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ABSTRACT

A vast amount of digital satellite and aerial images are collected over time, which
calls for techniques to extract useful high-level information, such as recognizable
events. One part of this thesis proposes a framework for streaming analysis of the
time series, which can recognize events without supervision and memorize them
by building the temporal contexts. The memorized historical data is then used
to predict the future and detect anomalies. A new incremental clustering method
is proposed to recognize the event without training. A memorization method of
double localization, including relative and absolute localization, is proposed to model
the temporal context. Finally, the predictive model is built based on the method
of memorization. The “Edinburgh Pedestrian Dataset”, which offers about 1000
observed trajectories of pedestrians detected in camera images each working day for
several months, is used as an example to illustrate the framework.

Although there is a large amount of image data captured, most of them are not
available to the public. The other part of this thesis developed a method of gen-
erating spatial-spectral-temporal synthetic images by enhancing the capacity of a
current tool called DIRISG (Digital Imaging and Remote Sensing Image Genera-
tion). Currently, DIRSIG can only model limited temporal signatures. In order to
observe general temporal changes in a process within the scene, a process model,
which links the observable signatures of interest temporally, should be developed
and incorporated into DIRSIG. The sub process models could be categorized into
two types. One is that the process model drives the property of each facet of the
object changing over time, and the other one is to drive the geometry location of
the object in the scene changing as a function of time. Two example process models
are used to show how process models can be incorporated into DIRSIG.
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Chapter 1

Introduction

More than 150 Earth observation satellites are currently in orbit carrying sensors
to monitor the earth and provide us a large number of valuable images[101]. Many
companies and government agencies are still working on constructing next genera-
tion satellites. For example, the ESA is developing five new missions called Sentinels
to complement the capacities of the existing satellites in the next several years[2].
Besides, there are many airborne sensors available to take images of certain sites
when required. During the 2012 summer, RIT (Rochester Institute of Technology)
performed a large scale experiment in Avon area of Rochester which is named as
SHARE2012. Several types of airborne sensors (including WASP, ALS-60, ProSpec-
TIR VS, MircroHSI and PI Sensor[86]) flew over the site with targets set up in a
designed way. The ground truth was measured and recorded along with the weather
information. The collected data are shared around the world. The large amount of
temporal digital satellite and aerial images calls for the corresponding development
in data processing techniques to combine and fuse the temporal data from different
sources in order to understand the data in a high level, such as extracting hidden
events or activities. One part of the thesis will focus on building a generic framework
to capture the temporal events from the data.

Although there is a large amount of image data captured and stored over time,
most of them are not available to the public. The experiment event like SHARE2012
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at RIT does not happen often, because such large scale experiments involve intense
amount of efforts and time. Besides, a lot of the data do not offer the “ground truth”,
which is required to test and validate the algorithm. The other part of the thesis
will focus on generating temporal synthetic images by enhancing the capacity of a
current tool called DIRISG (Digital Image and Remote Sensing Image Generation).

In this thesis, we will illustrate temporal signature modeling in DIRSIG first to
provide a method to generate the spatial-spectral-temporal synthetic remote sensing
images. This could further aid the research in temporal signature analysis by offering
the test data and their “ground truth”.

1.1 Temporal Signature Modeling in DIRSIG

The DIRS lab (Digital Imaging and Remote Sensing Laboratory) at Rochester Insti-
tute of Technology has spent the past 20+ years developing the DIRSIG tool. Over
the past 20+ years, DIRSIG has been involved with a great development starting
from simplistic thermal image rendering of a 2D scene. Nowadays, the DIRSIG is
a complex synthetic image generation model of 3D scene, which also is designed to
produce broad-band, multi-spectral and hyper-spectral imagery through the integra-
tion of a suite of first principles based radiation propagation sub models. These sub
models are responsible for tasks ranging from the BRDF (bi-directional reflectance
distribution function) predictions of a surface to the dynamic scanning geometry
of a line scanning imaging instrument. In addition to sub models that have been
specifically created for the DIRSIG model, there are also components such as MOD-
TRAN (MODerate resolution atmospheric TRANsmission) and FASCODE which
are included in DIRSIG as workhorses for the multi- and hyper-spectral community.
All modeled components are combined using a spectral representation, and the in-
tegrated radiance images can be simultaneously produced for an arbitrary number
of user defined band passes. According to the surface temperature of the scene,
the self-emitted radiances are calculated by a passive thermodynamic model which
includes the time history of environmental and meteorological parameters[31]. Then
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the surface reflected radiances are determined to compute the sensor reaching ra-
diances through the included MODTRAN model. DIRSIG can produce multi or
hyper-spectral remote sensing images between the bandpass 0.2 to 20μm with high
radiometric fidelity[31, 92]. In addition, DIRSIG also produces per-pixel “truth”, so
many algorithm developers take this advantage of DIRSIG to validate their algo-
rithms and make improvements.

However, except for vehicle moving, the solar and historical weather related short
term temporal changing, DIRSIG does not currently include long term temporal
signatures of the scene easily. To perform trade studies, algorithm training or even
hypothesis testing, the user needs to manually create the scene with each individual
element changing frame by frame as a function of time, which is time consuming
and labor intensive. Take the scene of MCV (Midland Cogeneration Venture) Power
Plant in Michigan for example: Figure 1.1 shows the WASP[73] images of the mid-
land scene. By zooming in the center part of the scene, more details of the scene
can be observed; there are various kinds of activities going on there, such as tanks
with water filled in and released out, stacks releasing plumes, parking lots with cars
arriving and leaving, a lake with surface temperature changing over the year and so
on. In order to accurately describe the scene at a specific time, the user is required
to manually set all characterizations for each scene element. For example, the user
needs to figure out how much water is in the tanks and what is the temperature,
which direction the plume would be blown and how strong the wind is, how many
cars in the parking lot and how they are distributed, how the surface temperature
of the lake looks like and so on. When time changes, the user needs to re-attribute
all these properties to the scene element, which is a tedious process.
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Midland, MI
Tanks

Parking lot

Lake
Plumes

Figure 1.1: Midland Scene

GIS (Geographic Information System) is a spatial temporal system designed to
store, manage, process, and visualize time varying geographical data. Over time,
GIS uses snapshot model, space time composite, spatio-temporal object model,
event-based/state-based model, object-oriented model, version-difference model and
so on to represent the spatial temporal geographical data in the spatio-temporal
database[100]. The dynamical property of GIS is shown in the database, and the
representation of the relationship between the dynamic object elements in GIS is
achieved through the management of so called relational database. Recently, the
integration of process models and GIS is beginning to be realized and the proposed
next generation GIS will use process models to govern the dynamics, adaption and
evolution among the object elements in the system[102].

BIM (Building Information Modeling) is a intelligent model-based building de-
sign system, which incorporates the physical and functional characteristics into the
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system. BIM which integrates the time information to the three spatial dimensions
is often referred to as 4D BIM. 4D BIM uses a process model to direct the life cycle
of a project by linking all the model elements in the construction schedule[3]. Each
model element describes a discrete, time-driven construction activity as stated in
the schedule. 4D BIM can facilitate the decision makers to learn a intuitive under-
standing of the process by visualizing the whole result consisting of different event
phenomena from different model elements on the time axe.

In the field of computer graphics, a lot of work has been done on measuring
and modeling the time-varying appearance of the natural phenomena[98, 44, 107].
Gu et al[44] develops a model called space-time appearance factorization to factor
space and time-varying effects. Sun et al[98] measured the time-varying BRDFs of a
wide range of phenomena with a self-developed acquisition system at a time sample
space within 36 seconds and shared the database online. Those modeled natural
phenomena include drying of various types of paints[107], wetting and drying of
rough surfaces(cement, plaster and fabrics)[107, 44], the accumulation of dusts on
surfaces[52, 107], corrosion and rusting of metals[44, 74], the weathering stone[34]
and so on. These time-varying appearance of the different materials and surfaces
are also interesting to remote sensing communities.

The first part of this thesis is intended to show the research of incorporating
temporal signatures of the scene into DIRSIG, and these temporal signatures of
the scene are driven by the process model. The enhanced DIRSIG could auto-
matically create a scene with the property of each individual element driven by an
external physical model as a function of time. The global process model could com-
prise many sub process models, each of which is designed to describe the temporal
changing characterizations of the corresponding element in the scene. The changing
characterizations of a scene element may include temperature, material property,
geometry position and orientation, and so on. This research would enhance the
ability of DIRSIG to simulate a complex scene with diverse activities and aid the
algorithm development and test community to save significant and labor. By adopt-
ing the method of incorporating process models into DIRSIG, finally we expect to
be able to create a scene which could capture not only spatial-spectral information,
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but also include temporal information at that moment extracted from a “motion
library”, which is driven by a process model. Take Midland scene in Michigan for
example, the process model could comprise an external physical two-tanks model
to tell what the height and temperature in the two tanks are, a user defined plume
model to control how the plume behaves and how the plume is affected by the
weather, a statistically machine learned parking lot model to predict how the cars
are distributed in the parking lot, the ALGE hydrodynamic model [53, 41, 42] to
simulate the surface temperature of the lake and so on.

1.2 Temporal signature analysis

In this thesis, we will also consider the other way around of temporal signature
modeling, which is temporal signature analysis. Still take Midland scene in Michigan
for example, in this area Midland Cogeneration Venture (MCV) Power Plant is
located. MCV is one of the largest gas-fired cogeneration plants in the United
States, which produces 1,633 megawatts of electric power and additionally 1.5 million
pounds per hour of process steam for industrial use[1]. With the large amount of
electric generation, MCV produces some environment phenomena with interesting
patterns varying along with the capacity of electric output of the plant. There are
tanks, plumes, parking lots, and the lake as marked in the image in Figure 1.1. The
observed phenomena of each scene element would vary with the different amount
of the electric output. A larger amount of the electric output will correspond with
a larger plume size, more fuel-gas stacks turned on, higher temperature of the lake
surface, more water transferred through the tanks and probably more cars in the
parking lot. All these observations can be considered as features which contribute
to determine the event type going on in this area.

In the real world, almost everything is changing over time at different time scales.
In many cases, we have real-time measurements of the scenario in different aspects
to describe the current situation of the scenario. Significant research has been done
in the field of time signature analysis in different applications[75][24][64][14]. In
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computer system security, system call sequences are analyzed to detect intrusions
based on the temporal behavior of applications[55][49]. In medicine, longitudinal
clinical records of patients are analyzed to discover the temporal pattern of the dis-
ease or medical knowledge[79][19]. In sociology, there is interesting research done to
extract events, such as sporting events and earthquakes from Social media according
to the temporal activities of users[72][116][84]. In remote sensing, temporal satellite
images are analyzed to find model the dynamics of vegetation, land cover, ecological
processes and so on[28][30]. Additionally, temporal signature analysis is also the
main research topics of gesture recognition, speech recognition, on-line signature
recognition and so on. However, to our knowledge, there is not a general framework
built to illustrate the chain from recognition, modeling of the historical data (the
term ’memorization’ is used in this thesis to describe the process of modeling the
historical data), to prediction of streaming data. In this part of the thesis, a frame-
work will be built to learn events and their temporal contexts from the continuously
collected data. The learned knowledge from the collected time series can then be
used to make predictions and detect anomalies.

The “Edinburgh Informatics Forum Pedestrian Data set”, which offers about 1000
observed trajectories of pedestrians detected in camera images each working day for
several months, will be used to illustrate the framework. The proposed framework
will implemented from recognizing the situation (event type) in the scene during
prescribed time interval over time by twice applications of a new incremental clus-
tering method, to memorizing the historical events by a temporal map as absolute
localization and the Markov chain model as relative localization of an event, and to
final prediction and anomaly detection with the predictive model built based on the
method of memorization.

1.3 Summary

In summary, in the thesis, two parts of research are to be performed. The first
part is to incorporate the process models into DIRSIG to generate simulated remote

7



CHAPTER 1. INTRODUCTION

sensing images in spatio-spectral-temporal spaces. The second part of the thesis will
analyze the time series in order to recognize and predict events. Figure 1.2a shows
the big background of the thesis, while Figure 1.2b shows the two problems will be
solved in this background.
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Figure 1.2: Problem structure
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Chapter 2

DIRSIG Simulation

In this chapter, a detailed description of DIRSIG will be firstly stated to show some
basic understanding and knowledge of how DIRSIG could be possibly extended in
functionalities. Then, the timing mechanism of DIRSIG is investigated in order to
show in which way the DIRSIG can be enhanced in the temporal dimension. Lastly,
possible process models which can be incorporated into DIRSIG are listed.

2.1 The understanding of DIRSIG

DIRSIG is a integration of sub-models[85]. The sub-models include a scene sub-
model, ray tracer sub-model, thermal sub-model, radiometry sub-model and sensor
sub-model. There are several databases in DIRSIG to support the simulation. The
databases are for material, weather, and atmospheric propagation. In order to fully
understand DIRSIG, the simulation will be explained in two perspectives. First, the
first principle working mechanism between the sub-models of DIRSIG is stated to
show how rays travel through the scene to the sensor to form an image. Then we
look at DIRSIG based on the files which DIRSIG needs and generates to accomplish
a scene simulation. By doing this, we could understand what information DIRSIG
needs to drive the simulation and how the capacity of DIRSIG could be enhanced
in terms of incorporating temporal signatures into the scene simulation.
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2.1.1 First principles based working mechanism of DIRSIG

DIRSIG is a first principles based synthetic image generation model by integration
of a suite of the first principle based sub-models. Figure 2.1 shows the interaction
between sub-models and data bases.

DIRSIG CapabilitiesFigure 2.1: Interactions between sub-models in DIRSIG[85]
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To simulate an image, DIRSIG starts by looking at the scene through the sensor
sub-model. The ray tracer sub-model is adopted to send out a ray into the scene
through each pixel of the image from the sensor sub-model. The scene is constructed
through the scene sub-model, which represents the scene with facets. Each facet uses
a set of information describing its own properties which include the coordinates of the
facet vertices, zenith and azimuth angle, normal vector, the material, temperature
calculation method and facet thickness.

When the ray hits on a facet of the scene, it reads the properties of the facet. If
the temperature calculation method is set to invoke the DIRSIG internal thermal
model to work, the facet properties are feed into the thermal sub-model; otherwise,
a temperature can be set by the user externally. Aside of the facet properties,
the thermal model also needs the weather data, the current solar load and solar
history of the pixel. The weather data could come from forecast data or from a
measured data record. In order to get the information of the current solar load
and solar history of the pixel, rays are sent out from the intersection point on the
facet in the direction of the sun starting at the current time back to the previous 24
hours in a certain time interval. Then the status of whether the facet is blocked by
other objects is determined. With all the information about the facet, the weather
and solar load and history, the facet temperature could be calculated through the
thermal sub-model of DIRSIG.

With the knowledge of the facet temperature, facet orientation, facet material
property, solar position, background and atmospheric data, the radiometry sub-
model could calculate the spectral sensor reaching radiance according to the “big
equation”[91]. As shown in figure 2.2, the radiometry sub-model considers (A) the
reflected solar radiance on the target, (B) the reflected solar scattered down-welled
radiance on the target, (C) the solar scattered upwelled radiance, (D) the self emitted
spectral radiance from the target, (E) the reflected down-welled spectral radiance on
the target due to the self emission of the atmosphere integrated over the skydome,
(F) the upwelled spectral radiance due to the self emission of the atmosphere, (G)
the reflected solar radiance of the background on the target, and (H) the reflected
radiance on the target due to the background self emission. The parameters of the
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radiometry sub-model such as spectral transmission, emission and scattering are
dependent on the atmospheric conditions. MODTRAN4 or MODTRAN5 is used
to characterize the atmospheric propagation for 0.2 to 100 µm spectral range in a
spectral resolution of 0.2 cm−1. Fascode is an alternative atmospheric propagation
model when a higher spectral resolution of the image is required. The output from
the atmospheric model facilitates the radiometry sub-model to calculate the sensor
reaching radiance.

Figure 2.2: Sensor reaching radiance[91]

The sensor reaching radiance map is then passed to the sensor sub-model. The
sensor sub-model performs postprocessing on the radiance map to make the im-
age look “real” by introducing geometry distortions, motion blurs, noises, sampling
effects and so on.

DIRSIG4 also includes polarization modeling and LIDAR modeling. When the
polarization modeling is enabled, MODTRAN-P which is a polarized version of
MODTRAN4 will be used to aid the radiometry sub-model to produce polarized
radiance in terms of spectral stokes vectors and a polarization angle. This requires
knowledge of the polarization properties of the the material. The capacity of 3D
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LIDAR imaging in DIRSIG is achieved by using a different ray tracing method
from the existing one. The technique is called photon mapping which is a two-pass
method[54]. First the photon map structure is built by tracing photons through the
model. Then the result is rendered by using the information in the photon map
via the photon density based radiance estimation. The model would predict the
returned fluxes from the scene as a function of time with respect to the shooting of
the source laser.

2.1.2 Input files of DIRSIG

DIRSIG release 4.2.0 features Extensible Markup Language (XML) input formats[33].
Most programming languages support reading and writing of XML file, which al-
lows new features and capabilities to be easily added to DIRSIG. The input files are
separated into five XML input files, which are collected into a simulation manifest
(.sim) file, as shown in Figure 2.3. The five XML input files are .scene file, .atm
file, .platform file, .ppd file and .tasks file. The input files supply the information
to the sub-models of DIRSIG to run the simulation. Each XML input file contains
one type of information of the whole simulation. Then each sub-model reads the
information among the five XML input files according to what it needs.

.atm file .ppd file .platform file .tasks file.scene file

.sim file

Figure 2.3: DIRSIG XML input files

The scene sub-model needs the 3D geometry of the scene, the property of each
facet in the scene, and geolocation of the scene, which can be obtained from .scene
file. The thermal sub-model needs the facet property, environment weather, atmo-
spheric conditions, the time of the day, the geolocation of the object, and so on
which can be obtained from .scene file, .atm file and .tasks file. The radiometry
sub-model needs the facet property, atmospheric conditions, the time of the day, the
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sensor position, environment weather which can be obtained from .scene file, .atm
file, .ppd file and .tasks file. The ray tracer sub-model connects the other sub-models
of DIRSIG and it therefore need to read inputs from all five XML files.

2.1.2.1 The .scene file

The XML .scene file is used to carry the information of the scene, as shown in Figure
2.4 including the geodetic location of the scene, the geometry structures (.gdb file)
and material property of the objects in the scene (.mat file), the distribution of the
objects in the scene (.odb file), the property maps of the scene (map list) and the
landmark data. Besides, currently the parameters which drive the plume model are
also contained in the .scene file.

.gdb file

.odb file

.mat filegeodeticlocation

landmarks

Map list

Plume parameters
.scene

file

Figure 2.4: The .scene file

DIRSIG uses a .gdb (Geometric Database) file to describe the geometry struc-
ture of the object and the corresponding properties of each facet in the object. The
detailed format is described in the Table 2.1 DIRSIG User’s Manual. DIRSIG .gdb
file can only be read by DIRSIG and DIRSIG related tools such as bulldozer and
Blender. The .gdb file is a core part of the simulation model which contains rich
information about the objects in the scene. The .gdb file forms a hierarchical struc-
ture of objects, parts and facets, which is created to aid the first principles based
image simulation. The .gdb file could be obtained by importing a wavefrom OBJ
file through tool bulldozer in “Object Mode”. Through bulldozer, the attributes of
the objects can be assigned manually, which is then saved as a .gdb file. Recently,
the python interface code is developed in Blender to read and work with .gdb file.
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However, on the other hand, the .gdb file can be viewed as txt file, which can be
written through scripts in the designed format as shown in Table 2.1. For the pur-
pose of generating the scene automatically, the .gdb file is considered as a txt file,
the parameters of which can be driven by external physical model through scripts.

The objects are distributed in the scene through the .odb (Object Database) file,
which is listed in the .scene file. An example below shows the basic format. The
.odb file contains a series of OBJECT entries, each entry include the .gdb file with
the detailed location and file name. Each OBJECT element also contains a UNITS
element which describe the physical units of the geometry file. The INSTANCES
element in each OBJECT element indicates the information of the location, the scale
factors and the rotation factors of the object described in the .gdb file relative to
the scene center. Like the .gdb file, the .odb file can also be obtained through the
tool bulldozer or Blender by importing the .gdb file in “SCENE MODE” and save
the refined .gdb file in .odb format. It can also be considered as a txt file and edited
through external scripts.

OBJECT {
GDB_FILENAME = .\gdb_odb\ground.gdb
UNITS = METERS
INSTANCES {

INFO = 200 0 0 2.5 2.5 1 0 0 0
}

}
Besides, the file of the material property (.mat file) is also listed in the .scene

file. As mentioned before, in the .gdb file, each facet is assigned with a material
property which is achieved by using a material ID. This material ID is then used
to find the corresponding entry in the .mat file. Each material in the .mat file has
an entry ID. Along with the entry material ID, the detailed optical and thermal
properties of the material are described, such as specific heat, mass density, thermal
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Table 2.1: Example GDB file
OBJECT KEYWORD: OBJECT

TRUCK_OBJ Name of object
1-0-0 Object ID
PART KEYWORD: PART

TRUCK_BACK1_ATTS Name of part
1-1-0 Part ID
FACE KEYWORD: FACE

TRUCK_BACK1_1 Name of facet
1-1-1 Facet ID

painted_steel_side Name assigned to this facet
27 ID assigned to this facet

truck_back1 Facet name [no longer used]
-1.0 Facet temperature [C] (-1.0 means computed by THERM)
0.01 Facet thickness [cm]
0.0 Facet self-generated power [no longer used]
0.0 Facet exposed area [no longer used]
null [unused field]
null [unused field]
null [unused field]
4 Number of vertices (can be 3 or 4)

0.000000 152.400000 30.480000 Vertex #1 Coordinates
0.000000 0.000000 30.480000 Vertex #2 Coordinates
53.340000 0.000000 30.48000 Vertex #3 Coordinates
53.340000 152.400000 30.48000 Vertex #4 Coordinates
0.000000 0.000000 -1.000000 Normal vector

180.000000 Zenith (slope) angle [degrees]
0.000000 Azimuth angle [degrees]
0.000000 [unused]
FACE Another facet

TRUCK_BACK_12
1-1-12
PART Another part

TIRE_1
1-2-1

OBJECT Another object
ROAD_1

2-1-1
END KEYWORD: END (Last line in file)
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conductivity, solar absorption, thermal emissivity, exposed area, thickness, spectral
emissivity file (.ems), specularity and so on.

DIRSIG also offers the property mapping functionality. If the user has a property
map available to characterize the whole scene, the map could be included in the
.scene file. The map could be used to describe the texture, temperature, material,
radiance, reflectance or varying surface normals. In each map element, there are
variables such as the file name of the map, the insert point of the map in the scene,
the material ID with which the map will be associated, the GSD and so on. The
association between the map and the geometry is achieved through matching the
material ID stated in the map element and the material ID assigned in the .gdb file.

2.1.2.2 The .atm file

As the name tells, the .atm file includes all the information about the atmosphere.
In order to supply at least 48-hours of weather data to make the simulation more

reliable, a weather history file (.wth) is contained in the .atm file. In the .wth file,
the weather information such as air temperature, pressure, relative humidity, dew
point, wind speed, direct insolation, diffuse insolation, sky exposure, cloud type,
precipitation type, precipitation rate and precipitation temperature is listed in each
row at each previous (back to 48 hours) relative time to the simulation time stamp.
The .wth file could be obtained through the tool make_weather by inputing the file
name, location (latitude, longitude), time (month, day, year), time offset from GMT,
peak insolation, average transmission, diffuse insolation, air temperature at sunrise,
peak air temperature, local time of peak air temperature, air pressure, dew point
temperature, wind speed, sky exposure factor, cloud type, precipitation information
(type, rate, temperature).

There are four standard atmosphere model settings available in DIRSIG, through
which is also assigned in the .atm file. They are simple, uniform, classic, and thresh-
old atmosphere model respectively. For the simple atmosphere model, only the
apparent sky temperature is required to be known to make a very simple scene sim-
ulation without considering the complex atmosphere conditions. For the uniform
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atmosphere model, the spectrally constant hemispherical irradiance and sky fraction
is required to be known. For the classic atmosphere model, modtran is called to pre-
dict atmospheric properties by inputing the tape5 file. DIRSIG then extracts the
result from the output tape7.scn file which is then saved as an .adb (Atmospheric
Database) file through tool make_adb. The .adb file, which is included in the .atm
file, is a look up table containing three sections: source paths section, sensor paths
section, down-welled path section to describe the irradiance of the sources and the
transmission, scattered radiance and emitted radiance within the atmosphere. For
the threshold atmosphere model, as the classic atmosphere model, modtran is also
called to predict the atmospheric properties with high fidelity. However, the .adb file
is not precalculated and listed in the .atm file. Instead, the threshold atmosphere
model uses a series sampling parameters to set modtran to render the atmosphere
properties at certain spatial and temporal points.

Therefore, for different purposes of simulation, a different atmosphere model is
used with different input files into the model. The figure 2.5 shows the configuration
of the .atm file.

Simple atmosphere model

Classic atmosphere model.wth file .atm file

Uniform atmosphere model

Threshold atmosphere model

Apparent sky temp Hemispherical

irradiance

Sky

fraction

.adb file.tp5 file

.tp5 file Sampling

parameters

Figure 2.5: The .atm file

2.1.2.3 The .platform file

In the .platform file, more than one instrument can be mounted. The instrument can
be a generic passive sensor, a mono-static LIDAR, a bi-static LIDAR source, a bi-
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static LIDAR receiver or a data recorder. For a passive sensor, the user is required to
tell the .platform file the focal length and the focal plane settings which include the
clock, the geometry of the sensor, the response function and the truth map requested.
For a LIDAR instrument, the information about the clock, the transmitter, the
receiver and the output format should be included. Relevant information should
be known if any other type of instruments is used. The instrument mount can
be configured in the .platform file to have different types of scanning. There are
six scanning methods available in DIRSIG. They are Static/Fixed scan, line scan,
whiskbroom scan, lemniscate scan, tabulated scan and scripted scan. For each
scanning method, the .platform file asks for quantitative descriptions about the
mount, such as the rotation angle and the jitter effects.

2.1.2.4 The .ppd file

The platform positioning data(.ppd) file contains the information of the position and
orientation of the platform as a function of time. In each “entry” element of the .ppd
file, the scene location and the rotation angles of XYZ axis in radians are needed at
each relative time stamp (with respect to the main simulation time). Besides, the
jitter of the location and orientation variables can be set in the .ppd file to associate
the real world uncertainty as a function of time. By including the time dependent
platform positioning data, DIRSIG could take snaps from different perspectives at
different time according to the requirement.

2.1.2.5 The .tasks file

The .tasks file offers the information of the absolute simulation time to DIRSIG.
If multiple tasks are requested at discrete time periods, there is a task element
for each period with an assigned start time and an assigned stop time. During each
task period, DIRSIG takes snaps in the same frequency as the clock set in the sensor
instrument through the .platform file.
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2.2 Timing in DIRSIG

As the statement about DIRSIG above shows, DIRSIG is an image simulation tool
reaching out in the spectral, spatial and temporal spaces. The model is inherently
consistent in the spectral and spatial spaces between different functionalities be-
cause of the first principle based calculation. For the temporal aspect of modeling,
DIRSIG already has built a general structure of time line which goes through differ-
ent facilities and make connections between them as shown in Figure 2.6. At each
time of the simulation, there are many “timing seeds” carrying the information of
time and spreading it through out the simulation. Each time dependent input file
of DIRSIG should get the “timing seed” to locate its coordinates in the temporal
space.

The five XML input files of DIRSIG could be all time dependent which is be-
cause of the time dependent sub models inherited in DIRSIG. DIRSIG incorporates
a time dependent thermal model named THERM[31] to calculate the facet temper-
ature. The THERM model is invoked when the facet temperature is set as -1. Then
the THERM model computes the facet temperature based on the material thermo-
dynamic properties and environmental weather conditions from the .wth file. The
calculated temperature is feed back to the facet of the scene. At different time of the
day, the surface temperature of the facet calculated from the THERM varies, which
results in a different simulated scene image. Therefore, the .scene file is informed of
the time through the “timing seeds” in terms of the temperature only affected by the
factors characterized in THERM model. Besides, DIRSIG uses Modtran to charac-
terize the time dependent profile of the atmosphere with the .tp5 file. Therefore, the
time seeded .atm file could also be obtained. Due to the time dependent sub models
inherited in DIRSIG, the sensor reaching radiance is changing over time. And at
different times, the requirement of sensor settings may vary and the perspective of
the sensor may also change. In addition, as mentioned above, the uncertainty of
the platform position data could change as a function of time. Therefore, the time
seeded .ppd file and .platform file are also required. Since the .tasks file is directly
connected with the simulation time, it gets the timing seeds as well. With the five

21



CHAPTER 2. DIRSIG SIMULATION

time seeded XML files, DIRSIG runs the simulation and renders an image with the
“timing seeds”.

.atm file .ppd file .platform file .tasks file.scene file

Timing seeds

.wth file

.tp5 fileObject

Distribution

Facet Property

Simulated images

THERM

model

Figure 2.6: Primary timing in DIRSIG

However, as noticed from Figure 2.6, there are two blocks of information that
drive the THERM model and the .scene file which have not got the “timing seeds”.
The two blocks of information describes the facet property and the geometric distri-
bution of the object in the scene, and they are actually time dependent and need the
time stamp to obtain the corresponding information. There are two possible results
if the user performs the simulation through current design of DIRSIG. One is that
DIRSIG will render an unmatched simulated image of the scene if the property of
the two blocks is changed. The other is that the user needs to manually offer the
correct property of the facet and the geometric distribution of the object at each
desired simulation time.

To avoid the two negative results as mentioned above to occur, the process
model is proposed to drive the facet property and the object distribution in the
scene changing over time by bringing the “timing seeds” to them as shown in Figure
2.7.
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.atm file .ppd file .platform file .tasks file .scene file 

Timing seeds

.wth file 

.tp5 file Object 
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Modtran

Process
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Figure 2.7: Developed timing in DIRSIG

2.3 Process models

The process model is used to describe what desired processes should be performed
over time. At each moment, the process model produces a corresponding state of the
object. All the states through the time are combined as a process. Any change of
an object could be described through a process model which may be deterministic,
stochastic or rule based[46] according to the characteristics of the process. The
process model can include a set of sub process models, each of which predicts how
the corresponding scene element changes over time. There are rich varieties of scene
objects with various possible changes over time, which requires corresponding sub
process models to characterize all the process.

The surface temperature of the water body of a lake may change due to the
weather and human activities. ALGE[41] is a 3D hydrodynamic model which solves
momentum, mass and energy conservation equations to predict the surface temper-
ature of a water body. By assigning a time stamp and related conditions to ALGE,
it could generate corresponding surface temperature map of the lake.

The traffic in the city can vary as a function of time as well. The open source tool
SUMO (Simulation of Urban MObility[60]) is a traffic process model developed by
German Aerospace Centre and Centre for Applied Informatics Cologne. A vehicle is
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tracked individually in SUMO with its identifier, departure time, and route through
the road network. The velocity and position of the vehicle is calculated using a
so-called car-following model according to the state of the vehicle in front of it to
avoid a collision. The type of the vehicle can also be set to have a corresponding
driving characteristics on the road. Any number of vehicles can be defined in SUMO
to make the simulation of large scale scenarios possible. It can be incorporated into
DIRSIG through the temporal linkage of the “timing seeds”.

MuSES[32] developed by ThermoAnalytics is commonly considered as a stan-
dalone thermal signature prediction tool for vehicles, which could used to describe
the temporal changing of the temperature of a vehicle. MuSES also offers a plume
radiance module, sea surface module, battery module and so on to provide the
temporal thermal signatures[4].

The distribution of cars in a parking lot can vary during the day and over the
week. Also a special event will result in a different situation in the parking lot. A
parking lot model PARKVIEW developed during this project[99] can be used to
describe the temporal signature of the car distribution in the parking lot.

Gartley, et al [43] developed a microDIRSIG model to predict contaminated
surface properties. And the time-varying appearance of the natural phenomena[98,
44, 107] modeled by the computer graphics community can be transplanted into
DIRSIG to aid the scene simulation for the remote sensing community.

Besides, the vegetation on the ground can be influenced by the weather or human
activities, which will result in a different texture and material map of the ground.
A fire will change the appearance of the forest and the extent of damage will be
different at different observation time. The distribution of the crowd is different
from the start of an event to the end of an event. All the changes can be represented
through process models.
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Temporal Signature Modeling in
DIRSIG

Temporal signature modeling in DIRSIG will be achieved by incorporating process
models into DIRSIG. Then the process model will drive the property of the scene
element changing as a function of time. As explained in Chapter 2, the DIRSIG
input are represented in five XML files. The motivation of this research is to use a
process model to automatically drive the input files changing as a function of time,
so that each scene element could know its own properties at an assigned time and the
rendered DIRSIG spatial-spectral images could also contain temporal signatures.

3.1 Work flow

Before building the work flow of incorporating the process model into DIRSIG,
the sub process models used to describe the activities of each scene element are
assumed to be ready for usage. These sub process models could be user defined
or external ready-made functionality, which could suitably be fitted in to describe
the properties of the scene element changing with time. Figure 3.1 is the work
flow chart showing how the process model would work with DIRSIG to generate
spatial-spectral-temporal images.
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Figure 3.1: Work flow chart of the process model

First, start from user, where the user sets the initial working time period for the
global process model and each sub process model by considering what is interesting
and significant. For example, at night there may be very few cars in the parking
lot; therefore the parking lot process model may not be asked to work during night
to reduce the computational load. At the same time, users would also decide when
they want DIRSIG to take a snap shot of the scene to observe the activities going
on.

Second, the sub process models of the overall process model work together to
generate a set of standardized output data. During this step, the output data are
required to be written in a standard format, so that the meaning of each set of data
could be understood by the computer. This data standardization could be achieved
by writing the output data in a model defined format or plotting a diagram to
indicate linked pairs of the variables between process models and DIRSIG.

Third, the standardized output data are stored in a database. The user then can
review all the output data sets from external process models and have a general idea
what is happening during the defined time period. The stored data could be used
to diagnose or validate the algorithm for the developer, which acts like the DIRSIG
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ground truth.
Fourth, by looking at the DIRSIG working time table, a check is made to deter-

mine whether a DIRSIG image is needed at that moment. If yes, the standardized
output data are mapped to the corresponding variables of the DIRSIG input files,
which is a key step to achieve the incorporation of the process model and DIRSIG.
The method of data mapping will be explained in detail below. After mapping the
data into DIRSIG input files, at the same time DIRSIG input files could be updated;
then DIRSIG can be called to generate a physics-based simulation of the scene. If
DIRSIG images are not needed at that time, go to the fifth step.

Fifth, check whether all the tasks required by the user have been finished. This
is determined by whether the process model has finished generating output data for
the whole predefined working time period. If yes, the whole model is complete. If
not, the process model keeps working for the next time step until the whole time
period is filled out.

As described in section 2.3, there are various kinds of process models. How would
all these process models be incorporated into DIRSIG in a general format? To solve
this question, the inputs of DIRSIG used to describe the property of an object in
the scene are reviewed briefly again here. In DIRSIG, the object uses the .gdb file
containing sub facets to describe its geometry shape and physical properties in a
desired resolution. The object is distributed through the .odb file into the scene.
Therefore, all attributes of the object including facet properties of the object and
the geolocation of the object could be described by the .gdb and the .odb file. Due
to this specific input design of DIRSIG, the sub process models could be categorized
into two types. One is that the process model drives the property of each facet of
the object changing over time, and the other one is that the process model drives
the geometry location of the object in the scene changing as a function of time.
The first type of process model would involve many-to-one data mapping to get
incorporated into DIRSIG. An example process model of this type will be shown
in section 3.2. The example process model is a two-tanks thermal model, which
will drive the surface temperature of the two tanks changing as a function of time
during the DIRSIG simulation. While the second type of process models could be
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incorporated into DIRSIG through one-to-one data mapping. An example process
model of this type will be shown in section 3.3. The example process model is a
parking lot model named PARKVIEW, which drives the distribution of cars in the
parking lot changing over time during the DIRSIG simulation.

3.2 Process models driving per facet property chang-

ing

In this section, we will show how the process model which drives the facet property
changing is incorporated into DIRSIG.

DIRSIG uses OBJ file format to describe the solid geometric surfaces. Wavefront
OBJ file is a geometry definition file format which carries the 3D geometry infor-
mation of an object, such as the position of each vertex, facet index combinations,
normal vectors of each facet, texture vertices and so on. The size of each facet of the
OBJ file is mainly determined by the smoothness of the surface and the resolution
of the geometry. A DIRSIG gdb file is written facet by facet associating the geome-
try with facet properties which includes temperature and material properties. Each
facet has a unique property value for the temperature and the material. Suppose
a process model should generate a high resolution characterization map to describe
the change occurring at each time. Then the high resolution characterization map
needs to be mapped onto the low resolution DIRSIG geometry. This means that
each facet could possibly have more than one corresponding property values. How-
ever, one variable in DIRSIG input files could only be assigned with one value. In
order to include the entire information from the characterization map, the facet is
split or up sampled into sufficient number of facets, as shown in Figure 3.2.
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Figure 3.2: Many-to-one Mapping

The UV mapping technique is adopted to relate the high resolution characteri-
zation map to the low resolution geometry and render the DIRSIG gdb file which
carries all the information from the characterization map. The high resolution char-
acterization map is driven by the external process model. In this section, an example
two-tanks thermal process model will be created to generate the high resolution tem-
perature maps of the two tanks at different time.

3.2.1 UV mapping

Given characterization maps, the OBJ file will be then transformed into a .gdb file
to carry thermal and material properties aside from geometry information for each
facet as follows. First, the geometry information, including coordinates of vertices
and facet index combinations, are read from OBJ files and stored in matrices. The
next step is to up sample the geometry. A straight-forward way to up sample the
geometry is to add the same number of vertices on each edge of all the facets evenly.
However using this method to increase the geometry resolution would introduce
many redundant vertices with unnecessary information carried with the gdb file.
Take a tank with hot water for example. We would like to consider more about
how much hot water is in the tank and what is the temperature by observing the
temperature profile of the outside of the tank. Ideally the temperature is uniform
horizontally and only differs vertically, so a temperature map with n×1 dimensions
could be enough to include the temperature and height information rather than
the one with n × n dimensions, where n is determined by the defined resolution.
Therefore, adopting the above method of up sampling geometry evenly in different
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direction is not economical.
Here a method of up sampling the geometry in two different resolutions for two

directions is proposed. Before explaining details of this method, the method of
how the characterization map is covered upon the geometry structure should be
mentioned first.

• Dropmap: if a top-view characterization map is accessible, it would be covered
upon the object in a dropping motion. For those facets which are vertical to
the horizon, the characterization is set as default or defined as “continuous”
with the same value as the nearest facet which is not vertical.

• Wrapmap: if a round-view characterization map is accessible, it would be
wrapped around the object in “wrapping” motion. For those facets which are
horizontal, the characterization is set as default or defined as “continuous” with
the same value as the nearest facet which is not horizontal.

Figure 3.3: An example image to be mapped onto geometry (“cameraman.tif” with
size 256×256)

The coordinates of the vertices of the object read from the OBJ file are written in
a matrix as [X,Y,Z], and X = [x1, x2, . . . , xi, . . . , xm]

′
, Y = [y1, y2, . . . , yi, . . . , ym]

′
,
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Z = [z1, z2, . . . , zi, . . . , zm]
′
, where m is the number of vertices. The minimum and

maximum values of xi, yi, zi are represented as xmin, ymin, zmin, xmax, ymax, zmax
respectively. Assume a map with sampled size pn × pm would be mapped to a
geometry object in two different mapping methods, dropmapping and wrapmapping
respectively. Here, we use “cameraman.tif” as shown in Figure 3.3, which could then
be sampled into different sizes to demonstrate the result of data mapping.

For the dropmapping method, to up sample a facet with vertex v1(x1, y1, z1),
v2(x2, y2, z2), v3(x3, y3, z3) as shown in figure 3.4, the up sampled geometry resolu-
tion in x and y axis is calculated as

4x =
xmax − xmin

pm
(3.1)

4y =
ymax − ymin

pn
. (3.2)

Figure 3.4: Initial facet with 3 vertices

With the calculated geometry resolution in x, y direction, the up sampled points
on the facet in xy plane are found as shown in Figure 3.5.
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Figure 3.5: Up sampled points on a facet in xy plane for drop-mapping method

A plane with three known facet vertices can be represented by

nx(x− x1) + ny(y − y1) + nz(z − z1) = 0, (3.3)

where (nx, ny, nz) is a normal vector of the facet, and can be calculated by cross
product of vector (v2− v1) and vector (v3− v1).

Therefore, the z value of all other points on the facet can be found by

z =
−(nx(x− x1) + ny(y − y1))

nz
+ z1. (3.4)

So far, we have finished up sampling the geometry structure of a facet when
dropmapping method is set and all coordinates of the refined vertices are found. The
UV mapping technique is used to achieve the linkage between the refined vertices of
the object and the pixel value of the map.

In order to adopt UV mapping technique, first, the left down corner of the map
is registered to the object with coordinates in xy plane as [xmin,ymin]; the right
up corner of this map is registered to the object with coordinates in xy plane as
[xmax,ymax]. Then, x,y coordinates of all vertices are scaled into [0,1], resulting in
uv values calculated as

ui =
xi − xmin
xmax − xmin

(3.5)
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vi =
yi − ymin
ymax − ymin

. (3.6)

With the uv values, all the pixel values of the map could be linked to the cor-
responding facet of the object, as shown in Figure 3.6. Figure 3.7 shows a higher
resolution map mapped to both facets of the same plane.

Figure 3.6: Up sampled facets with UV mapped information to half the plane

Figure 3.7: Up sampled facets with UV mapped information in higher resolution to
the full plane

For wrapmapping method, we use a cylinder OBJ file as an input as an example
to show steps of this method. The geometry structure is shown in Figure 3.8.
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Figure 3.8: Cylinder.obj

To up sample a facet with vertex v1(x1, y1, z1), v2(x2, y2, z2), v3(x3, y3, z3) with
wrapmapping method, we first transfer the coordinate system to a new Cartesian
system so that its corresponding cylindrical coordinate θ could range from 0 at
point [xmin,ymin,zmin] to 2π at point [xmin,ymin,zmax] and keep z the same as in the
old coordinate system. In the new cylindrical coordinates, we have v1(θ1, ρ1, z1),
v2(θ2, ρ2, z2), v3(θ3, ρ3, z3) for the above facet. Then the facet is up sampled with
steps 4θ and 4z defined as

4θ =
2 · π
pm

(3.7)

4z =
zmax − zmin

pn
(3.8)

in θ and z space.
After up sampling the facet in θ and z space, a list of θi and zi on the facet

can be obtained, which is a key to connect the geometry and the map. First of
all, the left down corner of this map is registered to the position with coordinates
[xmin,ymin,zmin]; the right up corner of this map is registered to the position with
coordinates [xmin,ymin,zmax]. Then using θi and zi, uv values are calculated as

ui =
θi
2π

(3.9)
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vi =
zi − zmin
zmax − zmin

(3.10)

and used to link the pixel value of the map with the up sampled facets of the
object. When the relationship between the pixel values of the map and the facet of
geometry is found, the cylindrical coordinate system is back transformed into the
original Cartesian system.

In the original Cartesian system, Figure 3.9 shows the up sampled points on the
initial facet, and Figure 3.10 shows the up sampled facets with UV mapped pixel
values from a map, while Figure 3.11 shows the whole cylinder OBJ mapped with a
16× 256 “cameraman.tif” image.

Figure 3.9: Up sampled points on a facet for wrapmapping method

Figure 3.10: Up sampled facets with UV mapped information
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Figure 3.11: Wrapmapped cylinder.obj with 16×128 “cameraman.tiff”

3.2.2 Two-tanks thermal model

This thesis uses a two-tanks model as a notional example to show how DIRSIG
incorporates the external physical model to predict the distribution of thermal or
other characterizations of the object facets described in DIRSIG gdb file. This two-
tanks model as shown in Figure 3.12 includes three valves (represented as v1,v2,v3
respectively) and two tanks (tank A, tank B). When v1 is open, tank A and tank B
are connected and hot water could be released through the pipe into tank B. When
v2 is open, the hot water could come into tank A; while when v3 is open, the cooled
water in tank B would be released into outside.

Figure 3.12: Two tanks model

A physical process model could be defined and developed to describe how the
temperature and height of water in the two tanks changes over time with the valve
open/close information as follows, based on the law of conservation of energy.
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The heat in tank A at time t is

QtankA,t = VtankA,t · ρw · C · TtankA,t, (3.11)

where VtankA,t is water volume in tank A at time t; C is specific heat capacity; ρwis
water density; TtanksA,t is the temperature of water in tank A at time t.

The heat in tank B is

QtankB,t = VtankB,t · ρw · C · TtankB,t, (3.12)

where VtankB,t is the water volume in tank B at time t; TtanksB,t is the temperature
of water in tank B at time t.

When the valve is open at moment t, according to the law of conservation of
energy, heat in tank A at time t is equal to

QtankA,t = QtankA,t−1 −QtankA,t−1 × Plost −QtoB +Qin, (3.13)

where Plost is the percentage of energy lost to the environment; QtoB is the heat
transferred to tank B; Qinis the heat coming from outside through pipe 2.

The volume in tank A will also change as

VtankA,t = VtankA,t−1 − VtoB + Vin, (3.14)

where VtoBis the water volume transferred from tank A to tank B; Vin is the water
volume coming from outside through pipe 2.

While the heat in tank B at time t is equal to

QtankB,t = QtankB,t−1 −QtankB,t−1 × Plost −Qout +QtoB, (3.15)

And the volume in tank B will also change as

VtankB,t = VtankB,t−1 + VtoB − Vout, (3.16)

where Vout is the water volume released to outside through pipe 3.
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The heat transferred from tank A to tank B at time t is

QtoB = VtoB · ρw · C · TtankA,t, (3.17)

where VtoB is the volume transferred from tank A to tank B and it can be calculated
as

VtoB = Apipe1 × vpipe1,t, (3.18)

where Apipe1 is the intersection area of pipe 1; vpipe1,t is the water velocity at time t
in pipe 1.

Heat coming from pipe 2 at time t is

Qin = Vin · ρw · C · Tin, (3.19)

where Vin can be calculated as

Vin = Apipe2 × vpipe2,t. (3.20)

where Apipe2 is the intersection area of pipe 2; vpipe2,t is the water velocity at time
t in pipe 2; and Tin is the temperature of water coming from outside to tank A
through pipe2, which is assumed as constant.

Heat released from tank B to outside through pipe 3 is

Qout = Vout · ρw · C · TtankA,t, (3.21)

where Vout is the water volume released from tank B to outside which can be calcu-
lated as

Vout = Apipe3 × vpipe3,t. (3.22)

The water velocity in pipe1 is calculated as

vpipe1,t =
√

2 · g · (htankA − htankB)× V 1t. (3.23)
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where g is gravitational acceleration;htankA is the height of water in tank A; htankB is
the height of water in tank B; V 1t is the valve 1 open/close information. If V 1t=1,
then the valve1 is open; otherwise it is closed.

The water velocity in pipe 2 is calculated as

vpipe2,t = velocity2× V 2t, (3.24)

where velocity2 is a constant value; V 2t is the valve 2 open/close information. If
V 2t=1, then valve2 is open; otherwise it is closed.

The water velocity in pipe 3 is calculated as

vpipe3,t =
√

2 · g · htankB × V 3t, (3.25)

where v3 is the valve 3 open/close information. If V 3t=1, then valve3 is open;
otherwise it is closed.

By setting the initial status of the water inside the two tanks and some size
parameters of the tanks and pipes, assume the open/close time series of v1, v2,
v3 looks like as shown in Figure 3.13, the two-tanks process model will generate
temperature and height information over time as shown in Figure 3.14.

Figure 3.13: Valve open/close time line
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(a) Temperature (b) Height

Figure 3.14: Temperature and height of the water changing over time

3.2.3 Two-tanks thermal model incorporated DIRSIG simu-

lation

With the two-tanks thermal model, the temperature and height information of the
two tanks at each time could be obtained and then be standardized into two images
with each size as n × 1, where n is determined by the resolution specified by the
user. The standardized temperature images are mapped to the geometry of the two
tanks respectively. Figure 3.15 is an example of the mapped result at a certain time.
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Figure 3.15: Two tanks mapped with temperature maps (Brightness is indicative of
tank wall temperature.)

Figure 3.16 shows a DIRSIG simulation in RGB bands of part of Midland scene
in Michigan in the morning, where the two tanks are found sitting in the middle
of the scene. After the incorporation of the two tanks physical process model with
DIRSIG, the simulation could be upgraded to also include temporal signatures of
the two tanks state changing over time. Figure 3.17a shows a DIRSIG thermal
simulation of part of Midland scene at midnight of a certain day. One tank is filled
fully with hot water and the other one is filled with a small amount of cold water.
Then the valve between the two tanks is opened, resulting in the hot water of one
tank released immediately into the other tank and mixed with cold water in the
other tank. After half an hour, another DIRSIG thermal simulation of the same
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scene renders an image as shown in Figure 3.17b, which is the same as we expected
to see.

Figure 3.16: RGB DIRSIG simulation of part of Midland scene

(a) Thermal simulation at midnight (b) Thermal simulation at half hour later

Figure 3.17: DIRSIG simulation of part of Midland scene with two tanks process
model included

Therefore, with the aid of incorporation of the two tanks process model and
DIRSIG, the state of the water in the two tanks at each time of interest could be
included in the finial simulated DIRSIG images.
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3.3 Process models driving per object geolocation

changing

In this section, we will show how the process model which drives the object geolo-
cation changing is incorporated into DIRSIG.

A good example of the object geolocation changing over time can be the cars in
the parking lot. The parking lot process model is interesting to many applications.
For example, transportation planners need to develop good parking policies to over-
come the problem of traffic congestion and insufficient parking spots; and security
managers need to decide how many personnel would be sent out in case of emergency.
Several parking models have been developed to analyze individual travel and park-
ing behavior [113, 20, 103] . A well-known hierarchical parking model is suggested
by Young and Taylor[113] to cover the whole process from parking design to policy
analysis. The PAMELA [103] contains tools to predict adaptive parking choice be-
havior, car movements at the parking lot, and apply a Tobit regression analysis [70]
to define the parking duration. PARKAGENT[20] simulates the behavior of each
driver and assumes that the parking durations are uniformly distributed between
the minimum and maximum parking time for each type of driver. All these models
are simulated from the perspective of the driver, by building a parking choice model
of each driver.

Another parking model named PARKVIEW is reported in paper [99], which is
based on the statistical description of the parking lot itself to generate probability
of occupancy and parking duration of each parking spot. PARKVIEW analyzes
the parking lot from the perspective of a viewer, and returns a status map of the
parking lot at different times of the day. An experiment is set up to show how
the statistical description of the parking lot can be obtained easily and accurately
from images taken of the parking lot by using the proposed method in this paper.
Traditional parking models take data from field survey. 1500 questionnaires were
sent to the inhabitants to understand the driver’s behavior in terms of parking
time, location and parking preferences for PAMELA model[103], which is costly and
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difficult to repeat and then update the data. Besides, the accuracy of the data is
subject to many factors related to the respondents. The outcome of PARKVIEW is
a prediction of status of each parking spot at different times of the day, which could
be then used for other statistical analysis. For example, by checking how many cars
would come to the parking lot and how many would leave from the output of this
model at a specific time, transportation managers would have an idea how many
cars would be on the road nearby the parking lot so that they know what to do to
respond different situations.

This built parking lot process model PARKVIEW is then incorporated into
DIRSIG by editing DIRSIG input files based on the output of PARKVIEW.

3.3.1 The PARKVIEW model

In this section of the thesis, the PARKVIEW model will be described to view how
the parking lot is occupied at different times based on the statistical description of
a parking lot. The statistical description of a parking lot includes the distribution
of parking duration, parking lot occupancy over time, and the preference of parking
spots. The initial status of the parking lot is determined by the occupancy of the
parking lot at the initial time and the preference score of the parking spot. The
initial probability of a parking spot to be occupied is written as

P0,i = occ0 × wpi (3.26)

where occ0 is the initial occupancy of the parking lot and wpi is the term to weight
the probability of the parking spot i to be occupied by considering its preference
score. The weighting term wpi can be calculated as

wpi =
prefi

1
N

∑N
i=1 prefi

(3.27)

where N is the total number of the parking spots; prefi is the preference score of
parking spot i .

Due to the inclusion of the weighting term, the probability of the parking spot
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is unbalanced from each other, some of which may be stretched to be larger than 1.
However, any probability larger than one is equivalent to one. Therefore, the part of
the probability larger than one will be tailed off, which results that the mean of the
total probability of all parking spots to be occupied shifts to be smaller than it is
supposed to be. Thus, further adjustment of the probability of the parking spot to
be occupied should be conducted to make the probability in the range of 0 to 1 and
thus achieve the mean occupancy value occ0 of the parking lot. A schematic diagram
is shown in Figure 3.18 to illustrate the process. First, the maximum probability
of all parking spots is found and forced to be 1. Then the adjustment is achieved
by setting the mean value and the ratio of the difference between mean value and
each probability to the difference between the mean value and the maximum value
as constant, written as

m− P0,i

m−max
=

m− P ′0,i
m−max′

,
m− P0,i+1

m−max
=
m− P ′0,i+1

m−max′
,
m− P0,i+2

m−max
=
m− P ′0,i+2

m−max′
· · ·
(3.28)

where max′ = 1, m = occ0, max = max(P0,i, P0,i+1, P0,i+2, ...).
Then the new initial probability P ′0,i, P

′
0,i+1, P

′
0,i+2, ... of the parking spot to be

occupied are calculated according to equation 3.28.
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Figure 3.18: Probability Adjustment
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To implement the car distribution of the parking lot with the calculated proba-
bility P ′0,i, a random number r with uniform distribution on the open interval (0,1)
is generated by MATLAB. Since r is uniformly distributed on the interval (0,1),
the probability of r to be smaller than x is x, where x is in the range (0,1). This
property is used to determine whether a parking spot i is occupied or not, and the
occupancy status of the parking spot is marked by C0,i as defined by

C0,i =

1 occupied

0 empty
. (3.29)

So far, the initialization of the parking lot is done. For the following time t,
any car parked in the parking lot could have a chance to leave with a probability
determined by the cumulative distribution of parking duration. The leaving status
of the car in the parking spot i is marked by Lt,i as defined by

Lt,i =

1 leaving

0 staying
. (3.30)

With a certain number of cars leaving, the total number of cars in the parking
lot is written as nt as calculated by

nt =
N∑
i=1

C(t−1),i −
N∑
i=1

Lt,i. (3.31)

According to the distribution of the parking lot occupancy at the moment t, the
desired car number in the parking lot is mt calculated as

mt = N × occt. (3.32)

Therefore, at the moment t, the probability of an empty parking spot i to be
occupied is defined as
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Pt,i =

mt−nt

N−nt
× wpi mt > nt

0 mt <= nt
. (3.33)

Again, if the probability max(Pt,i) > 1, then {Pt,i} will be adjusted into
{
P ′t,i
}

in the range of 0 to 1. With the probability set
{
P ′t,i
}
for all parking spots at the

moment t, the parking spot i having an arriving car is marked by CMt,i as

CMt,i =

1 with car arriving

0 no car arriving
. (3.34)

However, a car could only park on an empty parking spot or a spot with a
leaving car. Therefore, the flag CFt,i which truly marks the status of a parking spot
i occupied by a new arriving car at the moment t is defined as

CFt,i = (CMt,i∩ ∼ Ct−1,i) ∪ (CMt,i ∩ Lt,i). (3.35)

With arriving cars, the occupancy status Ct,i of the parking spot is updated with

Ct,i =
∣∣∣Ct−1,i − (−1)Ct−1,i × CFt,i

∣∣∣ . (3.36)

Possible values of Ct,i are 0,1 and 2. 0 represents the parking spot is empty; 1 and
2 represents the parking spot is occupied with a car. 1 could be changed to 2 or 2
could be changed to 1 with a new car arriving to the parking spot.

If a car is leaving while no new cars would refill that parking spot, the occupancy
status Ct,i is further updated as

Ct,i = Ct,i∩ ∼ Lt,i∩ ∼ CFt,i. (3.37)

3.3.2 PARKVIEW incorporated DIRSIG simulation results

Assume that a city is going to hold an event and any city member who wants to
join this event needs to get registered in a certain place from 10:01am to 11:40am
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of a certain day. There are 200 spots in a parking lot and the first 100 spots near
the registration center are highly preferred by the driver. The preference score is
shown in Figure 3.19. The registration takes 15 minutes with 3 minutes deviation to
finish, and the parking duration is assumed to have the same distribution pattern as
the time taken to finish the registration, as shown in Figure 3.20a. The cumulative
distribution of parking duration is shown in Figure 3.20b. The simulated occupancy
of the parking lot is assumed to be a normal distribution across 10:01am to 11:40am
as shown in Figure 3.21.

Figure 3.19: Preference of the parking spot

(a) Desired histogram of parking duration(b) Cumulative distribution of parking
duration

Figure 3.20: Parking duration

Assume 100 snapshots are taken of the parking lot with even time interval from
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Figure 3.21: Distribution of parking lot occupancy

10:01am to 11:40am. By adopting the parking lot process model PARKVIEW built
as above, the parking spot status on each frame is described by Ct,i. The parking
duration of each car staying in the parking lot is extracted and the normalized
histogram distribution is shown in Figure 3.22. The simulated occupancy of the
parking lot over time is shown in Figure 3.23. The occupancy of each parking
spot across the time interval is shown in Figure 3.24, which indicates the parking
spots with higher preference score have corresponding higher occupancy over time.
Overall, by looking at the figures, the simulated result of PARKVIEW has a good
match to the desired one in statistical manner. To better convince the reader, several
simulated snapshots of the parking spot are shown in Figure 3.25.

Figure 3.22: Histogram of simulated parking duration
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Figure 3.23: Simulated occupancy distribution of the parking lot

Figure 3.24: Simulated occupancy of parking spots
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(a) Frame at 10:09:00 (b) Frame at 11:03:00

(c) Frame at 11:11:00 (d) Frame at 11:35:00

Figure 3.25: Simulated status of the parking lot

The output Ct,i of PARKVIEW can also be used to extract other transportation
information, such as how many cars are arriving or leaving the parking lot at certain
times as shown in Figure 3.26. The skewness of the number distribution of cars
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arriving and leaving are calculated as 1.0279 and 0.8343 respectively, which indicates
that there are more cars arriving to the parking lot at an earlier time and more cars
leaving the parking lot at a later time. In addition, the total number of moving cars
at a certain time as shown in Figure 3.26 may also be interesting to transportation
managers.
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(a) Number of arriving cars

(b) Number of leaving cars

(c) Number of total moving cars

Figure 3.26: Number of arriving cars and leaving cars
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3.3.3 Experiment: statistical description extraction of park-

ing lots

The statistical description of a parking lot in terms of parking lot occupancy, parking
duration and parking spot preference could be obtained from general estimation as
done in section 3.3.2, or from field survey. However, in order to accurately and
efficiently describe the status of the parking lot, a method of extracting a statistical
description of the parking lot from real images is proposed in the paper[99].

An experimental set up was placed on the rooftop of the Chester F. Carlson
Center for Imaging Science at RIT to record the distribution of cars on several
parking lots of RIT campus by taking photos of the parking lot with an interval of
5 minutes from 10:26am to 4:10pm on Wednesday, September 21, 2011. 70 frames
were collected in this experiment. A sample image is shown in Figure 3.27. The
parking lots marked on Figure 3.27 are analyzed.

Figure 3.27: Original image of the parking lot

3.3.3.1 Experiment data processing

Due to the perspective of the camera, the objects appear smaller further from the
building. In order to make the size of the object true to reality in the image, the
original image is transformed to have a nadir view perspective of the parking lot.
This transformation is achieved by using MATLAB image registration toolbox. Four
corner points of a parking lot are selected as control points and four corner points
of a rectangle as base points. The nadir view image of the parking lots is shown in
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Figure 3.28. In Figure 3.28, the parking spots are identified manually by clicking
the image where there is a parking spot, which takes the author 3 to 5 minutes to
finish pointing out the total 250 parking spots. A red square is drawn around the
clicked point by considering the view angle of the camera in horizontal direction at
the corresponding point. There are several approaches to recover the parking lot
structure automatically. Wang and Hanson [108] suggest to extract the structure of
a parking lot by treating the vehicles as 3D microstructures, which requires multiple
images form different angles. However, most of the time the requirement can not
be satisfied which makes this method difficult to be generalized. Seo and Urmson
[94] present a self-supervised learning algorithm that estimates the structure of the
parking lot with double layers, but the low-level layer is based on the assumption
that the parking lot contains a number of well-illuminated empty parking spots,
which is not always true. Therefore, if the parking lot is almost fully occupied as
Figure 3.27, the fact that there are not enough “seeds” extracted from the low-level
layer to be fed into the high-level layer makes this method impractical in our case.
To automatically extract the parking lot structure is still an open and challenging
problem.

Figure 3.28: Perspective transformed image of the parking lot

With the information of the parking spot location, the status detection of the
parking spot becomes easier. Three steps are done to retrieve the status of the
parking spot at each frame, as shown in Figure 3.29.
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Figure 3.29: Diagram of extracting the parking spot status

The first step is initializing the status of the parking spot. Grass, asphalt and tree
are recognized as background, while any non-background pixel inside the parking
spot is contributed to a car identification. The detailed diagram is shown in Figure
3.30. First, background training samples (grass, tree, asphalt) are fed into Gaussian
Maximum Likelihood (GML) Classifier. The corresponding class maps are generated
by the GML classifier. Considering vehicles are much more diverse in color than the
background, morphological image opening is performed on each class map in order
to remove possible pixels of a vehicle from the background class map. After image
opening operation, the class maps are fused into one background map and then the
background map is inverted to render a foreground map with all possible vehicle
pixels highlighted as shown in Figure 3.31. If the ratio of the highlighted pixel
number to the total pixel number inside the red square of the parking spot is larger
than 0.2, the parking spot is declared to be occupied and the status of the parking
spot is marked as 1.
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Parking spot status Initialization
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Figure 3.30: Diagram of parking spot status initialization

Figure 3.31: Vehicle class map

After initialization of the parking spot status, the following frame is compared to
the frame before it. The status change of the parking spot is detected by using the
diagram as shown in Figure 3.32. The diagram starts from two successive frames
from the image set, I1 and I2. Edge and intensity features of the vehicle are used as
two clues of a status change of the parking spot. If the change of either feature is
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larger than a certain threshold, a status change of the corresponding parking spot
is identified and the change flag of that parking spot is marked as 1.

To detect the change of the edge feature in the parking spot, MATLAB edge
detection toolbox is used to generate a edge map of the parking lot. The total edge
length eli inside the red square of the parking spot is calculated. The difference edi
of the edge feature is characterized by

edi =

∣∣∣∣ eli − el′i
min(eli, el′i)

∣∣∣∣ (3.38)

where el′i is the total edge length inside the red square of parking spot i of the former
frame. The threshold of the edge feature difference edi to declare a change, is set as
1.

Due to the weather changing over time, the illumination over the entire image or
part of the image may change suddenly with clouds covering overheads. The local
difference should be considered to recognize a change in the intensity field. Two
successive frames are subtracted from each other and the rendered difference map
is converted into a binary map in order to identify large differences. A window with
6×3 (units: parking spot width) is adopted to analyze the local difference from the
binary difference map. If the ratio of the number of pixels marked as 1 of the binary
difference map to the total number of pixels inside the window is larger than 0.3,
the mean and standard deviation difference are used to determine whether there is
a change in the parking spot. The mean difference is calculated with the local mean
background difference deducted as

4m =

∣∣∣∣
∑

j∈s(Ij − I ′j)
Ns

−
∑

j∈W,j /∈M(Ij − I ′j)
NW −NM

∣∣∣∣ /min(
∑

j∈s Ij

Ns

,

∑
j∈s I

′
j

Ns

)
(3.39)

where s is the pixel index set inside the red square of the parking spot; W is the
pixel index set inside the local window; M is the pixel index set with the pixel value
of the binary difference map as 0 inside the local window; Ns is the pixel number
inside the red square of the parking spot; NW is the pixel number inside the local
window; NM is the number of pixels with pixel value of the binary difference map
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as 0 inside the local window.
The standard deviation difference is calculated according to

4σ =

∣∣∣∣ σ − σ′

min(σ, σ′)

∣∣∣∣ (3.40)

where σ and σ′ are the standard deviation of the pixel value inside the red square
of the parking spot of the two successive frames from the image set.

If 4m > 1 or 4σ>2, the status of the parking spot is determined to have a
change, and the change flag of the parking spot is marked as 1.

However, if the ratio of the number of pixels marked as 1 to the total number of
pixels inside the window of the binary difference map is smaller than 0.3, morpho-
logical image opening of the binary local difference map is found to do a better job
in detecting the change in intensity field. Note that the binary local difference map
is obtained by converting the difference map of the local area inside the window
of two successive frames into binary. Then the morphological opening operation is
performed on the binary local difference map with the structure element size pro-
portional to the ratio of the number of pixels marked as 1 to the total number of
pixels inside the window of the binary difference map. If 40% of the pixel value
inside the red square of the parking spot is 1 of the morphological opened binary
local difference map, then a status change is detected and the change flag is set as
1 for the parking spot.
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Figure 3.32: Diagram of change detection of the parking spot status

So far, we can successfully detect a status change of the parking spot. However,
the status change could result from different scenarios, for example: a vehicle fills
in an empty parking spot; a vehicle leaves with an empty parking spot left; and one
vehicle replaces another vehicle. Therefore, in order to know how the parking spot
is changed, the empty parking spot should be also identified. The empty parking
spot tends to be smooth and uniform in color and shape. Based on this knowledge
of the empty parking spot, K-means classification is used to classify the image. Two
parking spot images with different parking status are shown in Figure 3.33 and
Figure 3.34 respectively. Two boxes are dawn around the top center and the bottom
center of the parking spot as shown in Figure 3.33 and 3.34. The class indices
inside the two boxes are inspected. The empty parking spot has uniform class set
inside at least one of the two boxes. The spectral angle between the pixel from the
uniform class of the box and a background pixel is calculated to determine whether
the uniform class has the same spectrum as the background. If the spectral angle
is smaller than 0.02, the parking spot has a good chance to be empty. However, we
still cannot be sure it is an empty spot because sometimes the vehicle is small or the
vehicle is not parked properly in the parking spot. Either box may miss the feature
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from the vehicle. Therefore, the class index around the center of the parking spot is
also checked to see whether the center of the class map inside the parking spot also
contains pixels with the same spectrum as the background. If so, then the parking
spot is claimed as empty. The status of the parking spot is set as 0.

(a) Original parking spot (b) Classification result

(c) Clusters in box 1 (d) Clusters in box 2

Figure 3.33: Empty parking spot
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Scenarios Parking spot status Parking spot status
of one frame of the following frame

An empty spot is filled with a vehicle 0 1
A vehicle leaves 1 0

A vehicle is replaced by another one 1 2
A vehicle is replaced by another one 2 1

A vehicle leaves 2 0

Table 3.1: Scenarios of parking spot status change

(a) Original parking spot (b) Classification result

  
(c) Clusters in box 1 (d) Clusters in box 2

Figure 3.34: Occupied parking spot

3.3.3.2 Experiment Result

By going through the three image processing steps, the parking status could then
be extracted. Possible status of the parking spot is marked according to Table 3.1.
The result is checked frame by frame. There are errors in parking spots having
obstacles such as trees, railings, poles and so on. Those “bad” parking spots are
then removed from the result to better represent the statistical information of the
parking lot. Among “good” parking spots, the result is analyzed as in Table 3.2.

With the extracted parking spot status from the real images, the statistical
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missing false alarm hit
status initialization 0 2 216

status change 7 4 337
empty parking spot identification 6 2 103

Table 3.2: Result Accuracy analysis of the parking status extraction

description of the extracted data is obtained for each type of parking lots. The
histogram of parking duration, the distribution of parking lot occupancy, and the
parking spot occupancy for each type of parking lots is shown in Figures 3.35, 3.36,
and 3.37, respectively. By looking at the histogram of parking duration, we could
find that most of the vehicles stay in the parking lot for the whole time of the ex-
periment. There are peaks at some other parking durations, which indicates certain
events occur on campus, for example the student takes classes for certain periods.
The parking lot occupancy distribution indicates that the unreserved parking lot is
fully occupied for most of the time during the day. Besides, the high occupancy of
unreserved parking spots also indicates that people prefer free parking spots and are
not willing to take the risk of getting a fine by parking illegally on the reserved park-
ing spot. The parking spot occupancy could then be converted into preference score.
The preference score is actually used as a probability weighting term as mentioned
in section 2. If one parking spot is definitely preferred over the other one, the ratio
of preference scores between those two parking spots should be infinity by setting
the preference score of the less preferred parking spot as 0 and the preference score
of the more preferred parking spot as any non-zero value, say A. The preference
score of any other degree of preference is generated by interpolating between 0 and
A.

So the statistical description of the parking lot is successfully extracted from
the real images of parking lots on the RIT campus, which can then be fed into
PARKVIEW to regenerate the parking status for each parking spot over time.
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(a) Reserved parking lot

(b) Unreserved parking lot

(c) 20 minutes parking lot

Figure 3.35: Histogram of parking duration
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(a) Reserved parking lot

(b) Unreserved parking lot

(c) 20 minutes parking lot

Figure 3.36: Parking lot occupancy over time
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Figure 3.37: Parking spot occupancy

3.3.4 Summary

In this section of the thesis, a parking lot process model PARKVIEW is built based
on the statistical description of the parking lot which includes parking lot occu-
pancy, parking duration and parking spot preference. The output of PARKVIEW
is the parking spot status map of the parking lot at each time during the process.
This simulation result of the parking lot from PARKVIEW can be interesting to
transportation managers or security managers. We use the simulation result of
PARKVIEW to feed into DIRSIG by updating DIRSIG input file, so that the scene
simulation capacity of DIRSIG can be enhanced by incorporating this parking lot
process model. In order to show an accurate and efficient way to extract the statis-
tical description of the parking lot, an experiment is set up during certain time of a
week day on the RIT campus to take photos of several parking lots. The experiment
data are processed by using three image processing steps to fully retrieve the parking
spot status for each frame of the image set. The statistical description is extracted
with the information of the parking spot status over time.
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Chapter 4

Temporal Signature Analysis

With the trend of the increasing temporal image data available, as well as other
forms of temporal data, methods of understanding those temporal information in
a high level are required. In chapter 3, the illustrated enhanced DIRSIG can aid
the user to generate the images with temporal signatures included, which will offer
a great convenience to the analysis of the temporal signature in the scene. In this
chapter, firstly, we will describe the problem we have encountered and how we are
inspired to come up with the method. Then, a framework of the temporal signature
steaming analysis ranging from recognizing, memorizing to predicting the event is
proposed.

4.1 Problem statement

As we said, we want to understand a large amount of temporal images or information
derived from temporal images in a high level, to identify activities and make decisions
from those images. We assume that the features from each image have already been
extracted and each feature has been quantized as a time series. Then the problem
will be that of how to extract high level information from multivariate time series.
Several methods of time series analysis have been looked at.

67



CHAPTER 4. TEMPORAL SIGNATURE ANALYSIS

4.1.1 Kalman filter

Kalman filtering[111] is well known in the field of object tracking and navigation. At
first, we considered to use the Extended Kalman Filter (EKF), which can model the
nonlinear process, to track the time series by modeling the time series as a sinusoid
with changing frequencies and amplitudes as shown in Figure 4.1. The green line in
Figure 4.1 is the ideal signal, while the blue “*” points are the measurements of the
signal.
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Figure 4.1: Simulated different modes of sinusoid signals and their measurements

At each step, the EKF first estimates the state vector (here including frequency
and amplitude) and error covariance to achieve a priori prediction. Then with the
measurements of the time series at that step, the EKF updates the state vector and
covariance matrix to obtain a better posteriori prediction in a way that minimizes
the posteriori error covariance. When the state of the time series changes, the EKF
adjusts the state vector as shown in Figure 4.2a and Figure 4.2b to capture the
change to achieve the local stable mode.
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Figure 4.2: The estimation result of state vector using Extended Kalman filter
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Figure 4.3: Sine signal estimation

However, in this way, the Kalman filter only remembers the local mode. When
it comes to estimate the global state of the mode, we want to change the model of
the time series into a way that the model is seen by the Kalman filter as stable.
Then we considered to use a Fourier sinusoid series to fit the time series and use the
Kalman filter to estimate the parameters of the time series. However, the Fourier
sinusoid series does not converge at the discontinuous points[26], which is known as
“Gibb’s phenomenon”. These discontinuities of the time series are also interesting
to us as they can be the abnormal activities or the joint point of operational mode
change in an ongoing process. What’s more, the Kalman filter works well when the
initial estimation of the state vector has the same negative or positive sign as the
actual model. However, when the initial estimation is not with the same (+/-) sign
as the actual model, Kalman filter does not work, which is also validated by [114].
Therefore, the method of fitting the time series with a Fourier sinusoid series and
then use a Kalman filter to estimate the parameters of the Fourier sinusoid series
was not pursued further.
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4.1.2 ARIMA

Auto Regressive Integrated Moving Average [24] (ARIMA) is a method to model
the non stationary time series which performs certain differences of the time series
to achieve a stationary process. ARIMA is widely regarded as a powerful modeling
technique[75] and has many applications in different fields, especially in the field of
medicine[97][16]. The biggest challenge by using ARIMA in our situation is to find
the right order of difference operation d to achieve a stationary process when the
process is totally unknown and dynamically changing over time.

4.1.3 Human cognitive system

A normal human being can always easily recognize an event when they know enough
knowledge about the event. For example, people know that when there is a big
sale event in the mall, the mall will be very crowded. Therefore, when they see
the mall is crowded, it is of high probability that the mall has a big sale event.
Further more, by seeing the mall is crowded again and again on the Black Friday of
Thanksgiving days, people can assure that on next year’s Black Friday the mall will
still be crowded. Figure 4.4 shows basically how human beings work with unknown
events with the aid of knowledge and recall the event under certain triggers. These
abilities of human beings are also what we want the computer to have. Therefore, in
the thesis, we will use the way of human cognitive process to analyze the time series
in order to recognize the events and find the temporal pattern to make predictions.
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Figure 4.4: Human cognitive process

4.2 Proposed methods

The diagram in Figure 4.5 shows the framework of the proposed method of temporal
signature analysis in streaming way. As we humans do, the proposed system is
designed to learn knowledge of different activities and events continuously over time.
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Figure 4.5: Proposed method of temporal analysis

When there are new data points from the time series fed into the model, the algo-
rithm either uses the learned knowledge in library or the external existing knowledge
system to recognize the new data point into an event. If the new data point cannot
be recognized, a new event tag is created and assigned to the new data point.

After that, the information associated with the event is memorized, including the
event type, event features, timestamps and so on. During the step of memorization,
the impression or the memory of the event among all the events in the temporal
space is built, which tells the temporal context of the event.

Then, the memorized event is stored into the library. The library has the record
of the event information (including event type, the features of the event, start time,
duration and so on), and the memory of the event.

After the library has stored a certain amount of historical information, we can
predict what will happen at a certain time by recalling and analyzing the historical

73



CHAPTER 4. TEMPORAL SIGNATURE ANALYSIS

event in the library. For large scale analysis, there may be more than one events
that occur at the same time. However, in this thesis, we only consider that there
are only one event that could occur at one time.

By checking the similarity of the predicted result and the new measurements,
the new measurements go to two different directions of the algorithm. One is to
go to the memorization block to make a contribution to boost the impression of a
certain existing event occurring pattern, so that we are more confident to predict
that event in the future. The other one is that the new measurements are considered
as unknown, when they do not match all the predicted event in the library. Then
the new measurements go to the start of the algorithm through the rest of the steps
as mentioned above.

There are three key steps involved in the framework, which are recognition,
memorization and prediction. The three key steps forms an abbreviate version of
the whole framework as shown in Figure 4.6. In chapter 5 and chapter 6, the new
method is proposed for each of the three steps. The Edinburgh pedestrian dataset is
used as an example to assist the explanation of the whole framework and illustrate
the result of those new methods. The information of the Edinburgh pedestrian data
set is given in section 4.3.

Recognition 

Memorization 

Prediction 

Figure 4.6: Three key steps of the proposed method

In the rest part of this chapter, some basic knowledge involved in time series
analysis is described.
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4.2.1 Preprocess the time series

The time series is sometimes pre-processed to make the data more reliable and
approachable. The pre-processing of the time series normally includes: missing data
estimation, outlier removal and noise reduction.

4.2.1.1 Missing data estimation

If only a couple of sparse data values are missing. The simplest way to estimate the
missing data is to linearly interpolate the adjacent data. For example, we have an
evenly sampled time series, and at a certain point the value is not collected. The
time series is represented as y1, y2, · · · , yi−1, ?, yi+1, · · · , yn. The missing data yi at
the ith step can be estimated by linear interpolation method as following equation

yi =
yi−1 + yi+1

2
(4.1)

For general non evenly spaced data points, for example the time series above is
sampled at temporal location x1, x2, · · · , xi−1, xi, xi+1, · · · , xn, the missing data yi
at temporal location xi can be calculated as

yi = yi−1 +
yi+1 − yi−1
xi+1 − xi−1

(xi − xi−1) (4.2)

Other interpolation methods such as the cubic spline use a nonlinear function for
each of intervals can be also adopted to achieve smoother and better interpolation
results.

If there are a large amount of continuous data missing, it is very hard to estimate
the missing data only basing on the neighboring data set. One way to estimate the
the missing data is to relate the data set with other data sets. When another data
set, which has certain relationship with the data set having missing data, is available,
the missing data can be calculated based on the relationship between the two data
sets. One other possible way is to estimate the pattern of the data set and fill in
the missing data based on the pattern of the data set itself.
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4.2.1.2 Outlier removal and noise reduction

Outliers and noises removal are popular problems in many fields. In the field of
time series, there are many existing methods as reviewed in [59]. How to remove
the outlier and reduce the noise is related to a specific situation or applications.
The overall property of the data set should be understood before performing outlier
removal or noise reduction, so that the signal is kept while the noise and outliers
are effectively removed.

For outlier removal, the most common method is to check the mean and standard
deviation of the data set. If a data point deviates from the mean more than 3 (which
depends on the specific situation) times standard deviation of the data set, then
that data point is regarded as an outlier. Anomalies are very similar to outliers
in definitions. They both look significantly differently from the expected signal.
In this thesis, we consider anomalies are the unexpected signal, from which useful
information can be explored. When we perform outlier removal on the data set,
steps should be taken to check the data point is a outlier or an anomaly.

Moving-average and binning are common methods of smoothing the time series
and reducing the noise. For moving-average, the noise is reduced by using a fixed
size window to move along the time series and take average of all the values inside
the window as the finial smoothed signal. For binning, the time series is segmented
into small bins, and the mean or median value inside the bin is taken as the finial
smoothed signal. The window size or the bin size of the noise reduction method
should be related to the sampling frequency of a time series. When the data set is
very sparsely sampled, smaller size of the window or the bin should be used in order
to avoid removing or blurring the signal.

4.2.2 Knowledge acquisition

There are several possible ways to get the knowledge.
First, the knowledge about the event can be the time frame of the event. Then by

observing and recording the time series of the features during that time frame, the
event can be learned. The learned feature pattern of an event can be used to map
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out all the other events with the similar pattern occurred in the future to achieve
the event recognition and detection.

Second, the knowledge about the event can be obtained by existing understood
data sets. Those existing understood data sets can be used for training to get the
mathematic descriptions. This will be illustrated with RIT twitter datasets.

Third, the knowledge about the event can be the rules defined by the user, or
the intuitive description of some features. For example, people running are different
from people walking in the speed and acceleration of moving, and it is common sense
that the speed and acceleration of running is bigger than walking. By making the
rule (here is the threshold) of the observed features (the speed and acceleration of
moving), we can distinguish people who are running and walking.

Lastly, the knowledge about the event can be learned incrementally from the mea-
surements. In the following chapters, this way of knowledge acquisition is adopted.

4.2.3 Event recognition

To recognize an event, the measurements of the event should be found to differentiate
one event from the other. These measurements are called features of the event.
The feature generation are data or event dependent. Different data sets may have
different features to support the event recognition. Normally, more than necessary
numbers of features are generated, which is followed by feature selection. Principle
Component Analysis (PCA) is one of the feature selection methods to find the best
features. There are tons of ways to recognize the event. The selection of event
recognition method is also data dependent. To solve different problems, one event
recognition method may be better than the other. The problem of event recognition
can be solved in three different spaces: raw time series space, selected feature space,
and frequency space.

In the raw time series space, one of the most straightforward ways is to measure
the similarity of the time series by using Euclidean distance. More delicate method
is Dynamic Time Warping (DTW), which can handle the misaligned two time series
very well in evaluating the similarity of them.
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In the selected feature space, when the clusters of the data are known, classifica-
tion methods can be used to classify the events by comparing the test measurements
with the known cluster features. Otherwise, when the clusters of the data are not
known, the unsupervised classification method (often called as clustering method)
should be applied. One typical clustering method is k-means. When the features
are not sufficient to identify each event, anomaly detection methods can be used
to find the anomaly events. RX and TAD are two example methods of anomaly
detection. Besides, Spectral Angle Mapper (SAM) is also a very simple method to
compare the similarity of two feature vectors from the geometric perspective[62].

The frequency domain of the time series can be analyzed to find the cyclic be-
havior, and certain filters can be designed to filter out the anomaly events.

Note that some of the event recognition methods are designed to be used to
overview the static existing data sets, in order to understand the data set and
fetch out interesting events by one time. For example, Fourier filter is designed to
find the cyclic behavior of the whole data sets. RX and TAD also need the whole
existing data sets to additionally detect the anomaly, because they need to know
what the majority of data look like to identify the anomaly. These methods are good
candidates for understanding the existing data sets to aid the definition of anomalies
or events, which can be used for training. In the proposed framework, there are
continuous data fed in. These new fed data should be incrementally compared to
the feature templates in the library by using suitable similarity methods, such as
Euclidean distance, SAM and so on.

In chapter 5, a new incremental clustering method called GMD is proposed to
continuously recognize the measurements and tag them into event indices. In the
following part of this section, some representative methods of event recognition from
three different spaces (raw time series space, feature space, and frequency space) are
briefly described.
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4.2.3.1 Euclidean distance

The Euclidean distance between two time series A = {x1, x2, · · · , xn} and B =

{y1, y2, · · · , yn} can be calculated as

d =

√
(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2. (4.3)

Obviously, the larger distance between two time series, the less similar they are.
Euclidean distance is an easy and straightforward way to calculate the similarity of
two series. However, it is very sensitive to the noise and outliers.

4.2.3.2 k-means classification

k-means is an unsupervised classification method to partition a series of observations
in k clusters, where k is assumed to be known and set by the users. Each observation
belongs to the nearest mean value of the k clusters. The process is optimized by
iterative procedures. Firstly, an arbitrary cluster vector is assigned. Secondly, each
observation is assigned to the nearest cluster. Thirdly, a new cluster mean vector is
calculated based on all the observations in each cluster. Fourthly, the second and
third steps are repeated until the change between each iterative is small enough.

The mathematical description of k-means classification method is: assuming
there are n observations x1, x2, · · · , xn and k clusters c = {c1, c2, · · · , ck}, the goal
is to minimize the sums of squared distance SS between each observation and its
assigned cluster center. The sum of squared distance SS can be represented as

SS =
argmin

c

k∑
i = 1

∑
xj ∈ ci

‖xj − ui‖2 , (4.4)

where ui is the mean value of the cluster ci.
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4.2.3.3 RX anomaly detection

RX anomaly detection[87] is widely used in anomaly detection in remote sensing with
hyper-spectral imagery. RX detector assumes that the selected observations have
a Gaussian distribution and the anomalous targets are far away from the selected
data center. The mathematical description of RX detector is

R(X) = (X−m)T S−1 (X−m)
> η target

< η background
, (4.5)

where X is the variable of the test observation, m is the mean of the selected
observations, S is the covariance matrix of the selected data set, η is the threshold
to determine whether the test observation is from a target or the background.

4.2.3.4 TAD anomaly detection

The topological anomaly detection algorithm[17] (TAD) is a novel anomaly detec-
tion algorithm, used to model hyper-spectral data by incorporating a topological
method. In TAD, the background is modeled as a set of connected components of a
graph without any assumptions on the geometry, linear or nonlinear, or statistical
distribution of the data, which is one of the advantages over RX detector[18].

There are several steps taken to implement TAD[18]. The first step is to normal-
ize the data, so that the highest 10% of the observations in the data have Euclidean
L2 norm equal to 2 and the lowest 1% have Euclidean L2 norm equal to 1. The
first step is optional. The second step is to model the background. A random sub-
sample from all the observations is selected to model the background. A graph is
constructed by adding an edge between the closest 10% ( a variable) of pairs of
points. Those components containing greater than 2% of the samples, are consid-
ered as background. The third step is to rank all the observations in the data set
to find the anomalous targets, which is equal to the sum of the distances to the 3rd,
4th, and 5th nearest neighbors in the background observations. The threshold of the
TAD ranking can be decided by the percentage of the background observations in
the subsamples.
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4.2.3.5 Fourier filter

In order to analyze the frequency domain of the time series, Fourier transformation
is normally taken to obtain the frequency components of the time series data. The
continuous-time Fourier transformation of a function x(t) is represented as

X(f) =

+∞ˆ

−∞

x(t)e−i2πftdt, (4.6)

while the inverse continuous-time Fourier transformation is represented as

x(t) =

+∞ˆ

−∞

X(f)ei2πftdf. (4.7)

In some situations, we do not have the continuous function description of the
data, and only the function of the data is observed in certain time space. In this
case, the discrete-time Fourier transformation (DTFT) should be used as in the
following equation

X(k) =
N∑
j=1

x (j) e−i2π
(j−1)(k−1)

N , (4.8)

while the equation of the inverse discrete-time Fourier transformation is

x(j) =
1

N

N∑
k=1

X (k) ei2π
(j−1)(k−1)

N . (4.9)

Certain filters can be designed to filter out some frequency components of the
data in the frequency domain and remain the useful or interesting frequency compo-
nents. The anomaly or noise information of the data are often shown up as very low
values in the frequency domain. According to this property, the filter is designed to
be piece-wised windows with value 1 and 0, where the frequency components having
high values has 1, otherwise 0, as described in the equation
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W (k) =

 1

0

X (k) > η

X (k) < η
. (4.10)

The filtered frequency domain ˜X(k) = X(k) �W (k), and the corresponding data
in the time domain ˜x(j) = FT−1

(
˜X(k)
)
, where FT−1 is the operator of inverse

discrete-time Fourier transformation.

4.2.4 Event memorization

An intuitive way of event memorization is that each type of event is memorized in
an individual “memory zone”, which can be achieved by creating a table for each
event type in the event memory database, as shown in Table 4.1. The table will
continuously grow when the event occurs again and again in the future.

Event Type 1
Occurring times Feature value index Time stamp Duration

1 i11,i12,i13... t11,t12,t13... T1
2 i21,i22,i23... t21,t22,t23... T2
...

...
...

...

Table 4.1: An example of event memory table

In this thesis, we propose a memorization method called double localization
including absolute localization and relative localization to build the temporal context
of events. The memorization with absolute localization is similar to the method
described. However, instead of creating a table for each event type to record the
temporal locations of the event, the proposed method uses the temporal map to
absolutely localize events in the temporal space. By setting up the coordinates for
the temporal map, the prior temporal pattern can be already embedded into the
memory. The memorization with relative localization can be achieved by learning
the relative temporal order between the events. The relative temporal order between
events can be modeled by methods including: context free grammar [40, 78, 90],
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Hidden Markov chain[35, 50, 100, 95], Bayesian network and so on. In this thesis,
the first order Markov chain is used as an example to show how events are relatively
localized in the memorization step.

In addition of memorizing the temporal part of the event, the static descriptions
of the event are also memorized, such as the features of the event, in order to
recognize similar events in the future.

A detailed illustration of event memorization can be found in Chapter 6.

4.2.5 Event prediction

In order to the predict the future, the historical information should be well under-
stood and the temporal pattern of the historical information should be properly
modeled. In order to model the historical information, there are different ways in-
cluding regression related methods (such as ARIMA as we tried), Markov models,
Bayesian networks, and so on. In this thesis, the historical information is memorized
by double localization. Therefore, our predictive model is based on how the histori-
cal data are memorized. That is to build the predictive model by incorporating the
absolute temporal context with the relative temporal context. Detailed illustration
can be found in Chapter 6.

4.3 Data sets

One dataset used in this thesis is from university of Edinburgh[71]. A camera is
fixed overhead about 23m above the floor, watching the Informatics Forum, the
building of the school of Informatics at the university of Edinburgh. People can be
seen walking through the Informatics Forum. An example scene view of the Forum
is shown in Figure 4.7a. The main entry/exit points (marked) are at the bottom left
(front door), top left (cafe), top center (stairs), top right (elevator and night exit),
bottom right (labs). Figure 4.7c and Figure 4.7d shows some other perspectives of
the Forum. A series of image processing has been done by university of Edinburgh
to extract the trajectories of the pedestrian. As claimed, there are 92,000+ observed

83



CHAPTER 4. TEMPORAL SIGNATURE ANALYSIS

trajectories. A view of a small samples of trajectories are shown in Figure 4.7b.

(a) A view of the Forum scene (b) A view of a small samples of trajectories in
the Forum dataset

(c) Informatics Forum-1 (d) Informatics Forum-2

Figure 4.7: Example scene views of the Edinburgh Forum

This other dataset is from twitter. The twitter data on RIT campus are collected
to understand the activities going on campus. Some preprocessing on the data is
done to understand what kind of activities the twitter data can tell. A detailed
description can be found in Appendix A.

In this thesis, only the Edinburgh dataset is used to illustrate the framework for
streaming analysis of time series data.
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Chapter 5

Recognition by incremental
clustering of data streams

In recent days, data are collected almost everywhere over time. Those temporal
collected data points are formed as an ordered sequence which is often called a
data stream[45]. It is interesting that useful information could be inferred from
the data streams. The first step to understand the data stream is to check which
cluster the new data point could be assigned to. There are two situations, which
also implies two different ways of solving the problem. One of the situations is that
the data source has been understood, which means that data has been trained and
labeled with meaningful tags. In this case, the new measurement data point will be
compared with known descriptions of the tags and thus assigned with a certain tag.
The techniques involved in this situation are also known as supervised classification.
On the other hand, sometimes, the data source is not understood. We need to cluster
the data stream with available measurements and update the clusters with every new
data point, the technique of which is often regarded as incremental clustering[27].

Regarding to the first situation when the data source has been understood, it is
relatively easier to solve than the second situation. This is to classify the new point
to an existing cluster. The solution to this case is relatively clear already. Therefore,
in this part of thesis, the second situation, when the data source is not trained or
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learned before, is mainly considered.
There are several challenges of incremental clustering of data streams. Firstly,

we do not have the overview of the whole data set. Instead, the data points are
coming continuously over time. The clustering methods performed on the static
data set using partitioning technique (for example: k-means[61], k-medoids[37], and
the fuzzy c-means[47]) cannot be adopted here. Secondly, the number of clusters
in the data is not clear, which requires an unsupervised learning from the available
data set and updates with the new data. Thirdly, the memory for storing the data
points and cluster information is limited, while there is an unlimited data stream.
This requires us to find the most essential information and only keep the useful
information in the memory. There are more challenges and issues related to data
stream clustering, which are illustrated elsewhere[56].

5.1 Review of related work

In order to search for a good method of incremental clustering of data streams,
the literature in terms of static clustering, clustering of time series, incremental
clustering has been reviewed.

When we talk about clustering, it usually means static clustering. Here “static”
means that the data set will not change over time and all the data are available
to be processed in one batch. Any point of the data set can be accessed with-
out considering the temporal order. Static clustering methods can be divided into
five major categories[48]: partitioning methods, hierarchical methods, density-based
methods, grid-based methods, and model-based methods. A detailed survey of static
clustering can be found in[21].

The specialties of clustering the time series data are the input data format and
similarity measurement methods. The input data can be the raw data of the time
series in the time domain or the frequency domain, features extracted from the time
series, and model parameters derived by modeling the time series with the fam-
ily of Auto Regression (AR), or Auto Regression Moving Average (ARMA) related
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methods[110]. The similarity between two time series can evaluated by (1) Euclidean
distance, root mean square distance, and Minkowski distance; (2) Pearson’s corre-
lation coefficient and related distances; (3) Short time series distance; (4) Dynamic
time warping distance; (5) Probability-based distance function for data with errors;
(6) Kullback–Liebler distance; and so on. Detailed descriptions of the similarity
measurement can be found in [110].

Our goal is to incrementally cluster the data stream. [89] presents an incremental
system for clustering streaming time series in the variable domain. The basic idea is
to find groups of variables that behave similarly through time. An Online Divisive-
Agglomerative Clustering system is presented for incremental clustering of streaming
time series by constructing a hierarchical tree-shaped structure of clusters using a
top-down strategy. However, we are not interested in clustering the variables of the
time series over time, since we assume here that the variables are the features of the
data source and the features should be very distinct from each other so that they
are highly representative of the object we want to describe. Therefore, we are more
interested in incrementally clustering the data stream in the example domain.

COBWEB[38] is a conceptual clustering system, which incrementally organize
the observations in a hierarchical tree with each node representing the concept of the
object. The concept description is also given to summarize the category-conditional
probability of the properties at the node. STREAM[83] uses a buffer to hold the
data stream. When the buffer is full, leveraged k-medians is adopted to cluster the
data in the buffer into k clusters. Only the weighted centroids of the clusters are
kept for the next around of data buffering. The weighted centroids will be clustered
into final k clusters when all the data have been checked.

BIRCH[115] incrementally builds a CF (Clustering Feature) tree as new data
objects are inserted as the first phase. Each leaf node of the tree is a cluster, which
is summarized by a CF vector, including the number N of points in the cluster, the
linear sum of the N data points and the square sum of the N data points. BIRCH
goes through 4 different phases. Some phases are optional. The next essential phase
is to cluster all the leaf entries of the tree by a global or semi-global algorithm
to capture the major distribution pattern in the data. CluStream[5] is a complete
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system composed of two components, online and offline ones. For online micro-
clustering, CluStream use k-means to generate q clusters as initialization. With
each new data point, it incrementally updates the initial clusters by absorbing or
creating a new cluster by checking whether the new data point falls in the maximum
boundary of the nearest micro-cluster. It uses an temporal extended version of
CF vector[115] to summarize the micro-clusters. The current set of micro-clusters
together with their micro-cluster identification list is stored in a pyramidal time
frame, and indexed by their time of storage. This information is then used by the
offline component with a variety of user-defined parameters to get final higher level
k clusters.

D-Stream is a density based method[29] which aims to capture the cluster with
arbitrary shapes and without the need of initializing the cluster number k as some
methods require[83, 115, 5] . This algorithm also adopts two components: online
and offline components. The online component maps each incoming data point into
a grid and the offline component computes the density of the grid and clusters the
grids based on the density after a preset time step “gap”. DenStream is another
density-based approach[25]. However, density-based stream clustering methods are
highly dependent on the order of the incoming data points, since they use static
density thresholds to define a dense grid and assign a decay factor to each point
over time. Additionally, they have no memory of historical clusters; therefore, they
need to learn the every cluster as the first time.

A graph based incremental clustering method, RepStream, is presented in [69]
by using representative points to cluster incoming points and retain useful cluster
information in the knowledge repository. Each cluster is defined by two types of
representative points: exemplar points and predictor points.

In this thesis, a new incremental clustering method (GMD) is presented. The
name of our clustering method GMD is short for Gaussian-Merging-cluster Descrip-
tion, which describes three key steps involved. The method assumes the core of
each cluster is Gaussian distributed. It incrementally updates the description of the
Gaussian distributed cluster with each new point added to that cluster. Then by
checking the separateness of the clusters, clusters are hierarchically merged if they
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are not separable. Each node of the hierarchical tree is a cluster, which is summa-
rized by a cluster description. This method has advantages in several ways. First,
the user does not need to set the cluster number. Second, it can capture arbitrary
shapes of clusters. Third, each cluster is summarized by a cluster description, which
can represent any shape of the cluster. Fourth, this algorithm has the flexibility of
tracking all the temporal occurrences of the cluster, which could be used later for
temporal rule inspection. Fifth, it can detect outliers quite accurately. Sixth, it can
handle high-dimensional data. Finally, the algorithm is insensitive to the order of
the incoming data points.

Detailed illustration of this method will be shown in section 5.2.

5.2 Method

A new
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Figure 5.1: Workflow of incremental clustering

Figure 5.1 shows the workflow of our incremental clustering method. When we want
to cluster a data stream with no data collected yet, the problem is how to initialize
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the cluster distribution. One approach is to use a distance threshold to merge two
points into one cluster. That is, when the distance between two points is smaller
than the distance threshold, they belong to the same cluster.

Here we propose to assume that the core of each cluster is Gaussian distributed,
which offers some advantages of saving computing load over the former approach.
When the first data point arrives, a Gaussian cluster is automatically generated
with the new coming data as the center and a pre-defined covariance matrix S0.
When the second point arrives, it is either assigned to the first cluster or a new
Gaussian cluster is created with itself as the center and a pre-defined covariance
matrix S0, according to the class discrimination value Di (where i is the cluster
index) calculated by Gaussian Maximum Likelihood (GML). The likelihood that
the new point in a member of cluster i is Di and the maximum likelihood over all
classes is Dmax. If the maximum probability Dmax is larger than a threshold TD,
the new point is assigned to the cluster with the maximum probability.

The immediate following step is a rule-based merging. It is to merge the clusters
by counting the distinct cluster number in the neighborhood of the new point. If
there is more than one cluster in the neighborhood, they will be merged into one if
the merging rule is satisfied. The user can define different merging rules according
to specific problems. Like this, the clusters will grow with each new coming point
until a certain time when the number of points belonging to that cluster is larger
than a threshold TNmature and we call the cluster is “mature”.

The mature cluster is then summarized by a cluster description. The approach
used to generate the cluster description is most similar to the one used in [6], which is
to find minimal number of rectangles for two dimensional data (or hyper-rectangles
for high dimensional data) to describe the shape of the cluster. However, our ap-
proach is different in several ways. A detailed explanation will be shown in section
5.2.3. To do this, each dimension of the mature cluster is first divided into Nparts

parts. The number of points inside each cell is counted. If the number is higher than
the threshold TNdense, the cell is marked as dense. After that, the minimal number
of rectangles or hyper-rectangles are found to describe the dense cells. All the points
in the non-dense cells are kept as representative points of the cluster together with
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the rectangles or hyper-rectangles.

5.2.1 Gaussian Maximum Likelihood

Every time a new point Xi = (xi,1, xi,2, ...xi,d) (where d is the dimension of the
point, i is the point index) comes and it is not absorbed into any existing cluster,
a new cluster Cn+1 is created, where n is the number of existing clusters. We
assume cluster Cn+1 is Gaussian distributed, and described by a normal distribution
ℵ(mn+1, S0) which is equal to ℵ(Xi, S0), where mn+1 is the mean of cluster Cn+1.
S0 is the predefined covariance matrix which should be set by the user, which can
be represented as

S0 =


σ011 σ012 · · · σ01d

σ021 σ022 · · · σ02d
...

...
...

...
σ0d1 σ0d2 · · · σ0dd

 . (5.1)

The user could simply assume that the data in different dimensions are not
correlated if they have no information of the correlation between different features
of the point; the covariance matrix can then be simplified as

S0 =


σ011 0 · · · 0

0 σ022 · · · 0
...

...
...

...
0 0 · · · σ0dd

 , (5.2)

where σ0dd is the initial variance of the data in dimension d. Therefore, what the user
has to set for the covariance matrix are the variances of the data in each dimension
and correlation between dimensions can be learned from data later on. Figure 5.2a
shows a newly generated one-dimensional Gaussian distribution.

In this way, the points can be aggregated in certain extent according to the
theory of GML. According to Bayesian probability theory, the posteriori probability
of a point XI assigned to cluster j is
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P (Cj|Xi) =
P (Xi|Cj)P (Cj)

P (Xi)
, (5.3)

where P (Xi) is the probability of data pointXi occurs, P (Cj) is the prior probability
of cluster Cj, P (Xi|Cj) is the probability of Xi occurs under cluster Cj. Since
we assume the cluster is Gaussian distributed and Cj is described by ℵ(mj, Sj).
P (Xi|Cj) can be written as

P (Xi|Cj) =
1

(2π)
d
2 |Sj|

1
2

e[−
1
2
(Xi−mj)

TS−1
J (Xi−mj)]. (5.4)

Since P (Xi) is the same for all clusters, a class discrimination metric is defined
as[91]

D(Cj|Xi) = p(Xi|Cj)P (Cj) =
P (Cj)

(2π)
d
2 |Sj|

1
2

e[−
1
2
(Xi−mj)

TS−1
J (Xi−mj)]. (5.5)

The prior probability of cluster Cj, P (Cj), can be assumed to be equal among
all clusters when there is no information about it. Therefore, in this case, the class
discrimination matrix can be further simplified into

D(Cj|Xi) =
1

(2π)
d
2 |Sj|

1
2

e[−
1
2
(Xi−mj)

TS−1
J (Xi−mj)]. (5.6)

One way to guess the prior probability of a cluster of the data stream is to
accumulatively count the data points inside the cluster and divide it by the total
number of data points. However, the approach does not account for the temporal
occurrent pattern of the cluster, which indicates that some clusters may have higher
probability to occur during a specific time period while they may have very low
probability during other time periods. In the next chapter, we will investigate the
temporal occurrent pattern of clusters, according to which the prior probability of
a cluster will be calculated.

According to equation 5.6, the class discrimination value of the new data point as-
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m 

 

(a) A new-born Gaussian cluster

m’ 

' 

(b) Updated Gaussian cluster

Figure 5.2: Gaussian clustering

signed to each cluster can be calculated and is represented asDiscrim = (D1, D2, · · · ,
Di, ..., Dn). The maximum value Dmax of Discrim is found as Dk. If Dmax is larger
than the threshold TD, then the new point is assigned to cluster Ck. Suppose the
old cluster has data set Y = (Y1, Y2, ..., Yd) = (X1, X2, ..., Xnpoints

)T , where npoints is
the number inside the cluster Ck. The mean mk and covariance matrix Sk of data
set Y will be updated into m′k and S ′k, which can be represented as

m
′

k =
1

npoints + 1
· (mk · npoints +Xi), (5.7)

S
′

k =


cov′(Y1, Y1) cov′(Y1, Y2) · · · cov′(Y1, Yd)

cov′(Y2, Y1) cov′(Y2, Y2) · · · cov′(Y2, Yd)
...

...
...

...
cov′(Yd, Y1) cov′(Yd, Y2) · · · cov′(Yd, Yd)

 , (5.8)

and

cov′(Yq, Yp) = E[(Yq − µq)(Yp − µp)]

=
npoints

npoints + 1
cov(Yq, Yp) +

1

npoints + 1
(Xiq −m

′

kq)(Xip −m
′

kp),
(5.9)
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where p, q are any two dimension index, and µp, µq are the mean value of the data
in dimension p and q.

5.2.2 Rule-based merging

With Gaussian assumption of the initial cluster shape, the data points are aggregated
into clusters. However, due to the unexpected order of the data points coming to the
system, the points belonging to the same cluster may look far away from each other
in the beginning of clustering, which results in creating more clusters than needed.
Over time, more and more data points are collected and fill in the gaps between two
clusters and the clusters may even overlap as shown in Figure 5.3. This requires the
merging step to further aggregate the clusters when more data points are acquired.

Figure 5.3: Overlapped clusters

Therefore, with each incoming data point Xi, following the GML step, a rule
based merging is used. It is done by first checking the neighborhood of point Xi to
see how many clusters there are in the neighborhood of that point. The size of the
neighborhood is defined by a circle (or hyper-sphere for high dimension data) which
is drawn with the data point Xi as the center and threshold Tneighborhood as radius,
as shown in Figure 5.4a. The cluster list inside the neighborhood is found by the
function

{Cj|j ∈ ΩXi
} = ClusterIndList(Xi, Tneighborhood), (5.10)

where ΩXi
is the cluster index set in the neighborhood of data point Xi.
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If there are multiple cluster types in the neighborhood, we need to consider
whether to merge the clusters detected inside the neighborhood according to the
merging rules. There are several rules which could restrict the clusters to merge.
The first one is to test whether the merged cluster will be too big, because in
some applications we know that the cluster could not be bigger than certain thresh-
old TRbigCluster. If the merged cluster is too big, then the two clusters will not
be merged. However, if the cluster size is not an issue, which can be any size,
TRbigCluster can be set as infinity so that this restriction can be safely ignored. The
second rule is whether the two clusters are tight enough or whether they are highly
inseparable. This is determined by counting the number of the points of the cluster
in the neighborhood, which can be represented as

{Nj|j ∈ ΩXi
} = NumOfPoints({Cj|j ∈ ΩXi

}, Xi, Tneighborhood). (5.11)

If Nj is larger than the threshold TNfuse, cluster Cj and cluster Cx (Cx: the
cluster which Xi is assigned to) will be merged. By setting higher TNfuse, the
single-linkage problem of common hierarchical clustering methods can be resolved.
For example, if TNfuse = 1, clusters in both cases in Figure 5.4a and Figure 5.4b
will be merged into clusters as shown in Figure 5.5a and Figure 5.5b respectively;
while if TNfuse = 2, only clusters in Figure 5.4b will be merged.

In order to speed up the algorithm, a simple method can be used to count the
number of points in the cluster in the neighborhood. Since only the clusters near the
point Xi have a high probability of being in the neighborhood of Xi, it is better to
search for the K nearest clusters rather than to check all the data points. Therefore,
firstly the K nearest clusters are found by comparing the center of the clusters as

{Cj|j ∈ ΨXi
} = KNearestClusters({Cj|j ∈ Ω}, Xi, K), (5.12)

where ΨXi
is the cluster index set of K nearest clusters of Xi, Ω is the index set

of all clusters, K is the number of nearest clusters. Following that, only the data
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(a) Neighborhood of
a data point with
Tneighborhood = r and
Nj=1
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(b) Neighborhood of
a data point with
Tneighborhood = r and
Nj=2

Figure 5.4: Neighborhood of the new incoming point

r 

(a) Merged Cluster
with neighborhood
Tneighborhood = r and
TNfuse = 1

r 

(b) Merged Cluster
with neighborhood
Tneighborhood = r and
TNfuse = 2

Figure 5.5: Merged clusters

points belonging to {Cj|j ∈ ΨXi
} will be checked to see whether they are inside the

neighborhood of Xi.
When two clusters are merged, the mean and covariance of the combined cluster

are calculated according equation 5.7 and 5.8 by iterating each point in the cluster
to be merged.

5.2.3 Cluster descriptions

When too many data points are assigned to the cluster, it is too expensive to rep-
resent the cluster with all of the data points belonging to that cluster. Although
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the cluster is assumed to be Gaussian distributed and the mean and covariance of
the cluster are updated with each new data point added or a group of points added
from the merging process, the cluster may not be Gaussian distributed in reality.
Therefore, we can not rely on the Gaussian description of the cluster, which only
offers us a description of the spatial size and location of the cluster. A better cluster
description method should be used to represent the arbitrary shape of the cluster.

When the number of points belonging to that cluster is larger than a threshold
TNmature, we regard the cluster as mature and the mature flag of the cluster is
marked as 1, which will trigger the cluster description algorithm.

As mentioned earlier, the approach used in this thesis to generate the cluster
description is similar to the one used in CLIQUE[6]. The goal is to find the min-
imal number of rectangles for two dimensional data (or hyper-rectangles for high
dimensional data) to describe the shape of the cluster. In CLIQUE, two steps are
adopted to generate the cluster description. The first step is to greedily cover the
cluster with a number of maximum rectangles. The second step is to discard the
redundant rectangles to generate a minimal cover.

Our approach is different in two ways. First, the method of identifying the mini-
mal number of rectangles is different. Second, aside from the rectangles, the residual
points which are not represented by the rectangles are also kept as a supplemental
description of the cluster. A detailed illustration is shown below.

Suppose the cluster has range ri in dimension i, which is the length from the
minimum value to the maximum value of the cluster in dimension i, the range of the
cluster in all dimensions are represented as the vector Range[r1, r2, ..., ri, ...., rd]. By
setting a fixed cell size sizecell[s1, s2, ....si, ..., sd] for all dimensions, each dimension
of the mature cluster can be divided into ni parts, where ni = ri

si
. The number of

points inside each cell is counted. If the number inside the cell is higher than the
threshold TNdense, the cell is marked as dense.

After that, the minimal number of rectangles or hyper-rectangles should be found
to describe the dense cells. We start with a cell with the minimum cell index in the
first dimension. Along each dimension, the maximum connected segments are found
and taken as the base for the next dimension. Take a group of dense cells as shown
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(d) Final rectangle
representation of
dense cells

Figure 5.6: Finding the minimal number of rectangles

in Figure 5.6a for an example, along the first dimension, a line segment is found as
shown in Figure 5.6b. The line segment is taken as the base to scan over the next
dimension, from which a plane segment will be found as shown in Figure 5.6c. The
plane segment will be used to search for a cubic segment (here only two dimensional
cells are used as example in the figures; therefore the search for the cubic segment
is not needed), and so on until all the dimensions are scanned. A maximum hyper-
rectangles is then generated to represent the portion of the dense cells in the cluster.
The next round of the scan will be performed until all the dense cells in the cluster
are checked and represented by hyper-rectangles. The final rectangle representation
of dense cells is shown in Figure 5.6d.

All the points in the non-dense cells are kept as representative points of the
cluster together with the rectangles or hyper-rectangles to describe the cluster as
shown in Figure 5.7. Before the cluster is mature, all the points assigned to that
cluster will be kept as the residual points, and the cluster is described by those
residual points.

5.2.4 Cluster data management and parameters

For the description of the method above, we could see there are several different
types of information about the cluster, including mean, covariance, mature flag,
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Figure 5.7: Final description of clusters

number of points, rectangles, residual points and so on. To better maintain the
information of the cluster, each cluster is regarded as a structure which carries all
the different types of information. Apart from the information types listed above,
we may also want to keep track of the occurring time of the cluster, defined as when
a point comes to the system and it is assigned to the cluster, as a time list of the
cluster.

It seems that we have used a lot of parameters, such as thresholds, to control the
algorithm, which is generally undesirable. However, empirically we have observed
that the result of algorithm is not sensitive to most of them. To sum up, there
are 7 parameters: 1) prior variance of the data in each dimension S0; 2) threshold
TD of discrimination value for GML; 3) threshold Tneighborhood of the radius of the
neighborhood; 4) maximum size of the cluster in each dimension TRbigCluster; 5)
threshold TNfuse of tightness; 6) the number of points to define a mature cluster
TNmature; 7) The sub cell size:sizecell[s1, s2...., sd]; and 8) threshold of number of
points in a cell TNdense, to define it is a dense cell.

We observed that a useful principle of generating good results with the proposed
method is to have small prior variances of the data in each dimension S0, high
threshold TD of discrimination value for GML, large number of points to define a
mature cluster TNmature, small sub cell size sizecell[s1, s2...., sd], high threshold of
number of points in a cell TNdense, and small threshold Tneighborhood of the radius
of the neighborhood. By doing this, the speed of the algorithm may be comprised
because it will slow the merging process and extend the time of a cluster to be
mature. We can also understand this as that we let the time to form a cluster and
it is of course that more data over time will give more confidence to the process of
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clustering.
In some cases, the size of the cluster is not limited; therefore we can set the

maximum size of the cluster in each dimension TRbigCluster as infinity. However, in
some cases, we may have some knowledge that the cluster should not be larger than
certain threshold TRbigCluster. For example in the Edinburgh data set we will use
later, we know a general size of the entrance of the building or the room. Therefore,
when we cluster the start point or end point of the trajectories, we could set the
maximum size of the cluster in each dimension as TRbigCluster to avoid the chance
of incorrect merging.

5.2.5 Short-comes and possible solutions

As someone may already notice that our method of incremental clustering does not
have the step of cluster splitting, which means that when two clusters are merged,
there is “no way back”. This may cause some problems in some situations.

However, we have several reasons for not including splitting in the algorithm.
First, including splitting in the algorithm will of course increase the computational
load. Second, it will be very complicated to keep track of the occurrence time list of
the cluster. If we really want to do that, all the historical points should be stored so
that the correspondent occurrent time list of the split cluster could be recognized.
This will require extra memory for storing all the historical points. Third, we have
a possible solution of avoiding the problem due to no splitting in the algorithm.

As we talked above about the parameters, there are several parameters which
could be tuned to make the algorithm robust when it is time to merge two clusters
or assign a data point to an existing cluster rather than create a new cluster. Those
parameters are: 1) prior variance of the data in each dimension S0; 2) threshold TD
of discrimination value for GML; 3) threshold Tneighborhood of the radius of the neigh-
borhood; 4) maximum size of the cluster in each dimension TRbigCluster. Smaller
prior variance of the data in each dimension and higher threshold TD of discrimina-
tion value make the new incoming data point more likely to be classified as a new
cluster rather than assigned to an existing cluster. Only if the new data point is
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so obviously close to an existing cluster center, it is then assigned to the existing
cluster. Smaller Tneighborhood will also decrease the chance of merging two clusters.
In addition, threshold TRbigCluster will stop two clusters merging when they are too
large. In summary, there are parameters which can be tuned to merge two clusters
quite safely.

The results on simulated data and real data shows that our algorithm without
splitting are generally robust.

5.3 Result on simulated data

5.3.1 Simulated Gaussian distributed data

Two Gaussian distributed datasets are randomly generated and are incrementally
fed into the system one point at a time. The incremental clustering result is shown
in Figure 5.8. As we could see, the algorithm automatically aggregates the clusters
carefully. With more data coming, the system can finally determine the true cluster
structure. The rectangles plotted on the figure are the cluster descriptors as we
illustrated above to represent the cluster when the cluster is mature.

Figure 5.8: Result of incremental clustering on a data set with two synthetic Gaus-
sian clusters
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5.3.2 Simulated data set with arbitrary shapes

This simulated data set with arbitrary shapes is from [69] where a graph based
incremental clustering method, RepStream, is presented by using representative
points to cluster new incoming points and retain useful cluster information in the
knowledge repository. The results of RepStream with several different parameters,
including neighborhood connectivity value k and density scaler value α, are shown
in Figure 5.9.

(a) k=4 (b) k=5

Figure 5.9: Clustering result of RepStream on points with arbitrary shapes with
different neighborhood connectivity value k and density scaler value α = 4.0

The result using our method is shown in Figure 5.10.
By comparison as shown in Figure 5.10, we see that our GMD method performs

comparably to, if not better than, RepStream in clustering. The result of our method
GMD shown in Figure 5.10 is similar to Figure 5.9 (b). Both methods mistakenly
merge the two triangle clusters in the upper left corner. Our method has one more
falsely clustered point in the third triangle in the up part of the picture. However,
RepStream has more falsely clustered points in the left corner of the picture, for
example, points from the ring and points from the sphere inside the ring.

102



CHAPTER 5. RECOGNITION BY INCREMENTAL CLUSTERING OF DATA
STREAMS

Figure 5.10: Result of incremental clustering on a data set with arbitrary shapes by
the proposed GMD method

5.4 Result on Edinburgh pedestrian dataset

At different times, there may be different scenarios present in the scene. For example,
there are more people walking in certain directions than others. Suppose we have
four scenarios of the scene as shown in Figure 5.11. Our goal is to distinguish these
scenarios automatically.
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(a) scenario 1 (b) scenario 2

(c) scenario 3 (d) scenario 4

Figure 5.11: Four different scenarios of the scene

Intuitively, we want to count the number of trajectories performing different
activities, as shown in Figure 5.12. We assume people walking from different start
points to different end points are performing different activities. These number of
trajectories with different activities are then used to distinguish different scenarios
of the scene by our incremental clustering method, GMD. Now the problem is how
to cluster trajectories into different activities, which will also be solved by using the
GMD method we proposed above.
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(a) scenario 1 (b) scenario 2

(c) scenario 3 (d) scenario 4

Figure 5.12: Four different scenarios of the scene with trajectories in different direc-
tion labelled

Therefore, in this thesis, we use two steps of clustering to finally distinguish the
scenarios during different time as shown in Figure 5.13. The first step is to cluster
the trajectories into different activities. The number of occurrences of each activity
is additionally used to cluster the scenarios of the scene. In this thesis, different
scenarios of the scene are considered as different events occurred to the scene, and
only one event type is used to describe the scene during one period.
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Figure 5.13: The workflow of two step clustering

5.4.1 Incremental clustering of trajectories

5.4.1.1 Review on clustering of trajectories

The author who generates this Edinburgh pedestrian dataset builds a model of nor-
mal behavior based on the collected trajectories by using Gaussian mixture models.
The trajectories are approximated by cubic spline curves and corresponding prob-
ability scores are generated by the model to access the likelihood of them to be
normal behaviors[71].

The family of Dirichlet process related methods can be found in the application
of trajectory clustering. Wang et al.(2011)[109] proposed a nonparametric Bayesian
model called Dual Hierarchical Dirichlet Processes(Dual-HDP), where trajectories
are treated as documents and observations of an object on a trajectory are treated as
words in documents, in order to cluster the trajectories, detect abnormal trajectories
and model semantic regions. A non-parametric Bayesian model is used by Kooij et
al.(2012)[58] to jointly discover the dynamics of low-level actions and high-level
behaviors of the tracked people. Kooij et al. use Markov chains of actions to
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capture high-level temporal dynamics and use switching linear dynamics systems
to represent low-level motion dynamics. Kuettel el al.(2010) [63] present a method
that builds on Hierarchical Dirichlet Processes and learn dependencies between the
motion patterns to find the local temporal rules. In order to find global temporal
rules, Kuettel el al. use DDP-HMM (Dependent Dirichlet Processes-Hidden Markov
Model) to jointly learn co-occurring activities and their time dependencies.

Density-based methods are found to be used to cluster trajectories [9, 12, 88].
Akasapu(2011)[9] uses a relative density-based clustering algorithm RDBKNN de-
scribed in Liu(2003)[68] to cluster the trajectories. OPTICS[13] which is an ex-
tension of DBSCAN[36] with an infinite number of distance parameters εi is used
in Andrienko(2007)[12] and Rinzivillo(2008)[88] to cluster the trips in the city in
order to create a visual analytics tool. Fu(2005)[39] uses predefined template tra-
jectories to compare the similarity of the vehicle trajectory in order to cluster the
trajectory and detect anomalies. Atev(2010)[15] combines ideas from two spectral
clustering methods and use the trajectory-similarity measure based on the modified
Hausdorff distance. Gaussian process regression flow is used by Kim(2011)[57] to
model the velocity vector mean and variance, which is then adopted to classify the
incoming trajectory by comparing with the template trajectories. Stauffer(2000)[96]
uses on-line Vector Quantization to generate a codebook of prototype representa-
tions of the trajectory and then accumulate joint co-occurrences of representations,
which will be adopted later to create a hierarchical binary-tree classification of the
representations.

However, to our best knowledge, there are no reported algorithms for incremental
clustering of trajectories to date.

5.4.1.2 Feature selection for trajectory clustering

For the Edinburgh pedestrian data set, a certain trajectory may be categorized into
different activities based on different interests. Example features which describe the
characteristics of a trajectory can be the speed, direction, wandering time on certain
spots over the all trajectory, and the start and end point. With the speed feature,
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we can detect people who walk too fast, too slow, or change walking speed all the
time. With the direction feature, we can detect people who change destinations or
who are new to this place. With the wandering time feature on certain spots, we
can detect people who are waiting or talking with others. Some activities may need
a combination of features, which depends what the interesting events are for the
specific applications.

In this part of thesis, in order to visualize the effectiveness of the clustering
method, we use the start point and the end point of the trajectory as features.
By using the start point as the feature, the feature vector of trajectory i can be
represented as: [xi0, yi0], where 0 represents the first point of the trajectory. By using
the start point and the end point as the feature, the feature vector of trajectory i
can be represented as: [xi0, yi0, xie, yie], where e represents the last point of the
trajectory. This means that each trajectory in the data set will be represented by
this four dimensional feature vector for analysis.

5.4.1.3 Results of the trajectory clustering

By only using the start point of the trajectory as the feature, the result of incre-
mentally clustering of trajectories at different time stamps is shown in Figure 5.14.
The upper picture in each sub-figure is the result in the trajectory domain; while
the lower picture is the result in the feature domain, from which we can also infer
the semantic area of the scene. The result in the trajectory domain is the clusters of
trajectories which share the same start area. To better visualize the clusters in the
trajectory domain, the clusters with top 9 number of trajectories sharing the same
start area within one hour of data at frame 3601 are shown individually in different
figures in Figure 5.15.
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(a) (b)

(c) (d)

Figure 5.14: Incremental clustering of trajectories with start points as features
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Figure 5.15: The clusters with top 9 number of trajectories sharing the same start
area within one hour of data

By using both the start point and the end point of the trajectory, the trajectories
which share the same start area and end area are incrementally clustered into one
cluster over time as shown in Figure 5.16. The lower left sub-figure in each Figure
5.16 is the start point feature space, and the lower right sub-figure is the end point
feature space.

To better visualize the clusters in the trajectory domain, the clusters with top 9
number of trajectories sharing the same start and end areas within one hour of data
are shown individually in different figures in Figure 5.17.
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(a) (b)

(c) (d)

Figure 5.16: Incremental clustering of trajectories with start and end points as
features
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Figure 5.17: The clusters with top 9 number of trajectories sharing the same start
and end areas within one hour of data at frame 3601

5.4.2 Byproduct of clustering trajectories: extraction of se-

mantic areas

By clustering the trajectories with either start points or end points as features, or
with both start points and end points as features, we can cluster these feature points
into clusters {C1, C2, ...., Ci, ...., CN}, where N is the number of clusters found so far,
and Ci = ℵ(Xi, Si). If both start points and end points are used as features, each
cluster of the features is then a pair of areas where people have the possibility of
entering and leaving the Edinburgh forum. These areas are considered as semantic
areas which tell meaningful structure of the forum. By using the clusters found from
the previous step, we then identify these semantic areas. Suppose the feature vector
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Xi is represented as [xi0, yi0, xie, yie], and the covariance matrix is represented as

Si =


σi11 σi12 σi13 σi14

σi21 σi22 σi23 σi24

σi31 σi32 σi33 σi34

σi41 σi42 σi43 σi44

 . (5.13)

The start point cluster and end point cluster could then be separated from the
four feature cluster. The mean and covariance of the start point cluster can be

represented as:Xis = [xi0, yi0] and Sis =

[
σi11 σi12

σi21 σi22

]
respectively; while the mean

and covariance of the end point cluster can be represented as Xie = [xie, yie] and

Sie =

[
σi33 σi34

σi43 σi44

]
respectively. In order to find the distribution map Mapsemantic

of the semantic areas, all the clusters of start points and end points are summed
and weighted by the number ni of the feature points in each cluster as

Mapsemantic =
∑ N

i = 1
ni × ℵ(Xis, Sis) +

∑ N

i = 1
ni × ℵ(Xie, Sie). (5.14)

The distribution map of semantic areas is shown in Figure 5.18. The peaks of
the distribution are found and labeled as semantic areas in the order of significance
as shown in Figure 5.19. The semantic areas not only tell the meaningful physical
structure of the scene, but also could help to further cluster the events, which will
be explained in the next section.
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(a) (b)

Figure 5.18: The distribution of semantic areas

Figure 5.19: The scene with semantic areas labeled

5.4.3 Incremental clustering of events

As we mentioned before, the trajectories are first clustered into different activity
types. Suppose activity types are represented as [A1, A2, ..., Ai, ..., An], where n is
the number of all activity types. All these activity types form a space ΩA with
each dimension describing the property of an activity type. One property of an
activity type in this thesis is the number of occurrences of the activity. Suppose
during time period [t, t +4t] , the number of occurrences of each activity in space
ΩA is [m1,m2, ...,mi, ...,mn] respectively. Theoretically, the property values of all
the activity types should be used to distinguish one point from the other in space
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ΩA. However, in real situation, most of the activities do not show up very often.
Figure 5.20 shows the number of occurrences of all the detected activities over ap-
proximately 100 days of data from the Edinburgh data set and Figure 5.21 shows
the cumulative summation of the occurrence number of all the activities. There are
in total 728 distinct activity types found, but we could see that only the first few
activities have significant numbers of occurrences and there are more than 76,160
trajectories fed into the system. Those activities with low occurrences are useful
in detecting anomaly events. In order to better visualize and understand the event
clusters as the first step, fewer number of events is better. Therefore, in this thesis,
we will only consider the top 5 activities as an example to show how incremental
clustering method GMD is used to cluster events. These events, because of their
common occurrences, could also be used to describe the “normal” activity in the
scene.

Figure 5.20: The number of occurrences of all activities

One more issue we need to mention is that in the beginning, the activity cluster
indices are not stable yet due to the inherent property of the GMD incremental
clustering method. The cluster index can change due to merging and new cluster
index will be generated because a new cluster is created. Therefore we will not
necessarily have a stable space ΩA for clustering the event. Every merging between
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Figure 5.21: The cumulated summation of occurrence number of all activities

two activities will result in a projection in space ΩA, and then all the event clusters
in the changed space ΩA should be redefined.

This issue could be solved with the following workflow structure (although not
implemented here) as shown in Figure 5.22. Instead of redefining all the event
clusters whenever there is a merging between two activities, an offline mode in
addition to the online (streaming) mode (as shown in Figure 5.13) is supplied to
improve the efficiency of the algorithm. In the figure, 4T1, 4T2 and 4T3 are time
intervals to trigger the next step. 4T1 is the time interval to collect the features of
the trajectories, which is equal to 10 seconds in this thesis. 4T2 is the time interval
to define an event, which is equal to 10 minutes in this thesis. 4T3 is the time
interval to trigger the offline mode. The suggestion value for 4T3 could be days.
Since 4T3 is significant larger than 4T1 and 4T2, the procedure in the left box in
Figure 5.22 is considered as offline.

The purposes of the offline procedure are: 1, offering the relatively new fixed
space ΩA for the online event clustering; 2, redefining all the historical events in
the relatively new fixed space ΩA. We say the space ΩA is relatively new because
the time interval 4T3 to trigger the update of the space is longer than the time the
space can change. As noted before, every merging of two trajectory clusters results
in a change in space ΩA.
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To achieve these two purposes, the semantic areas should be found with the latest
information of clusters of trajectories. Each activity Ai along with its time stamp list
T li is then mapped to a pair of semantic areasAreaPairj = (AreaPairj1, AreaPairj2),
where AreaPairj1 is the start area of a type of activities and AreaPairj2 is the end
area of a type of activities. The set of area pairs is represented as {AreaPairj, j =

1, 2, 3, ..., n′}, where n′ is the number of all activity types. The set of area pairs
{AreaPairj, j = 1, 2, 3, ..., n′} forms a new space Ω′A for the next step of online clus-
tering of events. At the same time, all the historical events defined in the old space
ΩA should be redefined in the new updated space Ω′A. This is done by clustering
the new property vector [m1,m2, ...,mi, ...,mn′ ] in Ω′A for each event time interval.

The offline mode is triggered every time interval4T3 until the space ΩA is stable.

Trajectories

Features of trajectories

Clusters of trajectories:

Activities

Features of activities

during

Event during

Clustering

Timestamp history

of each activity

All historical events

(get) Semantic areas

Clustering

Clustering

Offer

fixed

space

offline

online

Figure 5.22: Clustering structure with online and offline modes

In this thesis, as we said, in order to better explain the result of clustering, we
only consider the top 5 activities. The set of area pairs used to form the space ΩA

is {(2, 1), (1, 2), (1, 9), (4, 1), (2, 3)}, as shown in Figure 5.23.

117



CHAPTER 5. RECOGNITION BY INCREMENTAL CLUSTERING OF DATA
STREAMS

Figure 5.23: 5 activities considered in this thesis

5.4.3.1 Feature selection for event clustering and results

Each activity can have several properties, such as the number of occurrences during
4t, normality, importance score, and so on. In this thesis, we will use the number
ni of the occurrences of an activity with AreaPairi as one dimension of features
to characterize an event during 4t. As we said, 5 activities are used to describe
the event of the scene. Therefore, the feature vector has 5 dimensions and can be
represented as feature = [n1, n2, n3, ..., n5]. After going through all the data, 86
types of events are found. The event clusters are sorted in a decreasing order of
the number of occurrences of the event, and event clusters 1, 11, 21, 31, 41, 51, 61,
71, 81, 91 are shown in Figure 5.24. The red line in each sub figure is the mean of
the cluster. We could see that different event clusters have different feature values
across all the 5 activities.

However, in some cases, we do not care the exact number of occurrences of
activities. We may only want to know whether there is a high number of occurrences
of activities. Therefore, the raw number should be categorized into levels, such
as “very low”, “low”, “normal”, “high”, “very high” and so on, by setting certain
thresholds to each level. In this thesis, the categorized levels (“low”, “high”) will be
used as features to cluster the event. After going through all the data, 16 types of
events are found. The result of event clustering with categorized levels as features
is shown in Figure 5.25.
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(a) cluster 1 (b) cluster 11 (c) cluster 21

(d) cluster 31 (e) cluster 41 (f) cluster 51

(g) cluster 61 (h) cluster 71 (i) cluster 81

Figure 5.24: Event clusters with raw numbers as features
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(a) cluster 1 (b) cluster 2 (c) cluster 3 (d) cluster 4

(e) cluster 5 (f) cluster 6 (g) cluster 7 (h) cluster 8

(i) cluster 9 (j) cluster 10 (k) cluster 11 (l) cluster 12

(m) cluster 13 (n) cluster 14 (o) cluster 15 (p) cluster 16

Figure 5.25: Event clusters with categorized features

120



Chapter 6

Memorization and prediction

The previous chapter talked about recognizing an event by clustering methods. By
event clustering, each measure over time is recognized as an event. That is in the
temporal space, each point is associated with a certain event. In order to understand
what happened in the past or predict what will happen in the future, those points
should be organized and the pattern of those points should be analyzed. In this the-
sis, we call the process of organizing the information of events in the temporal space
as memorization. By proper memorization, we could fetch the information from
memory quickly and make predictions by analyzing the pattern of the memories.

In this chapter, we will talk about the method of memorization and how to use
the memory to predict the future.

6.1 Memorization by double localization

6.1.1 What to memorize and how?

In order to memorize something, we may want to know: what it is, when it occurs,
where it is, how it is used, how it is related to others, and so on. One group of the
information is the static description of an object, which will not change over time,
such as what it is. The other group of the information is the temporal aspect of

121



CHAPTER 6. MEMORIZATION AND PREDICTION

that object, such as when it occurs. The information of where it is, how it is used
and how it is related to others may change over time or not, depending on a specific
situation. In this thesis we only record what it is and when it occurs as an example
to show the process of memorization.

The next question is how to memorize the events. It is straightforward to mem-
orize what the event is by recording the feature descriptions of the event as shown
in Figure 5.24 and 5.25. For the information of when the event occurs, we could also
simply record the timestamps every time it occurs. However, when an event occurs
intensively over time, there will be too many timestamps to be efficiently under-
stood. In order to prepare for the next step of the process, prediction, the temporal
information of an event should be memorized effectively. We propose to memorize
the events by double localization. A memory built with double localization tells
the temporal contexts of an event, including absolute temporal context and relative
temporal context.

Absolute temporal contexts seek to localize an event absolutely with its times-
tamps. For example, event A is a normal event and occurs very often over time.
However, event A only occurs in the morning. If event A occurs in the afternoon,
it is an abnormal event. We say event A did not occur in the expected temporal
context. The idea of temporal maps is used to hold the temporal locations of an
event, which will be explained in details later.

Relative temporal contexts are the temporal contexts between events, which
tells the relative relationship between events. One simple method of modeling the
temporal context between events is known as a Markov chain, telling the probability
that one event occurs after another event. For example, there are several types of
events, indexed as 1,2,3,...., as shown in Figure 6.1. After event 1, event 2 and event
5 could occur. After event 2, event 3 could occur and so on. Figure 6.1(a) shows
the normal temporal context between events. However, when event 3 occurs after
event 6 as shown in Figure 6.1(b), which is not expected under the normal temporal
context as shown in Figure 6.1(a), this situation is considered as abnormal. The
probability (or transition) matrix can be learned from the data and used to describe
the temporal context between events. In this thesis, the Markov chain model is used
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as an example to show how to localize an event with the temporal context between
events. More advanced methods will be reviewed in the following section. These
methods can capture deep relative relationship between events, not only relative
relationship between two events.

With the two types of temporal contexts, we could say that an event is double
localized (absolutely localized and relatively localized). An event is absolutely lo-
calized by its temporal map and relatively localized by the probability matrix from
Markov chain model.
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(a) Normal context(blue
arrows indicate normal
transitions)
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(b) Abnormal context
(red arrows indicate ab-
normal transitions)

Figure 6.1: Temporal context models between events

6.1.2 Related work

6.1.2.1 Absolute localization: Exploring temporal association rules

The notion of association rule is proposed to represent the co-occurrence of items
in shopping transaction database[7]. In order to locate the association rules in the
temporal space, the notion of temporal association rule is proposed to incorporate
the time in the discovery of association rules[10]. Calendar-based methods are found
to be used to describe the temporal pattern of the association rules[65][105].

The part of absolutely localizing an event in the temporal context of our proposed
method is inspired by the work of exploring calendar-based temporal association
rules. In order to find calendar-based temporal association, a calendar schema is
defined and then all large item sets for all star calendar patterns on the given calendar
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schema are found[65]. An example used in [65] for explaination is that: periodic cycle
“every seven day” or “every week” can be expressed by a calendar pattern 〈∗, i〉,
where 1 5 i 5 7 and ∗ can be translated as “every”, under the calendar schema
R = (week, day) depending on which day the cycle starts. A calendar pattern with
at least one wild-card symbol ∗ is called a star calendar pattern.

The large item sets at a time interval can be considered as a large number of
concurrent events. However, in this thesis, only one event is used to describe one
time interval. In order to transform the problem from exploring temporal association
rules in shopping transactions to discovering temporal pattern of an event, we assume
that each large item set can be represented by one description. Therefore, now
what we need to discover is the possible star calendar patterns associated with the
description. However, there are no good visualization methods used to aid to find
the pattern. In this thesis, the idea of temporal maps are used as complements.

6.1.2.2 Relative localization: Modeling dynamics of trajectories or be-
haviors

Context-Free Grammars (CFGs) are important concepts in linguistics to describe
the structure of sentences and words in natural language. CFGs are used to model
the dynamics of movements of vehicles on the free way[40] and recognize human
behaviors[78][90]. To conquer the limitation that CFGs require manually setting the
grammars, Xu(2012)[112] adopts Liang’s nonparametric model of HDP-SCFG[66],
and presents an unsupervised framework to analyze the video events.

A location predictor “WhereNext” is proposed in [77] to predict with a certain
level of accuracy the next location of a moving object, by building T-pattern Tree
which is learned from the trajectory patterns. The T-pattern Tree works like a
decision tree to predict the next location of the trajectory. However, the T-pattern
Tree may have the replicate nodes, which cause redundancy of the information and
also is difficult for visualization.

Besides, Hidden Markov Model (HMM) and Conditional Random Fields (CRFs)
related methods are often used to model the temporal structure of videos and
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texts[35, 50, 100, 95]. The learned temporal structure can be used as templates to
recognize interesting dynamics (behaviors, activities, trajectories, and so on) from
the sequences.

These methods offer good ways of modeling the temporal structure of certain
length of sequences, which tells the relative relationship or relative order between
the elements among the sequences. In order to capture the overall temporal context,
additional processing is required.

6.1.2.3 Similar terminology with different meanings

By searching related work in this field, terminology “context” shows in several areas
but carries different meanings. One example is in [76], the term “temporal context”
is mentioned, while it means the temporal related events detected in the natural
language, which are additionally converted into first order logic Suggested Upper
Merged Ontology[81], such as “earlier”, “during”, “overlapsTemporally” and so on.

The term “context modeling” is also often used in the work of context aware
applications [22, 67] where the contexts are different entities of the environment
existing and influencing to the application at the same time. In [22, 67], the definition
of situation is also given, which is the status of all the entities in the temporal space.
The situation defined in [22, 67] is similar to the event defined in this thesis, while
the relationships between situations is similar to what we want to explore in this
thesis. In [22, 67], the relationships between situations are represented by Allen’s
temporal logic[11].

6.1.3 Temporal map

6.1.3.1 Temporal measures as sequences

When we talk about temporal measurements of an object, it is natural to have a
time sequence in mind. At each time ti, there is a measurement xi of the object and
the time ti, where ti linearly goes from the past to the future in one dimensional
space R. The time sequence can be represented as (xi, ti), i = 1, 2, 3, ..., N , where
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N is the number of measurements. In order to find interesting event patterns and
their periods, one possible method is to segment the time series to locate the event
periods and additionally all the sub sequences during the event periods are clustered.
After that, the temporal pattern of an event is determined.

Take the Edinburgh data for an example, from the previous work of incremen-
tally clustering, we could recognize the trajectories and identify which activity the
trajectory belongs to. Therefore, we could count the number of people performing
each activity during a time interval. The time interval 10 minutes is used throughout
this thesis as an example. For now, suppose we are interested in a specific activity,
activity 1, which is people walking from semantic area 2 to semantic area 1 (cluster
1). The period of the event is found by segmenting the time series of the number of
people performing activity 1, as shown in Figure 6.2. We consider an event starts
when there is an increasing number of people participating in the scene and ends
when there is a decreasing number of people. Therefore, the second-derivative is
applied to the time series to find the start point of a new event. So far, when we
have the segmentation result of the time series as shown in Figure 6.2, we want to
check the result and see whether we could find some patterns of the events. During
the three day as shown in the Figure 6.2, we could find in the late morning from
10:00 to 12:00 there is an increasing number of people showing in the scene on all
the three days. However, it is very difficult to visualize such patterns. In addition,
we have years of data. It will be even more difficult to get some general ideas of the
temporal data by just visualization.

In the following section, temporal maps are introduced to offer better visualiza-
tion of the long term time series.
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Figure 6.2: Segmentation of temporal measures in the form of sequences

6.1.3.2 Temporal measures as maps

The temporal map is a way to hold and visualize the temporal measures. In order to
explain the idea of the temporal map, it is important to realize the serial time t can
be represented in a multiple dimensional space. Time can be also modeled[23][8].
One way of collapsing one dimensional serial time t into several dimensions is to use
a calendar (including year, month, day, weekday) and time string (including hour,
minute, second). A time point t can be localized by time tags: year, month, day,
hour, minute and second with the accuracy in the order of seconds. In order to
better represent certain periods, additional time tags are created, such as season,
quarter, decade, century and so on. These time tags are created to assist our life,
and in return, people perform activities according to the time system with these
time tags. Therefore, when we want to explore hidden rules or discover temporal
patterns from human activity related data, it is useful to take advantage of the
existing time tags.

Earlier work of visualizing time series on maps is found in [104, 82]. Van(1999)[104]
first clusters the daily time series with a bottom-up clustering algorithm, and differ-
ent cluster indices are shown in a calendar with different colors as shown in Figure
6.3. Nocke(2003)[82] indicates that the techniques of information visualization can
be used to support the specification of a model, analysis of a model and evaluation
of a model. The visualization system openDX is used as a platform and enhanced
by additional functionalities. Figure 6.4, called rectangular view by [8], is used to
show the effectiveness of visual exploration in model specification.
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Figure 6.4: Rectangular view[8] of a temporal clustering of meteorological time-
oriented data from the Potsdam observation station. Changing the periodicity (de-
noted as decade) from 10 years (left) to six years (right) makes the temporal pattern
of cluster 2 obvious[82].

Temporal maps can be generated by using two time tags X, Y as coordinate
labels, where X, Y ∈ {Y ear,Month,Day,Hour,Minute, Second, and so on} , and
instances of label X should be subdivisions of each instance of label Y in the tem-
poral domain, which is denoted mathematically as X v Y . For example, we could
form a temporal map with time tags X: Day and Y : Year, because Day 1− 365 is
a subdivision of any Year. However, we could not form a temporal map with time
tags X: Weekday(1-7) and Y : Day, because a weekday is not subsection of any
day in the temporal domain and they are equal in length. Time tags X, Y used as
coordinate labels of the temporal map can also be self-designed in order to visualize
specific problems as shown in Figure 6.4 .

The reasons for using the temporal map in this thesis are not only because it
offers very good visualization of the large scale of time series data, but also because
we want to effectively memorize the temporal data. The effective memorization of
the temporal data is important because it could assist the next step of the learning
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workflow, prediction, by building temporal context as we mentioned already. The
temporal map can be used to model the absolute temporal context by holding the
temporal data in the selected coordinates. The two coordinate labels of the temporal
map can be selected based on the interest of the user and the general intuition about
the hidden temporal pattern. The general intuition about the hidden temporal
pattern comes from the basic knowledge about the problem. For example, people
go to work normally during the day across the year; people have meals at noon
every day; the tree becomes green in the spring every year; and so on. This general
intuition about the hidden temporal pattern can be embedded into the model before
we build more delicate models to find subtle patterns.

Take the Edinburgh data for an example. We have knowledge that people on
campus are normally active during the day. Therefore, we are interested to see
how the scene changes during the day and over the days. The coordinate label
X represents every 10 minutes from 5:30AM to 5:00PM during the day and the
coordinate label Y represents the day. A temporal map of the occurrence number
of activity 1 is shown in Figure 6.5. By comparing with Figure 6.2, there is much
more information which can be visualized and we could have better overviews of the
whole temporal pattern. We could see there are more people showing in the scene in
the morning than the afternoon. Especially around 8:00AM and around 11:20AM
there are high occurrence numbers of activity 1.

(Note: the data during some periods are not available. The large smooth dark
blue areas on the temporal map indicates with high probability that there are no
data collected during those time because it is less likely that there are no people
showing in the scene for so long time. Detailed information about the Edinburgh
dataset can be found from website

http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/).
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Figure 6.5: The temporal map of the occurrence number of activity 1 (from semantic
area 2 to semantic area 1)

In the previous chapter, we have successfully recognized the event for each time
interval 4t = 10 minutes of the scene with the Edinburgh dataset. By using catego-
rized levels (“low”, “high”) as features, there are 16 types of events found through all
the data, as shown in Figure 5.25. The event characterizes the situation of the scene
during the time interval 10 minutes. In order to memorize the temporal occurrences
of the event, the temporal map can be used to absolutely localize the event. The
same coordinates are used as in Figure 6.5, but the pixel value on the temporal map
as shown in Figure 6.6 indicates the event index. To better visualize the temporal
distribution of an event, event 4 is shown individually in a temporal map as shown
in Figure 6.7.
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Daily 10 minutes interval 

Figure 6.6: The temporal map of all 16 events with part zoomed-in

Daily 10 minutes interval 

Figure 6.7: The temporal map of event 4

In order to incorporate more prior knowledge of hidden rules, the temporal map
can be extended to the temporal cube or temporal hyper-dimensional space with
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coordinates (L1, L2, ..., Ln) in dimensions n, with Li v Li+1. Figure 6.3 is an example
of the temporal cube by showing the third dimension with multiple maps. The
extension of temporal maps to more than 2 dimensions will not be pursued in this
thesis and it is considered as possible future work.

6.1.4 Probability (transition) matrix

A first-order Markov chain (often abbreviated as Markov chain) is a stochastic pro-
cess with the Markov property. The Markov property is that the next state de-
pends only on the current state and not on the sequence of events that preceded it.
That is: suppose there is a sequence of random variables X1, X2, ..., Xi, ..., Xm, and
Pr(Xn+1 = x|X1 = x1, X2 = x2, ..., Xn = xn) = Pr(Xn+1 = x|Xn = xn), where
Pr(Xn+1 = a|Xn = b) indicates the probability of the state transferring from b to
a. All possible values of Xi are presented as {s1, s2, s3, ..., si, ..., sk}, which forms a
state space set S, where si is a possible state in the chain and k is a finite number of
all possible states. A probability (or transition) matrix P can be used to represent
the transition probability between different states

P =



p1,1 p1,2 ... p1,j ... p1,k

p2,1 p2,2 ... p2,j ... p2,k
...

... . . . ... . . . ...
pi,1 pi,2 · · · pi,j · · · pi,k
...

... . . . ... . . . ...
pk,1 pk,2 · · · pk,j · · · pk,k


, (6.1)

where pi,j is the probability of state si transferred to state sj. Additionally, since the
probability of transitioning from state si to some state must be 1, so

∑k
j=1 pi,j = 1

for transitioning from si to sj in one step.
In this thesis, the (first-order) Markov chain model is used to model the relative

locations between events, so that an event can be localized relatively in the temporal
space by referring to the previous event, which offers another way to memorize the
event. The probability matrix can be learned from historical streaming data by
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using maximum likelihood. An occurrence matrix O is created in order to calculate
the probability matrix, as

O =



o1,1 o1,2 ... o1,j ... o1,k

o2,1 o2,2 ... o2,j ... o2,k
...

... . . . ... . . . ...
oi,1 oi,2 · · · oi,j · · · oi,k
...

... . . . ... . . . ...
ok,1 ok,2 · · · ok,j · · · ok,k


, (6.2)

where oi,j indicates the occurrence number of state i transferred to state j. Each
element of the probability matrix can be calculated by

pi,j =
oi,j∑k
j=1 oi,j

. (6.3)

With each current state si, if the next observed state is sj , the element oi,j of
the occurrence matrix O is updated by adding 1 and the corresponding row of the
probability matrix is also updated by using equation 6.3.

By going through all the Edinburgh data, the learned probability matrix with
one step (i.e., the probability of going from i to j in 1 time step) is shown in Figure
6.8a and the learned probability matrix with three steps is shown in Figure 6.8b. To
better understand the meaning of the probability matrix, the support of each event
is given in Figure 6.8c, where support is defined by the percentage of occurrence
number of an event among all events.

Note: the probability matrix in k steps tells the probability of state transitioning
from si to sj in k steps.
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(a) Probability matrix in one step (b) Probability matrix in 3 steps (c) Support (the percentage
of occurrences)

Figure 6.8: Probability Matrix and support of events learned from Edinburgh
dataset

6.2 Prediction

After recognizing and memorizing the event, we can now use the historical memo-
rized data to predict the likely future events.

6.2.1 predictive model

The predictive model is based on how the events are memorized. The events are
memorized by the method called double localization (absolute localization by tem-
poral maps and relative localization by probability matrix).

It is well known that the probability matrix from the Markov chain model can be
used for prediction, as shown in Figure 6.9. At time t, the corresponding event type
is Ei. With the information of current state Ei, the possible states at the next time
t + 1 can be obtained from the probability matrix, supposing they are Ej,Ek with
probability pj and pk respectively. However, the Markov chain model is considered
as time-homogeneous. This means that the prediction result with Markov chain
model is independent of time t, which is not true in some cases. Take the temporal
distribution of event 4 for an example, as shown Figure 6.7. It is obvious that event
4 occurs much more often in the morning than in the afternoon. If only the Markov
chain probability matrix is used in prediction, the result will be biased.
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In order to take consideration of the time t in the predictive model, the absolute
localization part (temporal maps) of the memorization is used. The temporal map
is used to calculate the probability of each event occurring at each timestamp on
the coordinate X of the map by maximum likelihood

psi, t =
Nsi, t∑k
j=1Nsj , t

, (6.4)

where Nsi,t indicates the number of state (or event) si that occurred at timestamp t
from historical data on the temporal map, and k is the number of all states (events)
observed at timestamp t. In other words, the temporal map can tell what kind of
events could possibly occur at a specific time interval from historical data. In the
example of the Edinburgh data, the temporal map can tell what kind of events could
possibly occur every 10 minutes during the day from historical data. On the other
hand, the probability matrix of the Markov chain model tells the relative locations
between events, which could be used to predict the event from another perspective.

t

Ej Pj

Ek Pk

t+1

PM: Probability Matrix

Ei

Figure 6.9: Prediction with probability matrix

Therefore, the predication model is built by incorporating the probability ma-
trix and the temporal map as shown in Figure 6.10. The probability obtained from
the temporal map is used to weight the probability obtained from the probability
matrix. Suppose the probability list obtained from the Markov chain model with
current event Ei for each event is {p1, p2, ..., pi, ...pk}, and the probability list ob-
tained from the temporal map with the timestamp t+ 1 is {p′1, p′2, ..., p′i, ...p′k}. The
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final prediction result at timestamp t+1 can be represented as the following equation

p′′i,t+1 =
pi × p′i∑k
i=1 pi × p′i

, (6.5)

where k is the number of all possible events.

t 

Ej Pj 

Ek Pk 

t+1 

Ej Pj’ 

Ek Pk’ 

PP

Ej Pj’’ 

Ek Pk’’ 

P PM: Probability Matrix 

TM: Temporal Map 

Ei 

’

Figure 6.10: The predictive model with the probability matrix and the temporal
map incorporated

6.2.2 Streaming prediction based on Edinburgh data

Until now, the three key steps of the whole framework of streaming analysis of the
time series data has been explained, from recognition, memorization to prediction.
The system can continuously recognize an event by the GMD incremental clustering
method, and memorize the recognition result at each timestamp by double local-
ization. The memory stored in the library can then be used to predict the future
event likelihood and detect anomalies. The Edinburgh pedestrian data is used to
illustrate the whole process as shown in Figure 6.11. At each time interval t , the
trajectory is recognized into the activity, and then the activity observed in the scene
defines (are recognized into) the event type. The event type associated with the
time interval t is memorized into the library by double localization, which builds
a temporal context. At the next time interval t + 1, the memory in the library is
used for prediction and detecting anomalies in different levels of information from
trajectories, activities to events.
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Figure 6.11: Stream prediction based on Edinburgh data

The event level of information is used as an example to show the prediction re-
sult. Two successive frames of the whole process (on 2009-9-23 8:10AM and 8:20AM
respectively) are shown in Figure 6.12 and Figure 6.13 as an example. The left sub
figure of Figure 6.12 and Figure 6.13 is the temporal map, the upper right sub figure
is the probability matrix and the lower right sub figure is the final result. On the
lower right sub figure, there are three pieces of information displayed. The second is
“Current” which shows the current measurement of the event index. The third one
is “Prediction” which shows the prediction result based on current event measure
and timestamp. The first one is “Last prediction” which shows the prediction result
from the previous timestamp. In another word, “Last prediction” shows the predic-
tion information of what could happen at the current timestamp, while we already
have the current measurement of the event. Therefore, the current measurement
is compared with the previous prediction to check whether the current event is as
predicted or it is an anomaly. In the result, if the current event is as predicted, it
is shown in green; otherwise it is shown in red as shown in Figure 6.12 and Figure
6.13.

In order to visualize a longer term of the prediction result instead of frame by
frame, another visualization of the prediction result is shown in Figure 6.14-6.16.
Figure 6.14 shows a short period of the prediction result so that the structure of the
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visualization can be clearly seen. At each timestamp, there are several predictions
shown in gray, and the end of the prediction line tells the prediction result including
the event type and the probability of the event which could occur. The probability
of the event is represented by the various size of the gray spot in the figure. The
size of the gray spot is proportional to p0.1, where p is the probability, 0.1 is chosen
so that the really small probability of an event can also be visualized instead of
overwhelmed by the thick line. The actual measurement of the event is shown in
green and red lines, where the green line indicates a normal event and the red line
indicates abnormal. Figure 6.15 shows a longer period of the prediction result when
most of the time the event occurs as predicted, which indicates the period is generally
“normal”. Figure 6.16 shows a longer period of the prediction result when there are
a lot of unexpected events occurred, which indicates something new occurred in the
scene.

Figure 6.12: The steaming analysis at 2009-9-23 8:10AM
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Figure 6.13: The steaming analysis at 2009-9-23 8:20AM
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Figure 6.14: The prediction result during a short period
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Figure 6.15: The prediction result during a long period when there are few anomalies
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Figure 6.16: The prediction result during a long period when there are more anoma-
lies
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Chapter 7

Conclusion

This thesis contains two main parts. The first part is temporal signature modeling
(i.e. process models) in DIRSIG, described in Chapter 2 and 3. The second part is
temporal signature analysis, described in Chapter 4, 5, and 6.

In the first part of the thesis, we developed a framework of incorporating temporal
signatures in DIRSIG to enhance the capacity of the current version of DIRSIG, so
that we could generate spatial-spectral-temporal synthetic images. The process
models are used to link temporal signatures of the scene object.

Due to this specific input design of DIRSIG, the sub process models could be
categorized into two types. One is that the process model drives the property of
each facet of the object changing over time, and the other one is that the process
model drives the geometry location of the object in the scene changing as a function
of time. Two example process models are used to show how the two types of process
models will be incorporated into DIRSIG. One example process model is a notional
two-tanks hydrodynamic & thermodynamic model, controlled by the state of valves
in the scenario. The other example process model is a parking lot model called
PARKVIEW which is based on the statistical description of a parking lot to generate
the status map of the parking lot over time. An experiment is also done to show how
the statistical description of the parking lot can be obtained through an image-based
method.
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The user can generate spatial-spectral-temporal synthetic images with DIRSIG
easier than before by using our proposed framework of incorporating temporal sig-
natures in DIRSIG.

In the second part of the thesis, a framework is developed for streaming analysis
of time series data: from recognition, to memorization, to prediction. This frame-
work can learn events and their temporal contexts from a streaming time series
without supervision. Those learned events and temporal contexts can then be used
to predict the future and detect anomalous activities. An incremental clustering
method is proposed to recognize events, while the memorization method of double
localization is proposed to learn the temporal contexts, including the absolute tem-
poral context and relative temporal context. A predictive model is built based on
double localization from the memorization step.

By using the proposed framework of temporal signature analysis, take the Edin-
burgh dataset for an example, we could not only get current high level information
of the scene, such as activities performed in the scene and events describing the
situation of the scene, but also we could reason whether current activities or events
are normal by referring to the temporal context learned from historical data. In the
end, 92,000+ observed trajectories and their temporal patterns over one year can be
summarized by a temporal map of 16 events and a probability (transition) matrix
between them. Our proposed framework offers an effective method of extracting
useful and manageable information from a huge amount of raw data of trajectories.

We expect our proposed framework of temporal signature analysis has wide ap-
plications in different fields, such as the internet usage, policy planning, security,
dynamics understanding and so on.
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Future work

Since the real data is not always ideally obeying certain temporal rules, the temporal
characteristics of the real data are often contaminated by noises to some extent. One
concern with the predictive model in the framework of streaming analysis of time
series data is that with enough long data, each timestamp may show up with all
the possible events, which results in all activities eventually being deemed “normal”.
However, this is not right from the interest of the user, because if a predictive system
predicts everything in the future is possible, actually the prediction system tells us
nothing. To resolve this concern, three possible aspects worthy to be pursued in the
future are described here.

The first aspect of the future work is to model “forgetting” and selective mem-
orization in the system. ’Forgetting’ something which is too old can make the
prediction result less “noisy” based on the memory. Selective memorization is to
remember something which is especially interesting even though it is already very
old. The score of interestingness of something can come from the preference of the
user. We could define something which rarely occurs as interesting, or something
occurring often as interesting. By modeling “forgetting” and selective memorization,
the system is more “focused” on something.

The second aspect of the future work is to improve the accuracy of absolute
localization of an event. By incorporating more prior knowledge of hidden rules,
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as mentioned earlier, the temporal map could be extended into hyper-dimensional
temporal space. By doing this, more specific absolute patterns could be explored,
which will limit the range of the prediction result.

The third aspect of the future work is to embed a better method for relative
localization. In this thesis, the simple first-order Markov chain is used to capture
the relative temporal positions among events. However, there are potentially more
complicated temporal hidden structures among the events in the temporal space.
Much work has been done in this field to capture the temporal structure of events,
such as variable-order Markov models, Conditional Random Fields (CRFs), Context
Free Grammars (CFGs), and so on. These methods have deeper memory of the
relative positions among events than a first-order Markov chain. By adopting those
methods, better and more “focused” prediction results should be expected.

Additionally, human memory has been studied for very long time [93][51]. Tem-
poral context models are built to explain the process of human memory. An interest-
ing property of human memory is that every free recall of an item can reconsolidate
the memory of that target item and items occurred close in time to the target item.
This property can be used in artificial intelligent systems to simulate the memory of
interesting items. The interesting items are the ones which are frequently queried by
the user. Every query will trigger an “recall” in the system. Therefore, by using the
property above, the artificial intelligent systems have better memories of interesting
items. However, human memory can be easily disrupted by representation of similar
items, weakened or even erased due to some reasons explained in [106][80]. For the
future work, the temporal context models of a “perfect” human memory should be
studied and embedded in the artificial intelligent systems.
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Appendix A

Results of streaming analysis of
randomized data

In order to see how the results of real data are different from the randomized data,
the real data are randomized in two levels: the activity level and the event level.
The results of streaming analysis of each randomized dataset are shown as below.

A.1 Results of temporally randomized activities

The occurrence moments (time points) of all the trajectories are randomized in the
original time space from August 25, 2009 to August 2, 2010 during the time period
when the camera collections are available.

Still the top 5 activities are used to identify the events occurred on the scene.
The quantized number (0 and 1) of occurrences of each activity is used as the
features, where 1 represents there is a high number of occurrences of the activity
and 0 represents there is a low number of occurrences of the activity. The threshold
to declare there is a high number of occurrences is still 5. By going through the
whole randomized activities with the incremental clustering method GMD, 6 events
are found as shown in Figure A.1.
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(a) cluster 1 (b) cluster 2 (c) cluster 3

(d) cluster 4 (e) cluster 5 (f) cluster 6

Figure A.1: Event clusters with categorized features by using the activity temporally
randomized data

By going through all the activity temporally randomized data, the learned prob-
ability matrix with one step is shown in Figure A.2a. The support of each event is
given in Figure A.2b.
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(a) Probability matrix in one step (b) Support (the percentage
of occurrences)

Figure A.2: Probability Matrix and support of events learned from the activity
temporally randomized data

A.2 Results of temporally randomized events

The original 16 events detected from the real Edinburgh data are randomized in the
temporal space with random numbers of occurrences of each event, which means all
the events have the same probability to occur at each time. By going through all
the event temporally randomized data, the learned probability matrix with one step
is shown in Figure A.3a. The support of each event is given in Figure A.3b.

(a) Probability matrix in one step (b) Support (the percentage
of occurrences)

Figure A.3: Probability Matrix and support of events learned from the event tem-
porally randomized data with random numbers of occurrences of each event

The original 16 events detected from the real Edinburgh data are randomized in
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the temporal space with correspondent support of occurrences of each event as the
real data, which means the possible of each event to occur is proportional to the
support of events from the real data. By going through all the event temporally
randomized data, the learned probability matrix with one step is shown in Figure
A.4a. The support of each event is given in Figure A.4b.

(a) Probability matrix in one step (b) Support (the percentage of
occurrences)

Figure A.4: Probability Matrix and support of events learned from the event tem-
porally randomized data with real support

A.3 Comparison of the prediction results between

real data and randomized data

The prediction results of different datasets during all the time period we have are
shown in Figure A.5. And the hourly anomaly number of each dataset is shown in
Figure A.6.
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(a) With the real Edinburg data (b) With the activity temporally randomized
data

(c) With event temporally randomized data
generated with random occurrence numbers of
events

(d) With event temporally randomized data gen-
erated based on the real support of events

Figure A.5: Prediction results
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(a) With the real Edinburg data (b) With the activity temporally randomized
data

(c) With the event temporally randomized data
generated with random occurrence numbers of
each event

(d) With event temporally randomized data
generated based on the real support of events

Figure A.6: Hourly anomaly numbers of 4 datasets

A.4 Discussions

By looking at the transition probability matrix of the randomized datasets, as shown
in Figure A.2a, Figure A.3a and Figure A.4a, we could see the probability of one
event transiting to the other event only randomly depends on the support of the
event. However, for the real data, there are certain possible hidden rules, which
means certain events have higher probabilities of occurring after some events aside
from the dependency of the support of the events, as shown in Figure 6.8a.

By looking at the hourly anomaly number of different datasets over time as
shown in Figure A.6, since the real data is not totally randomized and there are
possible rules which are learned by the system, we still could see some higher peaks
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over time along the curvature of hourly anomaly numbers as compared with the ran-
domized dataset. However, the hourly anomaly number of both real and randomized
datasets decreases over time. This is because the system incrementally learned all
the possibilities, and after certain a length of time, all the possibilities are learned,
which determines everything seems possible. That is to say we will lose prediction
powers. On one hand, this is the limitation of our current learning model. On the
other hand, this is because the real data is not ideal with pure and clean temporal
patterns from the perspective of our learning model. We assume there are certain
temporal patterns hidden in the real data, however mixed with noises. The future
work will be to improve the current learning model by considering several aspects as
we illustrated in the chapter of future work. By incorporating those three aspects,
we could expect that the predictive model outputs fewer varieties of possibilities and
therefore the predictive power can be increased.
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RIT twitter data

Due to the fast development of social networks, more and more people use smart
phones to socialize with each other. Twitter offers a very fast and easy way for users
to update their status at any place and time, which can be regarded as an important
feature to detect activities. In this thesis, the twitter data on RIT campus are
collected to understand the activities going on campus. In order to give you some
general ideas of RIT academic schedules, a brief introduction is given as follows.

Before September 2013, RIT has been using 10-week quarter system for full-time
undergraduate and graduate programs. There are four quarters for each academic
year, with three among which are primary for students to take courses which starts
from Labor Day in early September and ending in late May. During the summer
academic quarter, most of the students are not on campus. Most of the people
staying on campus during the summer are graduate students doing their thesis
projects, and research faculties or staff. There are one week breaks between academic
quarters and a two-week break for Christmas. During the academic quarter, courses
on campus are offered from 8:00 am to 10:00 pm on each weekday. During each
year, there are certain large scale special events going on campus, such as first
year student orientation, the commencement ceremony after the final exam in the
spring quarter, two career fairs in the spring quarter and the fall quarter respectively,
Imagine RIT festival for 1 day starting from the first Friday of May and night events
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(like social free dinner, hockey game, student activities and so on). When a certain
large scale event is held on campus, there will be many people gathering on campus
and certain associated features like the cars in the parking lot and electric usage
will also increase. And on some days the school is closed such as on Memorial day
and Independence day, which can also be observable from the several recordable
features, such as the car number in the parking lot, internet traffic, and electricity
usage, social network usage (such as twitter).

From September 2013, RIT starts to use semester academic system. The event
or activity features may follow a new pattern.

B.1 Data collection

Twitter offers the search API for developers to obtain the tweet information from
the current time point back to a week or 1500 tweets nearby a specific geolocation.
Figure B.1 shows the geospatial distribution of all the tweets nearby RIT campus
within 1 mile from December 21, 2012 to December 28, 2012. The place that has the
highest density of tweets can be considered as the place where there are people and
activities around. Figure B.2 shows the temporal distribution of the tweets sent out
at each featured place. We could see that on December 23 to 25 there are no tweets
sent out around student life center, which is consistent as we expected because the
student life center is closed on December 24 and 25, and on December 22 it only
opens for very short time. Besides the students on campus probably all leave for
their Christmas holiday on December 23. Therefore, tweets information can be used
as an important feature to detect human activities.
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Park Point Gym

Student life center

Pi Kappa Phi

Student Dorm

Figure B.1: Tweets spatial distribution as heat map on RIT campus from December
21, 2012 to December 28, 2012 (note: the higher density of tweets shows more red
with the support from Google map API and twitter search API)
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Figure B.2: Tweets temporal distribution on RIT campus from December 21, 2012
to December 28, 2012

The twitter data have been collected since December 21, 2012 until September
16, 2014. The data are saved both in MySQL and in csv files with twitter username,
tweet text content, tweet geolocation(longitude and latitude), and tweet time.

B.2 Preliminary data processing

The twitter data from December 21, 2012 to May 28, 2013 which are extracted from
the twitter API are used as an example to illustrate the processing process. The
tweet number sent by users per hour are counted and plotted as shown in Figure
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B.3. During each day, there are 24 measurement points.
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Figure B.3: Hourly tweet number

B.2.1 Preprocessing the data

Due to the mistakes made during the data collection, the twitter information on
January 13 and 14, 2013 is missing and the information on part of the day January
6, 7, 12 and 15, 2013 is also missing. Since currently we do not have the information
of other features which can aid the process of estimating the missing data of the
twitter information, the days on which the twitter information is missing are assumed
to be normal and the missing part of the data is assumed to be the same as on the
nearest day when the information is available. The data series with the missing data
estimated and filled in are shown in Figure B.4.
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Figure B.4: Hourly tweet number with missing data estimated

Besides, the preprocessing step of the data to remove the outliers omitted here,
as we do not have clear criteria to determine whether a measure point is an outlier or
an anomaly. The text content of the tweets will be analyzed to give a general idea of
the data points, which may be helpful to determine whether the outlier is because of
a special event. The text content extraction of the tweets will be implemented after
the step of event recognition. In addition, the collected twitter data are believed to
be noise free.

B.2.2 Result of event recognition

We assume that the event is daily based and each event is associated with a special
pattern of time series; therefore the day with significant different distribution of
twitter numbers per hour is considered as anomaly. The methods illustrated in
section 4.2.3 are used to understand the dataset as the first step, in order to check
whether our assumption about the events is correct. The anomaly percentage of the
whole data set is set as 15%, which is then used to determine the threshold of each
method.
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K-means, RX detector and TAD detector are three methods of event recognition
based on the features generated from the time series.

In the case of data collected from twitter API, 8 features of the time series during
a day are selected. The 4 features among 8 are obtained from the time series itself
during each day, which are the mean, variance, skewness, and maximum of the time
series during each day. The rest 4 features are obtained from the histogram of the
time series during each day. The histogram of the time series during each day is
first calculated. The rest 4 features are the summation of the histogram value in the
highest 15% bins, the skewness of the histogram, the mean and the variance value
of the big histogram (bigger than the mean of the histogram).

PCA (Principle Component Analysis) is performed on the data of the 8 features.
The percentage of variance along each principle component is shown in Figure B.5.
As we see, principle component 2 to 8 does not carry significant variance of the data,
which is less than 1% variance of the data. Therefore, the first 1 principle component
is selected as features which are used for the further processing. We should be aware
that different numbers of samples can render different distribution of percentage
of variance along each principle component. Figure B.6 shows the percentage of
variance carried in the first significant principle component with different number
of samples fed in.
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Figure B.5: Percentage of variance along each principle component
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Figure B.6: Percentage of variance carried in the first PC VS. the number of samples

B.2.2.1 Result of Euclidean distance

As we mentioned, the Euclidean distance between two time series is one method to
determine the similarity of two time series. The measured time series of one normal
day is assumed to be known and it is selected as January 16, 2013. The similarity of
the time series between all the other days and the assumed normal day is quantized
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by the Euclidean distance and the result is shown in the lower picture of Figure B.7.
The bigger value of the Euclidean distance implies less similarity between the tested
day and the normal day. By assuming that there are 15% of the data which are
anomalous, the threshold of the Euclidean distance is calculated. The tested days
with highest 15% Euclidean distance are considered as anomalous as shown in the
upper picture of Figure B.7 and marked with the red color.
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(a) Euclidean distance and the threshold to determine anomalous days (the red line is the threshold)
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(b) Anomalous days (Marked as the red color)

Figure B.7: Result of Euclidean distance similarity method
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B.2.2.2 Result of k-means classification

The unsupervised classification method k-means is used to classify the data set in
the selected 1 PC space and k is preliminarily assumed to be 6. The classified result
in the PC space is shown in Figure B.8. The corresponding result in the time series
space is shown in Figure B.9. In this case, the clusters with few elements (less then
20% of the whole data set) are considered as anomalous, which results in the data
set marked with blue and black are normal. The anomaly percentage in this case is
13%.
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Figure B.8: Classified PC space using k-means classifier with bar plot

B.2.2.3 Result of RX detector

RX detector is used to detect anomalies in the space composed by the selected 1
significant PC. The threshold is calculated by assuming that the anomaly percentage
is 15%. The result in the PC space is shown in Figure B.10. The corresponding
result in time series space is shown in Figure B.11. Note that the anomalies are
marked by red color.
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Figure B.9: Classified time series using k-means classifier
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Figure B.10: Result of RX detector in PC space with bar plot
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Figure B.11: Result of RX detector in time series space

B.2.2.4 Result of TAD anomaly detection

The TAD method is used to detect the anomaly day from the whole data set in
the selected PC space. The TAD score is shown in the lower figure of B.13. The
threshold is calculated by selecting the top 15% TAD scores, which is then used
to separate the anomaly day from the normal day. The anomaly days are marked
with red color in upper figure of B.13. In the PC space, TAD method separates the
anomaly day from the normal day as shown in Figure B.12.
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Figure B.12: Result of TAD detector in PC space with bar plot
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(a) TAD scores and the threshold marked as a red line
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Figure B.13: Result of TAD in time series space and TAD score
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B.2.2.5 Result of Fourier filter

First the original time series as shown in Figure B.4 is transformed in frequency
domain by performing Fourier transformation. In order to obtain the cyclic behavior
of the time series and to smooth the time series, a filter is designed to keep the
significant frequency components. The significant frequency components are found
by using a peak finder tool. The inverse Fourier transformation is performed on the
filtered frequency domain to obtain the smoothed time series as shown in Figure
B.14. The difference between the original and filtered time series is shown in Figure
B.15, which is also considered as the anomaly or noises. The threshold is then
calculated based on the assumption the anomaly percentage of the whole data set
is 15%. The result of Fourier filter method by using the calculated threshold to
determine the anomaly is shown in Figure B.16. The anomaly days are marked as
red.
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Figure B.14: Fourier filtered time series
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Figure B.15: Difference between the original and filtered time series
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Figure B.16: Result of anomaly detection by using Fourier filter
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B.2.2.6 Result comparison

As we see from above results, the five methods of event recognition can detect the
event in different levels. Table B.1 shows how the results of different event recog-
nition methods differ from each other. As we do not know the standard criteria to
determine the anomaly, it is not so easy to quantize the effectiveness of the different
event detection methods. However, from the point of determine the threshold of
different methods, TAD detector can separate the anomalous days and normal days
more obviously, by comparing to other methods, such as Euclidean distance and
Fourier filter, which can also been seen from Figure B.17 to Figure B.20. These
figures shows the histogram of the values of differences which is used to separate the
background and the target.
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Figure B.17: The histogram of Euclidean distance and the threshold chosen (marked
as a red line)
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Figure B.18: The histogram of RX score and the threshold chosen (marked as a red
line)
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Figure B.19: The histogram of TAD score and the threshold chosen (marked as a
red line)
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Figure B.20: The histogram of differences between FFT filtered series and raw time
series; the threshold is marked as a red line

B.2.3 Event content understanding

In order to check the type of the detected anomalous event, we need to understand
what is happening on the anomalous days. Twitter API offers the twitter text
content, which is considered as one method to access the event content. Besides, by
checking the twitter text content, we can also determine whether the detected events
are just noises, which should be ignored. The most frequent words are extracted
from the twitter text content, which is considered as the preliminary understanding
of the event content.

B.2.3.1 Method

Several steps are done to get the most frequent words in the tweet texts.
1. The tweet texts are extracted in the interesting time range.
2. The text string is then separated into words by the delimiter of space between

words.
3. A blacklist is created to store the words which are not interesting, such as the
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day(yyyy-mm-dd) Euclidean distance K-means RX TAD Fourier filter
2012-12-29 x x
2012-12-30 x x
2012-12-31 x
2013-01-24 x
2013-01-29 x
2013-02-02 x x x
2013-02-03 x x x
2013-02-06 x
2013-02-09 x
2013-02-13 x x x
2013-02-23 x x x x
2013-02-24 x
2013-02-27 x
2013-03-03 x x
2013-03-04 x x x
2013-03-05 x x x x x
2013-03-08 x
2013-03-09 x x x x x
2013-03-10 x
2013-03-11 x x x x x
2013-03-12 x x x
2013-03-13 x x x x
2013-03-14 x x
2013-03-24 x x
2013-03-25 x x x x
2013-03-27 x x x
2013-03-28 x x x x
2013-03-29 x
2013-04-05 x
2013-04-21 x x x
2013-04-23 x x x x x
2013-04-24 x x x x x
2013-04-28 x x x
2013-05-15 x x x x
2013-05-16 x
2013-05-19 x x
2013-05-20 x x x
2013-05-22 x x x
2013-05-23 x x
2013-05-24 x x
2013-05-25 x x
2013-05-26 x x
2013-05-27 x x
2013-05-28 x x x

Table B.1: Event recognition result comparison
187



APPENDIX B. RIT TWITTER DATA

Conjunction words, Preposition words, and so on. However, currently the blacklist
is not rich enough to cover all the non-interesting words and it is also sometimes
hard to decide which words are non-interesting.

4. The words in step 2 are then filtered by deleting the words which are shown
on the blacklist.

5. The times of each word tweeted by the twitter users are counted.

B.2.3.2 Result

By using the method described above, the favorite top 30 tweet words of selected
anomalous days are listed in Tables B.2 and B.3. The frequency of each word shown
up on the tweet text is listed besides the tweet word.

B.2.3.3 Discussion and future work

As we see from the tableB.2 and B.3, the frequent tweet words on some anomaly days
can tell something about what possible events occurred. For example, on February
3, 2013, superbowl is hold and the keyword of “superbowl” is on the top 3 sent by
the user. On February 13, 2013, one day before valentine’s day, the user may be
more active on the social network which results in the day is regarded as anomaly.
On May 15, 2013, it looks like #rit and #tuft have a sport game together.

However, it is still very difficult to understand how the tweet number is related
to the activity. On one hand, some normal days may have a high tweet number.
For example on March 9, 2013, the tweet number is very large, but by looking at
the top tweet words, it is hard to guess what is going on on that day. The high
number of tweets may be because of some tweets from a popular user is retweeted
over and over again, as “@trawwquotes:” is quoted 727 times. On the other hand,
some days, with events like Imagine RIT and Commencement ceremonies when we
expect to have very high tweet numbers, are not categorized as anomaly days.

Therefore, by using only twitter information to detect all the days having inter-
esting events, the result may be biased or not accurate. However, we find the twitter
data can well separate the days of RIT defined holidays and of non-holidays. Here
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2/3/2013 2/13/2013 3/3/2013
49ers, (22) @chr_seungmigpb (22) http://t.co/lseu8dqdph (117)
wind. (21) que (19) mac (116)

superbowl (16) les (16) h-gang (116)
ravens (15) nun (14) #hitsingle (115)
tonight. (12) @nejooe: (14) amo (20)
love (12) lool (13) pas (16)
good (12) pas? (13) les (13)

@gerrythornberg: (11) rit. (11) cst (12)
super (11) cest (11) que (10)

commercials (10) @kissminzy2ne1: (10) che (9)
@rit (10) cst (10) @sofiane78vp (8)

@vancedeatherage: (9) say (9) @gwaadacaaps (8)
commercial (9) @ariiportilla (9) vous (7)

prefer (9) &amp; (8) qui (7)
game (9) jvais (8) sur (6)
time (8) time! (8) pour (6)

@xalyciavanheese: (8) mdrr (8) des (6)
especially (7) kiss_kyungsoo: (7) love (5)
beyonc?’s (7) college (7) jai (5)

lewis (7) des (7) bien (5)
@secsirita: (7) @elizakeeys (7) tes (5)

@caseygonta: (7) pour (7) #souffrant (5)
flows (7) toi (7) comme (4)
ray (7) jai (6) moi (4)

naturally (7) @eazyscotty78 (6) debt, (4)
team (7) sorry (6) @monsterxcept (4)
well (7) @iamsicajung (6) non (4)
hair (7) trop (6) allez (4)
bowl (7) @lollipop_yoona (6) mdrr (4)
&amp; (6) new (6) @marokinio78 (4)

Table B.2: tweet content on an anomaly day
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3/4/2013 3/9/2013 5/15/2013
http://t.co/lseu8dqdph (60) @trawwquotes: (727) #rit (48)

mac (60) shit, (110) #tufts (31)
h-gang (60) side. (101) quarter (13)

#hitsingle (60) didn’t (85) offense (12)
pas (17) everybody (78) time (11)

@rich_billsmafia (11) love (75) goal (11)
vous (10) wrong (69) another. (11)
que (10) give (69) first (10)
mdrr (9) dear"" (63) ball (10)
brony (8) text (63) minutes?! (9)
&amp; (8) worth (61) left (9)
today, (8) fuck (58) game (8)

@nejooe: (8) cheater, (54) score (7)
@deesse_goddess (8) people (53) love (7)

love (7) head? (51) watkins (7)
@xgivemeciasten (7) broke? (51) rochester (7)
@keymangbujoli (6) business. (51) jumbos (7)
@mamzelleab (6) mf’s (51) lead. (7)

what’s (6) pregnant? (51) great (6)
cst (6) again." (51) remaining (6)

wrong, (6) worried (51) goalie (6)
tes (6) money. (51) crease (5)
class (6) care, (47) high (5)
rit (6) expect (45) violation (5)

good (6) retweet (45) final (5)
time (6) everyday, (44) play. (5)
say (6) &amp; (43) stadium (5)
savez (6) mom. (39) half (5)
fan. (5) girlfriend!! (38) stick (4)
telling (5) boyfriend, (37) keep (4)

Table B.3: tweet content on an anomaly day
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RIT defined holidays include national holidays and RIT quarter break or semester
break. Figure B.21 shows the hourly tweet number from December 2013 to March
2014 with RIT defined holidays marked. And we also see some differences between
weekdays and weekends. Normally, during the holidays and weekends, the tweet
number is significant lower than the other days.

Figure B.21: Hourly tweet number from December 2012 to March 2014 with RIT
defined holidays marked

Therefore, with the twitter data, the next step would be to recognize the daily
events, such as holidays and nonholiday, rather than try to separate the specific daily
events, such as the day with the career fair, Imagine RIT and so on. With this prior
knowledge of twitter data, we could continuously recognize each day as a holiday or a
nonholiday, and then memorize the event with the method of double localization we
illustrated in section 6.1. During the memorization step, a temporal map can be set
up as the absolute localization. In order to embed effective prior temporal patterns
into the temporal map, “weekday” and “month” can be used as the coordinates of the
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temporal map. Further more, the temporal map can be extended into temporal cube
by adding another coordinate such as “year”, so that we could learn how the twitter
user activity on RIT campus changes over the year. In order to relative localize
an event, the Markov chains can be used learn the transition probability from one
event to another one. Based on the temporal map and transition probability matrix
from the Markov chains learned from the historical twitter data, we could then make
predications and detect anomalies. Detailed implementation of the whole frame work
with twitter data is not pursued in this thesis as we did with Edinburgh dataset.
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