ranked from left-to-right as most-to-least significant.

7.4 Summary of the Relevance of Fourier Landscape Pat-
tern Indicators to predict Fecal Coliform

The predicted loads for each compromised watershed in 2001 by two models are shown in Figure
7.5, separated by model predictions. From left to right, the first loads are those where the models
disagreed, and the later loads are those where the models agreed—the difference between these
two is clearly marked by the spiked increase in potential annual nitrogen load. The effects of
modulating the Smith et al. [2001] model by mi in equation 7.3 are seen as only decreasing the
potential annual load prediction. This was the effect seen in each vector-based method as well. No
effective variability was introduced by using either of these model modifications, though detection
accuracy was increased for the vector-based methods—particularly for the dissimilarity- based
method. The dissimiliarty-based model’s exceptional performance leads to the interpretation that
the type of LCLU connectivity that best explains watershed level, non-point source, fecal coliform
transport is sparse, not very diverse, and lay in no structured pattern.

Those proportion parameters deemed by Smith et al. to be significant explained the water-
shed level landscape variability relatively less than the connectivity LPM, though the order of
importance was the same (see Figure 7.4). These parameters’ ability to explain more variability
suggests their increased ability to predict nutrient loads. Because the connectivity LPM modified
models only decreased predicted loads from the proportion LPM model, the prediction advantage
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suggested by the connectivity LPM % explained variability may have not been fully exploited by
the models developed here.

Figure 7.5: Potential nitrogen load predictions of the Smith et al. [2001] model and the modified
average model presented here.
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Chapter 8

Summary

Three metrics of landscape pattern were proposed: the Fourier Metric of Fragmentation (FMF )
as a metric of landscape configuration, the Fourier Metric of Proportion (FMP ) as a metric of
landscape composition, and the Least Squares Fourier Transform Fractal Dimension Estimation
(LsFT ) as a metric of landscape complexity. Each metric was derived in the Fourier domain to
take advantage of scalable spectral energy across imaging system resolution.

A general review of theory and current Landscape Ecology metrics were presented in Chapter
3. Limitations of currently used metrics, and proposed solutions were explored theoretically in
Chapter 4 and experimentally in Chapter 5. In Chapter 4, each current and proposed landscape
metric concept and derivation were reviewed. Chapter 4 also discussed the proposed method of
study in Section 4.4, to reveal how separable the measures of these Landscape Pattern Metrics are,
and how much they explain both pattern and phenomena in the landscape. The preliminary land-
scape pattern metric examples in Chapter 5 present the FMF spatial interpretation (Section 5.1),
the FMP increased sensitivity to landscape composition (Section 5.2), the lsFT metric’s ability
to consistently measure landscape patch dimension (Section 5.3), and each of their performances
under system radiometric, spectral, and spatial effects (see Section 3.6 for the methods used). The
analysis of LCLU map system effects on the proposed Fourier methods was done by varying pixel
values characteristics to find lower and upper bounds of each metric (see Section 3.3.2 for details).
Through it all, as shown through the imaging system stressors of Chapter 5, the landscape fac-
tor analysis in Chapter 6, and the model prediction results in Chapter 7; these proposed metrics
have shown themselves to be reliable, unique, and relevant as Landscape Indicators for Landscape
Ecology.

Fourier Landscape Pattern Metric Reliability

FMF showed no significant dependence on phase unwrapping error, and maintained errors within
±0.3 units of FMF due to pixel size. Even for the largest pixel size of 200[m], at a distance
x = 4, 225.48[m] away, only ±0.002 units of FMF were observed—that is ±0.002% error. The
performance of FMF for progressive LCLU maps under variable system effects was much better
than the current Contagion metric. Contagion error bounds were not symmetric, nor did the
values consistently report a measure of configuration. Additionally, preliminary results revealed
the known correlation between landscape pattern metrics Contagion, and Dominance (see Figure
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3.12). Under the same conditions, there was no observable correlation for the proposed metrics
FMF and FMP .

The FMF metric corresponded to Island Biogeography spatial interpretations, was consistently
accurate and precise under variable system effects and for progressive LCLU maps, and acted as
a measure of pattern independent from all others (maintaining very low error bounds)—none of
which can be said about the Contagion metric FMF is related to.

FMP showed an increased sensitivity to measuring landscape composition over the current
Dominance landscape pattern metric. Both the current and proposed metrics were comparable
and maintained tight upper and lower error bounds during radiometric noise and under vari-
able spatial resolution, but Dominance was more independent to an increased spectral accuracy.
For both metrics a decrease in spatial resolution resulted in a decrease in dependence on sys-
tem effects—this is expected. While slightly more inaccurate, and insignificantly less precise, the
FMP metric maintained its increased sensitivity to real landscape composition variability while
witnessing system effects.

lsFT performed well, and consistently so, for both the inherent and apparent fractal variability.
While fractal resolution changed its resolution but not its fractal dimension, the lsFT metric
maintained the most accurate measure of dimension compared to traditional LPM Largest Patch

Index LPI and Mean Patch Fractal Dimension MPFD. Over 6 generations of fractal resolution,
the lsFT inaccuracy remained within 0.069 units, while LPI and MPFD reported inaccuracies
within 0.340 units and 0.193 units respectively. Under system detector noise, increased LCLU
patch accuracy, and for variable spatial resolution lsFT continued to report more accurate and
precise measures of dimension than traditional LPM.

The proposed metrics are reliable to report relevant values under radiometric, spectral, and
spatial imaging system effects. This research included two additional examinations. How unique
the measures of these LPM are, and how much they explain relevant pattern in a landscape by
factor analysis was also evaluated in Chapter 6 (see Section 4.4.1 for method details). To evaluate
the proposed LPM ability to explain landscape phenomena in Chapter 7, these metrics were applied
to LCLU data that coincide with ground truth (see Section 4.4.2 for method details). Metrics were
evaluated for wetland nutrient variability as a time-series analysis extension of the Smith et al.
fecal coliform South Carolina case study. Having understood their abilities under system effects,
and after understanding how broadly these metrics can interpret spatial pattern (i.e. independence
and ubiquity) and how closely they relate to a landscape process (i.e. SC wetland fecal coliform
dependence), the utility of these metrics as accurate and precise, unique, relevant landscape pattern
metrics is known.

Fourier Landscape Pattern Metric Uniqueness

LCLU pattern variability across the conterminous United States Provinces were observed through
59 LPM. These LPM included the proposed Fourier metrics. Using the correlation matrix it was
revealed how unique these proposed Fourier metrics are to commonly used LPM. Additionally, how
capable these Fourier metrics are to report relevant information was shown through PCA factor
analysis.

When observing LCLU pattern the Fourier metrics consistently reported high contributions to
typically explained variability, especially the Fourier Metric of Fragmentation. FMF was found to
typically contribute to 65% of the typically explained LCLU variability. The Least Squares Fourier
Transform Fractal Dimension Estimation consistently reported high contributions to typically ex-
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plained variability as well, 50% as much. The LsFT Fourier metric was also the most independent
of the other LPM. The Fourier Metric of Proportion consistently varied with LPM n−Q, PSCV ,
LOAX, and SHCO as shown in Figures 6.2 to 6.4, but none of these metrics contributed as much
to the explained LCLU variability observed. FMP typically contributed 12% to the explained
LCLU variability observed while LPM n − Q, PSCV , LOAX, and SHCO respectively typically
contributed 6.28%, 2.65%, 2.54%, and 2.07% to the explained LCLU variability observed. Again,
the interpretive power of the Fourier metrics underscore their utility as LPM, besides seeming to
have such strong relationships with other currently used LPM. Other currently used LPM that,
certainly for the Jackson’s Contagion statistic (P005), have not shown themselves to be reliable
measures of image properties.

These observations were made across unique and varied Provinces, so the LPM results observed
here can be extended for the general interpretation of LCLU pattern. The Fourier metrics, having
already shown their reliability against system effects in Chapter 5, have shown themselves to be
unique amongst commonly used LPM and relevant when interpreting LCLU variability under
multiple environmental scenarios.

Fourier Landscape Pattern Metric Relevance

A decadal LPM model for potential watershed fecal coliform loads was developed using the Smith
et al. [2001] proportion parameter LPM model and three other modified proportion-connectivity
parameter LPM models. Model performance between the original proportion-based LPM model
and t he modified average-based, similarity-based, and dissimilarity-based models showed a general
decrease in detection accuracy. For instance, the average-based modified model performed with
92% accuracy on the 1992 training data while the Smith et al. [2001] model performed with 94%
accuracy. The only model exception being the dissimilarity-based model performing with 99.36%
accuracy on the 1992 training data and 98.62% prediction accuracy on the 2001 testing data. This
leads to the interpretation that the type of LCLU connectivity that best explains watershed level,
non-point source, fecal coliform transport is sparse, not very diverse, and lay in no structured
pattern.

This decreased LPM model performance when including Fourier connectivity LPM is due to a
poor incorporation of these metrics into the model. Each Fourier metric consistently and signifi-
cantly expressed more information about LCLU pattern within compromised watersheds, but this
was not capitalized on in the modified model. The results of this study point to the significance of
the proposed Fourier metrics to the interpretation of landscape level ecological processes and the
necessity for more appropriate models to take advantage of sophisticated landscape level tools.

Future Research for Applications of Landscape Pattern Metrics

One of the more simple tasks for the direction of this work would include producing and optimizing
current LPM for analysis of precise and accurate records when using image data. A database of the
precision and accuracy limits for every relevant LPM would be a valuable resource in determining
the necessary satellite sensor designs and classification accuracies needed to make LPM increasingly
reliable as relevant Landscape Indicators.

As mentioned before, a better understanding of process and connectivity needs to be had
before models that could take full advantage of the high interpretive power of connectivity LPM
can be developed. At least one of the simple models discussed here performed better in their
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prediction performance, and provided a likely analysis of what types of LCLU may effect nutrient
transport most. Going back to gain an appreciation for how much more interpretive variability
was introduced by the dissimilarity-based model over the original Smith et al. [2001] model would
point to how predictions were made with increased accuracy, and whether even better predictions
could be made.

One approach to solving these questions would be to do a transfer curve analysis between
each model’s results. Highlighting the similarities between the models, and the type and degree of
dissimilarity. This transfer function curve analysis would point to how to improve the incorporation
of connectivity LPM into proportion based landscape indicator models, or even how to produce
better Landscape Indicator models using only connectivity LPM.

Identifying the physical factors that appeal most to connectivity LPM and their relation to
social dynamics will be the mainstay of research for Landscape Pattern Metrics. What is most
exciting about this direction of research is that the current research in Urban Science and Ecosys-
tems theory have began to seriously develope these links [Bettencourt et al., 2007, Brown et al.,
2004]. Much like the current proportion Landscape Indicator models consistently explaining 65%
to 86% of the total variation in nitrogen yields to streams and 73% to 79% of the total variability
in dissolved phosphorus and suspended sediment [Jones et al., 2001], Bettencourt et al. [2007] are
finding 72% to 99% explanation of total variation in social variables of a city using only city size.
These social variables include human needs (job, house, household water consumption), economies
of scale associated with infrastructure, and social currencies, such as information, innovation or
wealth, associated with the intrinsically social nature of cities [Bettencourt et al., 2007]. The
sought after link between pattern, process, cause and society may be brought a step closer by not
only understanding these landscapes in terms of their immediate cover, but also the connections
between them.
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Appendix A

Landscape Pattern Metrics

Every Landscape Pattern Metric is taken from Ritters et al. [1995], unless otherwise referenced.
Every independent landscape pattern metric is numbered. The indented metrics are highly corre-
lated to their numerated header.

1. Number of LCLU classes

• NTY P (Total number of LCLU classes)
– NTY P = S

2. Shannon evenness of LCLU classes

• SIDI (Simpson diversity of LCLU classes)

– SIDI = 1−
�S

j=1 p2
j

Here, S is the number of LCLU classes, and pj is the proportion of each LCLU
class j.

• SIEV (Simpson evenness of LCLU classes)
– SIEV = SIDI

1− 1
S

Here, S is the number of LCLU classes. See Shannon evenness of LCLU classes

for SIDI.
• SHDI (Shannon diversity of attribute classes)

– SHDI = −
�S

j=1 pj ln[pj ]

Here, S is the number of LCLU classes, and pj is the proportion of LCLU class
j.

• SHEV (Shannon evenness of LCLU classes)
– SHEV = SHDI

ln[S]

Here, S is the number of LCLU classes.
• MCDI (McIntosh diversity of attribute classes [Magurran, 1988])
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– MCDI =
N−

qPS
j=1 n2

j

N−
√

N

Here, S is the number of LCLU classes, N is the total number of pixels in the
landscape, and nj is the total number of pixels in LCLU class j.

• MCEV (McIntosh evenness of attribute classes)

– MCEV =
N−

qPS
j=1 n2

j

N− N√
S

Here, S is the number of LCLU classes, N is the total number of pixels in the
landscape, and nj is the total number of pixels in LCLU class j.

• SHHO (Shannon homogeneity of the adjacency matrix)
–

SHHO = −
S�

i=1

S�

j=1

pj · qi,j ln [pj · qi,j ]

= −
S�

i=1

S�

j=1

ni,j [Ehor, Evert]
N

ln
�
ni,j [Ehor, Evert]

N

�

Here, S is the number of LCLU classes, N is the total number of pixels in the
landscape, and ni,j [Ehor, Evert] the total number of horizontal and vertical edge
pixels shared by LCLU classes i and j.

• SIHO (Simpson homogeneity of adjacency matrix [Ritters et al.])

– SIHO = 1−
�S

i=1

�S
j=1

�
ni,j [Ehor,Evert]

N

�2

Here, S is the number of LCLU classes, N is the total number of pixels in the
landscape, and ni,j [Ehor, Evert] the total number of horizontal and vertical edge
pixels shared by LCLU classes i and j.

3. Kempton-Taylor Q-statistic

• KT −Q (The inter-quartile slope of the cumulative LCLU abundance curve [Magurran,
1988])

– KT −Q =
nQ1

2 +
nQ2

2 +
PQ2−1

Q=Q1+1 nQ

ln
h

Q2
Q1

i ,

where nQ is the number of LCLU classes with abundance Q, Q1; Q2 are the 25th

and 75th quartiles:
i. nQ1 = nj the number of pixels in the LCLU class where Q1 falls—the

1st − 25th percentile number of pixels ii. nQ2 = nj the number of pixels in the

LCLU class where Q2 falls—the 75th − 100th percentile number of pixels

The quartiles are chosen such that,
�Q1−1

Q=1 nQ < S
4 ≤

�Q1
Q=1 nQ,

and
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�Q2−1
Q=1 nQ < 3·S

4 ≤
�Q2

Q=1 nQ.

where S is the number of LCLU classes.

4. Shannon Contagion

• PMAX (The maximum LCLU class proportion)
– pmax = nmax

N

Here, N is the total number of pixels in the landscape, and nmax is the maximum
number of pixels in a LCLU class.

• SHCO (Shannon Contagion)
– SHCO = 1− SHHO

2·ln[S] = Contagion

Here, S is the number of LCLU classes. See Shannon evenness of LCLU classes

for SHHO.
• SICO (Simpson Contagion)

– SICO = SIHO
1− 1

S2

Here, S is the number of LCLU classes. See Shannon evenness of LCLU classes

for SIHO.

5. Sum of LCLU adjacencies

• SUMD (Sum of adjacencies for one LCLU class [Wickham and Ritters, 1995])

– SUMD =
�S

j=1 nj [Eh, Ev]

Here, S is the number of LCLU classes, and nj [Eh, Ev] are the total horizontal
and vertical edges of LCLU class j.

• TENT (Average fractal estimator of LCLU class configurational entropy from the scal-
ing of LCLU class density to the size of the neighborhood of an arbitrary pixel in the
class)

– Pt[L;nj ] is the probability of finding t other pixels of the same LCLU class, in an
L× L kernel, centered on an arbitrarily chosen pixel.

Pt[L;nj ] = st,L[j]
nj

where st,L[j] is the number of L × L kernels that had t pixels of the same LCLU
class j, and nj is the number of pixels in LCLU class j.

Letting nj [L] be the maximum number of pixels, of the same LCLU class j,
observed in any L× L kernel:

M0[Pt[L;nj ]] =
�nj [L]

t=1 ln[t] · Pt[L;nj ]

From each LCLU class with > 400 pixels, a random sample of at least 400 pixels
are selected. Square kernels of size L=5, 15, 25, 35, and 45 are placed around each
sampled pixel and the occurrence of pixels of the same LCLU class are counted
for each kernel size. Letting β10j be the estimated slope from the regression of
M0[Pt[L;nj ]] on ln[L] for the jth LCLU class, the fractal estimator is:
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TENT =
�S

j=1
nj

N β10j

Here, S is the number of LCLU classes, N is the total number of pixels in the
landscape, and nj is the total number of pixels in LCLU class j.

• TMAS (Fractal estimator of LCLU class mass from the scaling of LCLU class density
to the size of a neighborhood of an arbitrary pixel in the class.)

– Pt[L;nj ] is the probability of finding t other pixels of the same LCLU class, in an
L× L kernel, centered on an arbitrarily chosen pixel.

Pt[L;nj ] = st,L[j]
nj

where st,L[j] is the number of L × L kernels that had t pixels of the same LCLU
class j, and nj is the number of pixels in LCLU class j.

Letting nj [L] be the maximum number of pixels, of the same LCLU class j,
observed in any L× L kernel:

M1[Pt[L;nj ]] =
�nj [L]

t=1 t · Pt[L;nj ]

From each LCLU class with > 400 pixels, a random sample of at least 400 pixels
are selected. Square kernels of size L=5, 15, 25, 35, and 45 are placed around each
sampled pixel and the occurrence of pixels of the same LCLU class are counted
for each kernel size. Letting β11j be the estimated slope from the regression of
ln

�
M1[Pt[L;nj ]]

�
on ln[L] for the jth LCLU class. The fractal estimator is:

TMAS =
�S

j=1
nj

N β11j

Here, S is the number of LCLU classes, N is the total number of pixels in the
landscape, and nj is the total number of pixels in LCLU class j.

• TV AR (Fractal estimator of LCLU class variance from the scaling of LCLU class density
to the size of the neighborhood of an arbitrary pixel in the class)

– Pt[L;nj ] is the probability of finding t other pixels of the same LCLU class, in an
L× L kernel, centered on an arbitrarily chosen pixel.

Pt[L;nj ] = st,L[j]
nj

where st,L[j] is the number of L × L kernels that had t pixels of the same LCLU
class j, and nj is the number of pixels in LCLU class j.

Letting nj [L] be the maximum number of pixels, of the same LCLU class j,
observed in any L× L kernel:

M2[Pt[L;nj ]] =
�nj [L]

t=1 t2Pt[L;nj ]

From each LCLU class with > 400 pixels, a random sample of at least 400 pixels
are selected. Square kernels of size L=5, 15, 25, 35, and 45 are placed around each
sampled pixel and the occurrence of pixels of the same LCLU class are counted
for each kernel size. Letting β12j be the estimated slope from the regression of
ln

�
M2[Pt[L;nj ]]

�
on ln(L) for the jth LCLU class. The fractal estimator is:

TV AR =
�S

j=1
nj

N β12j

Here, S is the number of LCLU classes, N is the total number of pixels in the

134



landscape, and nj is the total number of pixels in LCLU class j.
• P050 (Weighted average proportion of pixels contained in patches with area > 50 pixels)

– P050 =
�S

j=1
nj

N

Pψj
τ=1 n∗τPψj
τ=1 nτ

where S is the number of LCLU classes, N is the total number of pixels in the
landscape, nj is the total number of pixels in the LCLU class j, ψj is the total
number of nearest-neighbor patches of LCLU class j, and nτ is the total number of
pixels in patch τ .

n∗τ =
�

0 if nτ < 51,
nτ otherwise.

• P500 (Weighted average proportion of pixels contained in patches with area > 500
pixels)

– P500 =
�S

j=1
nj

N

Pψj
τ=1 n∗τPψj
τ nτ

where S is the number of LCLU classes, N is the total number of pixels in the
landscape, nj is the total number of pixels in the LCLU class j, ψj is the total
number of nearest-neighbor patches of LCLU class j, and nτ is the total number of
pixels in patch τ .

n∗τ =
�

0 if nτ < 501,
nτ otherwise.

6. Average LCLU class lacunarity

• TLAC (Average LCLU class lacunarity from the scaling of class density with kernel
size)

– TLAC = TV AR− TENT

See, Sum of LCLU adjacencies

7. Average proportion of area in patches larger than 5 pixels

• P005 (Weighted average proportion of pixels contained in patches with area > 5 pixels—
Jackson’s Contagion statistic [O’Neill et al.])

– P005 =
�S

j=1
nj

N

Pψj
τ=1 n∗τPψj
τ nτ

where S is the number of LCLU classes, N is the total number of pixels in the
landscape, nj is the total number of pixels in the LCLU class j, ψj is the total
number of nearest-neighbor patches of LCLU class j, and nτ is the total number of
pixels in patch τ .

n∗τ =
�

0 if nτ < 6,
nτ otherwise.

8. Perimeter-area scaling, patch perimeter complexity

• OEFC (Fractal estimator of patch perimeter complexity from perimeter-area scaling
enclosing edges basis [Lovejoy, 1982])
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– OEFC = 2 · β1

where β1 is the estimated slope from the regression of the natural log of left-diagonal
and right-diagonal patch edge pixels, ln[nτ [Eleft, Eright]], on the natural logarithm
of the total number of pixels in LCLU patch τ , ln[nτ ], for all nearest-neighbor
patches greater than 3 pixels, nτ > 3, that do not touch the border of the LCLU
map.

• OIFC (Fractal estimator of patch perimeter complexity from perimeter-area scaling,
all edges basis)

– OIFC = 2 · β3

where β3 is the estimated slope from the regression of left-diagonal, right-diagonal,
horizontal, and vertical patch edge pixels, ln[nτ [Eleft, Eright, Ehor, Evert]], on the
natural logarithm of the total number of pixels in LCLU patch τ , ln[nτ ], for all
nearest-neighbor patches greater than 3 pixels, nτ > 3, that do not touch the
border of the LCLU map.

• OCFC (Fractal estimator of patch perimeter complexity from perimeter-area scaling,
enclosing pixels basis)

– OCFC = 2 · β2

where β2 is the estimated slope from the regression of the left-diagonal, right-
diagonal, horizontal, and vertical patch edge pixels complement,

ln[nτ − nτ [Eleft, Eright, Ehor, Evert]] = ln[n�
τ ]

on the natural logarithm of the total number of pixels in LCLU patch τ , ln[nτ ], for
all nearest-neighbor patches greater than 3 pixels, nτ > 3, that do not touch the
border of the LCLU maps.

9. Perimeter-area scaling, patch topology transformation, enclosing pixel basis

• OEFT Fractal estimator of patch topology from perimeter-area scaling, enclosing edges
basis [Ritters]

– OEFT = 1
β1

where β1 is the estimated slope from the regression of the natural log of left-diagonal
and right-diagonal patch edge pixels, ln[nτ [Eleft, Eright]], on the natural logarithm
of the total number of pixels in LCLU patch τ , ln[nτ ], for all nearest-neighbor
patches greater than 3 pixels, nτ > 3, that do not touch the border of the LCLU
map.

• OIFT Fractal estimator of patch topology from perimeter-area scaling, all edges basis.
– OIFT = 1

β3

where β3 is the estimated slope from the regression of left-diagonal, right-diagonal,
horizontal, and vertical patch edge pixels, ln[nτ [Eleft, Eright, Ehor, Evert]], on the
natural logarithm of the total number of pixels in LCLU patch τ , ln[nτ ], for all
nearest-neighbor patches greater than 3 pixels, nτ > 3, that do not touch the
border of the LCLU map.
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• OCFT Fractal estimator of patch topology from perimeter-area scaling, enclosing pixels
basis.

– OCFT = 1
β2

where β2 is the estimated slope from the regression of the left-diagonal, right-
diagonal, horizontal, and vertical patch edge pixels complement,

ln[nτ − nτ [Eleft, Eright, Ehor, Evert]] = ln[n�
τ ]

on the natural logarithm of the total number of pixels in LCLU patch τ , ln[nτ ], for
all nearest-neighbor patches greater than 3 pixels, nτ > 3, that do not touch the
border of the LCLU maps.

10. Patch area-bounding circle scaling

• ABFT (Fractal estimator of patch topology from area-bounding rectangular kernel
scaling)

– ABFT = β4

where β4 is the estimated slope from the regression of the natural logarithm of the
total number of pixels in the LCLU patch τ , ln(nτ ), on the natural logarithm of the
largest rectangular kernel side length difference Yτ from a box bounding a patch τ
is:

Yτ = ln [MAX (Lhor,τ , Lvert,τ )]

Here, Lhor,τ × Lvert,τ is the rectangular kernel size that fits over patch τ . This
is for all nearest-neighbor patches greater than 3 pixels, nτ > 3, that do not touch
the border of the LCLU maps.

• BCFT (Fractal estimator of patch topology from area-bounding circular kernel scaling)
– BCFT = β5

where β5 is the estimated slope from the regression of the natural logarithm of the
total number of pixels in the LCLU patch τ , ln(nτ ), on the natural logarithm of an
area-bounding circular kernel radius Lhor that would cover patch τ , ln

�
Lhor,τ

2

�
, for

all nearest-neighbor patches greater than 3 pixels, nτ > 3, that do not touch the
border of the LCLU maps.

11. Patch perimeter complexity from the scaling of Euclidean distance to actual distance along
large patch perimeters

• BETL (Fractal estimator of perimeter complexity from scaling the average patch edge
to variable square kernel size [Weins and Milne, 1989])

– BETL = 1
ψ̂

�ψ̂
τ̂=1

1
β6τ̂

where β6τ̂ is the estimated box-counting fractal dimension of the τ̂ th patch—only
for patches with area nτ > 400—using the average Euclidean distance r̄τ̂ from patch
τ̂ centroid (x̄τ̂ , ȳτ̂ ) to a L× L patch bounding-box, or patch perimeter (whichever
comes first) regression, ln [r̄τ̂ ] on the natural logarithm of bounding-box perimeter,
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perimeter = 4 · L, or patch τ̂ , perimeter = nτ̂ [Eleft, Eright, Ehor, Evert], perimeter
ln [perimeter].

Ritters describes the procedures as follows. For each patch meeting the minimum
400 pixel area (nτ̂ > 400) constraint, the average Euclidean distance r̄τ along the
perimeter is found for actual distances L = 4, 8, 16, 32, 64, 128, and 512 bounding-
box pixels. The proportions of patch perimeters that touched the map border are
excluded.

The expression for average patch centroid Euclidean distance is:

r̄τ̂ = 1
nτ̂

�ψ̂
τ̂=1 rτ̂

where the patch τ̂ distances rτ̂ are for all τ̂ = 1, 2, 3 . . . ψ̂ pixels, and are normalized
by the τ̂ patch area nτ̂ .

Within patch distances are expressed as:

rτ̂ =
��

u

�
v(xu − x̄τ̂ )2 + (yv − ȳτ̂ )2

for every pixel u = v = 1, 2, 3, 4 . . . nτ̂ within patch τ̂ , for the total number of
nearest-neighbor patches ψ̂ patches.

12. Metric of large-patch ’mass’ from the scaling of patch density with neighborhood size

• PD (Patch density. The number of patches (units: km−2) [McGarigal and Marks,
1994])

– PD = ψ
Ns(km2)

where ψ is the total number of nearest-neighbor patches, and Ns is the total number
of pixels in a square landscape (units: km2).

• PENT (Fractal estimator of patch configurational entropy from the scaling of patch
density to the size of a neighborhood of an arbitrary pixel in the patch [Voss, 1988])

– Pt[L;n∗τ ] is the probability of finding t other pixels of the same LCLU class, in an
L×L kernel, centered on an arbitrarily chosen pixel. For example, P2[L = 5;n∗τ ] is
the probability of finding two more pixels of a patch in a 5× 5 square centered on
an arbitrary pixel in the patch. In general,

Pt[L;n∗τ ] = st,L

n∗τ

where st,L is the number of L×L kernels that had t pixels of the same LCLU class,
and nj is the number of pixels in LCLU class j.

Letting nj [L] be the maximum number of pixels of the same LCLU class j, ob-
served in any L× L kernel:

M0[Pt[L;n∗τ ]] =
�nj [L]

t=1 ln[t] · Pt[L;n∗τ ]

From each patch with size > 400 pixels, a random sample of at least 400 pixels
was selected.

n∗τ =
�

0 if nτ < 401,
nτ otherwise.
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Square kernels of size L = 5, 15, 25, 35, and 45 are placed around each sampled
pixel, and the occurrences of pixels of the same patch were counted for each kernel
size. The values of Pt[L;n∗τ ] and M0[Pt[L;n∗τ ]] were calculated after the counts are
accumulated for all sampled pixels. Letting β7τ̂ be the estimated slope from the
regression of M0[Pt[L;n∗τ ]] on ln[L] for the τ̂ th patch. The fractal estimator is:

PENT = 1
ψ̂

�ψ̂
τ̂=1 β7τ̂

where, ψ̂ is the total number of nearest-neighbor patches.
• PMAS (Fractal estimator of patch mass from the scaling of patch density to the size

of a neighborhood of an arbitrary cell in the patch [?])
– Pt[L;n∗τ ] is the probability of finding t other pixels of the same LCLU class, in an

L×L kernel, centered on an arbitrarily chosen pixel. For example, P2[L = 5;n∗τ ] is
the probability of finding two more pixels of a patch in a 5× 5 square centered on
an arbitrary pixel in the patch. In general,

Pt[L;n∗τ ] = st,L

n∗τ

where st,L is the number of L×L kernels that had t pixels of the same LCLU class,
and nj is the number of pixels in LCLU class j.

Letting nj [L] be the maximum number of pixels of the same LCLU class j, ob-
served in any L× L kernel:

M1[Pt[L;n∗τ ]] =
�nj [L]

t=1 t · Pt[L;n∗τ ]

From each patch with size > 400 pixels, a random sample of at least 400 pixels
was selected.

n∗τ =
�

0 if nτ < 401,
nτ otherwise.

Square kernels of size L = 5, 15, 25, 35, and 45 are placed around each sampled
pixel, and the occurrences of pixels of the same patch were counted for each kernel
size. The values of Pt[L;n∗τ ] and M1[Pt[L;n∗τ ]] were calculated after the counts are
accumulated for all sampled pixels. Letting β8τ̂ be the estimated slope from the
regression of M1[Pt[L;n∗τ ]] on ln[L] for the τ̂ th patch. The fractal estimator is:

PMAS = 1
ψ̂

�ψ̂
τ̂=1 β8τ̂

where, ψ̂ is the total number of nearest-neighbor patches.
• PV AR (Fractal estimator of patch variance from the scaling of patch density to the size

of a neighborhood of an arbitrary pixel in the patch [?])
– Pt[L;n∗τ ] is the probability of finding t other pixels of the same LCLU class, in an

L×L kernel, centered on an arbitrarily chosen pixel. For example, P2[L = 5;n∗τ ] is
the probability of finding two more pixels of a patch in a 5× 5 square centered on
an arbitrary pixel in the patch. In general,

Pt[L;n∗τ ] = st,L

n∗τ

where st,L is the number of L×L kernels that had t pixels of the same LCLU class,
and nj is the number of pixels in LCLU class j.
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Letting nj [L] be the maximum number of pixels of the same LCLU class j, ob-
served in any L× L kernel:

M2[Pt[L;n∗τ ]] =
�nj [L]

t=1 t2 · Pt[L;n∗τ ]

From each patch with size > 400 pixels, a random sample of at least 400 pixels
was selected.

n∗τ =
�

0 if nτ < 401,
nτ otherwise.

Square kernels of size L = 5,15, 25, 35, and 45 are placed around each sampled
pixel, and the occurrences of pixels of the same patch were counted for each kernel
size. The values of Pt[L;n∗τ ] and M2[Pt[L;n∗τ ]] were calculated after the counts are
accumulated for all sampled pixels. Letting β9τ̂ be the estimated slope from the
regression of M2[Pt[L;n∗τ ]] on ln[L] for the τ̂ th patch. The fractal estimator is:

PENT = 1
ψ̂

�ψ̂
τ̂=1 β9τ̂

where, ψ̂ is the total number of nearest-neighbor patches.

13. Average large-patch lancunarity from the scaling from the scaling of patch density with
neighborhood size

• PLAC (Average large-patch lancunarity)
– PLAC = PV AR− PENT

See Metric of large-patch ’mass’ from the scaling of patch density with neighbor-

hood size.

14. Number of patches

• NPAT (Number of patches [McGarigal and Marks, 1994])
– NPAT = ψ

where ψ is the number of nearest-neighbor patches in the LCLU map.

15. Largest patch index

• LPI (The ratio of area of the largest patch to the total area of the landscape (unit: %)
[McGarigal and Marks, 1994])

– LPI = MAX[nτ ]
N

where N is the total number of pixels in the landscape, and nτ is the total number
of pixels in nearest-neighbor patch τ .

16. Average patch size or area

• PSIZ (Average patch size or area [McGarigal and Marks, 1994])

– PSIZ = 1
ψ

�ψ
τ=1 nτ

where ψ is the total number of nearest-neighbor patches, and nτ is the total area
of patch τ .
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17. Patch size standard deviation

• PSSD (The standard deviation of patch size in the entire landscape (unit: ha) [Mc-
Garigal and Marks, 1994])

– PSSD = 1
ψ−1

�ψ
τ=1 (nτ − PSIZ)

where ψ is the total number of nearest-neighbor patches, nτ is the total area of
patch τ , and PSIZ is the average patch size or area.

18. Patch size coefficient of variation

• PSCV (The standard deviation of patch size divided by mean patch size for the entire
landscape (unit:%))

– PSCV = PSSD
PSIZ

See Average patch size or area for PSIZ and Patch size standard deviation for
PSSD.

19. Total edge

• TE (The sum of the lengths of all edge segments (unit: m) [McGarigal and Marks,
1994])

– TE = Eleft + Eright + Ehor + Evert

Here, the left-diagonal, right-diagonal, horizontal, and vertical LCLU map edge
pixels are Eleft, Eright, Ehor, and Evert respectively.

20. Average patch radius of gyration

• OEDG (Average number of edges enclosing a patch—’outside edges’)

– OEDG = 1
ψ

�ψ
τ=1 nτ [Eleft, Eright]

where ψ is the total number of nearest-neighbor patches, and nτ [Eleft, Eright] are
left-diagonal and right-diagonal patch τ edge pixels.

• TEDG (Average total number of perimeter edges, or ’perimeter length’, per patch)
– TEDG = IEDG + OEDG

See Average number of inside edges per patch for IEDG and Average patch radius

of gyration for OEDG.
• OPER (Average number of pixels enclosing a patch—’outside pixels’)

– OPER = 1
ψ

�ψ
τ=1 n�

τ

where ψ is the total number of nearest neighbor patches, and all patch τ nearest-
neighbor pixels that are not left-diagonal, right- diagonal, horizontal, or vertical
edge pixels are n�

τ = (nτ − nτ [Eleft, Eright, Ehor, Evert]).
• RGY R (Average radius of gyration [Pickover, 1990])
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– RGY R = 1
ψ

�ψ
τ=1 rτ

The patch centroid (x̄τ , ȳτ ) is used to find the radius of gyration rτ of patch τ :

rτ =
��

u

�
v(xu − x̄τ )2 + (yv − ȳτ )2

for every pixel u + v = 2, 3, 4 . . . nτ within nearest-neighbor patch τ , for the total
number of nearest-neighbor patches ψ.

• LOAX (Average length of long axis)

– LOAX = 1
ψ

�ψ
τ=1 Lhor,τ

where ψ is the total number of nearest-neighbor patches, and Lhor,τ is the longest
horizontal diameter of patch τ .

21. Average number of inside edges per patch

• IEDG (Average number of edges between a patch and its inclusions—’inside edges’)

– IEDG = 1
ψ

�ψ
τ=1 nτ [Ehor, Evert]

where ψ is the total number of nearest-neighbor patches, and nτ [Ehor, Evert] are
horizontal and vertical patch τ edge pixels.

22. Landscape shape index

• LSI (A modified perimeter-area ratio)

– LSI = 0.25·nτ [TE]√
N

where N is the total number of pixels in the landscape, and nτ [TE] is the total
number of nearest-neighbor patch edges (unitless). See Average patch radius of

gyration for TE.

23. Mean patch shape index

• MSI (A patch-level shape index averaged over all patches in the landscape)

– MSI = 1
ψ

�ψ
τ=1

0.25·nτ [TE]√
nτ

where ψ is the total number of nearest-neighbor patches, nτ is the total area of
patch τ , and nτ [TE] is the total number of patch edges (unitless). See Average

patch radius of gyration for TE.

24. Area-Weighted mean patch shape index

• AWMSI (Mean patch shape index weighted by relative patch size)

– AWMSI =
�ψ

τ=1
0.25·nτ [TE]√

nτ
· nτ

N

where N is the total number of pixels in the landscape, ψ is the total number of
nearest-neighbor patches, nτ is the total area of patch τ , and nτ [TE] is the total
number of patch edges (unitless). See Average patch radius of gyration for TE.

25. Double-Log fractal dimension
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• DLFD (The fractal dimension of the entire landscape)
– Twice the inverse regression line slope between the logarithm of patch area and the

logarithm of patch perimeter:

DLFD = 2 ·
�

ψ·
Pψ

τ=1 ln[nτ [TE]] ln[nτ ]−
Pψ

τ=1 ln[nτ ]

ψ·
Pψ

τ=1 ln[nτ [TE]2]−(Pψ
τ=1 ln[nτ [TE]]2)

�−1

where ψ is the total number of nearest-neighbor patches, nτ is the total area of
patch τ , and nτ [TE] is the total number of patch edges (unitless). See Average

patch radius of gyration for TE.

26. Mean patch fractal dimension

• MPFD (The average fractal dimension of individual patches in the landscape)
– The summation of fractal dimension for all patches divided by the total number of

patches in the landscape:

MPFD = 1
ψ

�ψ
τ=1

2·ln[0.25·nτ [TE]]
ln[nτ ]

where ψ is the total number of nearest-neighbor patches, nτ is the total area of
patch τ , and nτ [TE] is the total number of patch edges (unitless). See Average

patch radius of gyration for TE.

27. Area-weighted mean patch fractal dimension

• AWMPFD (The patch fractal dimension weighted by relative patch area)

– AWMPFD =
�ψ

τ=1
2·ln[0.25·nτ [TE]]

ln[nτ ] · nτ
N

where N is the total number of pixels in the landscape, ψ is the total number of
nearest-neighbor patches, nτ is the total area of patch τ , and nτ [TE] is the total
number of patch edges (unitless). See Average patch radius of gyration for TE.

28. Square pixel index

• SqP (A normalized perimeter-area ratio [Frohn, 1998])

– SqP = 1− 4
√

N
(TE)

where N is the total number of pixels in the landscape, and TE are all left-diagonal,
right-diagonal, horizontal, and vertical edge pixels in the landscape (unitless). See
Average patch radius of gyration for TE.

29. Average patch perimeter-area ratio

• PA− 1 (Average nearest-neighbor perimeter-area ratio)

– PA− 1 = 1
ψ

�ψ
τ=1

nτ [Eleft,Eright]
nτ

where ψ is the total number of nearest-neighbor patches, nτ is the total area of patch
τ , and nτ [Eleft, Eright] are left-diagonal and right-diagonal patch τ edge pixels.

30. Average patch adjusted perimeter-area ratio

• PA− 2 (Average adjusted perimeter-area ratio [Baker and Cai, 1992])
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– PA− 2 = 1
ψ

�ψ
τ=1

0.282·nτ [Eleft,Eright]√
nτ

where ψ is the total number of nearest-neighbor patches, nτ is the total area of patch
τ , and nτ [Eleft, Eright] are left-diagonal and right-diagonal patch τ edge pixels.

31. Average patch normalized area, square model

• NACI (Average normalized area, circular model)

– NACI = 1
ψ

�ψ
τ=1

4π·nτ
nτ [Eleft,Eright]2

where ψ is the total number of nearest-neighbor patches, nτ is the total area of patch
τ , and nτ [Eleft, Eright] are left-diagonal and right-diagonal patch τ edge pixels.

• NASQ (Average normalized area, square model)

– NASQ = 1
ψ

�ψ
τ=1

16·nτ
nτ [Eleft,Eright]2

where ψ is the total number of nearest-neighbor patches, nτ is the total area of patch
τ , and nτ [Eleft, Eright] are left-diagonal and right-diagonal patch τ edge pixels.

• BRRA (Average bounding rectangle ratio)

– BRRA = 1
ψ

�ψ
τ=1

nτ
χτ

where

χτ = Lhor,τ × Lvert,τ

Here, ψ is the total number of nearest-neighbor patches, nτ is the total area of
patch τ , Lhor,τ and Lvert,τ are respectively the rectangular kernel horizontal and
vertical sides that fit over patch τ .

32. Average patch topology ratio

• NFTD (Average topology ratio)

– NFTD = 1
ψ

�ψ
τ=1 2− (n�

τ−4
√

nτ)
(2·nτ+2−4

√
nτ )

where ψ is the total number of nearest-neighbor patches, and nτ is the total area
of patch τ

33. Average patch ratio of number of inside edges of area

• PORO (Average ratio of number of inside edges to area)

– PORO = 1
ψ

�ψ
τ=1

nτ [Ehor,Evert]
nτ

where ψ is the total number of nearest-neighbor patches, nτ is the total area of
patch τ , and nτ [Ehor, Evert] are horizontal and vertical patch τ edge pixels.

34. Average patch adjusted perimeter-area ratio

• DSTA (Average adjusted area-perimeter ratio—Gardner’s D-statistic)

– DSTA = 1
ψ

�ψ
τ=1

4·nτ
ln[nτ [Eleft,Eright]]

where ψ is the total number of nearest-neighbor patches, nτ is the total area of patch
τ , and nτ [Eleft, Eright] are left-diagonal and right-diagonal patch τ edge pixels.
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• ABRA (Average ratio of area to largest bounding rectangle dimension)

– ABRA = 1
ψ

�ψ
τ=1

ln(nτ )
Yτ

Here, ψ is the total number of nearest-neighbor patches, nτ is the total area of
patch τ , and the largest and smallest rectangular kernel side length differences Yτ

that would cover a patch τ is:

Yτ = ln [MAX (Lhor,τ , Lvert,τ )].

35. Average ratio of patch area to area of the circumscribing circle

• CCRA (Average ratio of area to the area of a circumscribing circle [Baker and Cai,
1992]

– CCRA = 1
ψ

�ψ
τ=1

nτ

π
“

Lhor,τ
2

”2

where ψ is the total number of nearest-neighbor patches, nτ is the total area of
patch τ , and Lhor,τ is the longest horizontal diameter of patch τ .

36. Average ratio of patch radius of gyration to long axis length

• RGLA (Average ratio of nearest-neighbor patch radius of gyration to long axis length)

– RGLA = 1
ψ

�ψ
τ=1

rτ
Lhor,τ

where ψ is the total number of nearest-neighbor patches, and Lhor,τ is the longest
horizontal diameter of patch τ .

The patch centroid (x̄τ , ȳτ ) is used to find the radius of gyration rτ of patch τ :

rτ =
��

u

�
v(xu − x̄τ )2 + (yv − ȳτ )2

for every pixel u + v = 2, 3, 4 . . . nτ within nearest-neighbor patch τ .
• LARA (Average ratio of area to long axis length)

– LARA = 1
ψ

�ψ
τ=1

nτ
ln[Lhor,τ ]

where ψ is the total number of nearest-neighbor patches, nτ is the total area of
patch τ , and Lhor,τ is the longest horizontal diameter of patch τ .

37. Average patch ratio of perimeter pixels to perimeter edges

• OPOE (Average ratio of perimeter pixels to perimeter edges)

– OPOE = 1
ψ

�ψ
τ=1

n�
τ

nτ [Eleft,Eright]

where ψ is the total number of nearest neighbor patches, nτ [Eleft, Eright] are left-
diagonal and right-diagonal patch τ edge pixels, and all patch τ nearest-neighbor
pixels that are not left-diagonal, right-diagonal, horizontal, or vertical edge pixels
are n�

τ = (nτ − nτ [Eleft, Eright, Ehor, Evert]).
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Appendix B

Anderson Level II Attribute Class
Description
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Table B.1: Descriptions of LUDA LCLU attribute class codes [Anderson et al., 1976].
LUDA class code Anderson Level II attribute class description
11 Residential
12 Commercial, service, institutional
13 Industrial
14 Transportation
15 Industrial and commercial complex
16 Mixed urban and built-up
17 Other urban or built-up
21 Cropland and pasture
22 Orchards, vineyards, and nurseries
23 Confined feeding operations
24 Other agricultural lands
31 Herbaceous rangeland
32 Shrub-brush rangeland
33 Mixed rangeland types
41 Deciduous forest
42 Evergreen forest
43 Mixed forest types
51 Streams and canals
52 Natural lakes
53 Reservoirs
54 Bays and estuaries
61 Forested wetlands
62 Non-forested wetlands
71 Dry salt flats
72 Beach
73 Non-beach sandy area
74 Bare exposed rock
75 Strip mine, quarry, and borrow areas
76 Transitional (disturbed, little cover, not agricultural)
77 Mixed barren lands
81 Shrub-brush tundra
82 Herbaceous tundra
83 Bare ground tundra
84 Wet tundra
85 Mixed tundra
91 Perennial snowfield
92 Glacier
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Appendix C

Ecoregions of the United States
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Figure C.1: This data set shows ecoregions, which are ecosystems of regional extent, in the United
States, Puerto Rico, and the U.S. Virgin Islands.149



Appendix D

LPM Correlation matrix when
observing seamless conterminous
United States NLCD 1992 LCLU
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