
Automatic 3D Building Detection and Modeling from Airborne

LiDAR Point Clouds

by

Shaohui Sun

B.S. Sun Yat-sen University, China, 2006

M.S. Sun Yat-sen University, China, 2008

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

in the Chester F. Carlson Center for Imaging Science

College of Science

Rochester Institute of Technology

December 4, 2013

Signature of the Author

Accepted by
Coordinator, Ph.D. Degree Program Date

CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE

COLLEGE OF SCIENCE

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

CERTIFICATE OF APPROVAL

Ph.D. DEGREE DISSERTATION

The Ph.D. Degree Dissertation of Shaohui Sun
has been examined and approved by the

dissertation committee as satisfactory for the
dissertation required for the

Ph.D. degree in Imaging Science

Dr. Carl Salvaggio, Dissertation Advisor

Dr. Anthony Harkin

Dr. Nathan Cahill

Dr. Jinwei Gu

Date

DISSERTATION RELEASE PERMISSION

ROCHESTER INSTITUTE OF TECHNOLOGY

COLLEGE OF SCIENCE

CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE

Title of Dissertation:

Automatic 3D Building Detection and Modeling from Airborne

LiDAR Point Clouds

I, Shaohui Sun, hereby grant permission to Wallace Memorial Library of R.I.T.

to reproduce my thesis in whole or in part. Any reproduction will not be for

commercial use or profit.

Signature
Date

Automatic 3D Building Detection and Modeling from Airborne

LiDAR Point Clouds

by

Shaohui Sun

Submitted to the
Chester F. Carlson Center for Imaging Science

in partial fulfillment of the requirements
for the Doctor of Philosophy Degree

at the Rochester Institute of Technology

Abstract

Urban reconstruction, with an emphasis on man-made structure modeling, is an active

research area with broad impact on several potential applications. Urban reconstruction

combines photogrammetry, remote sensing, computer vision, and computer graphics.

Even though there is a huge volume of work that has been done, many problems still

remain unsolved. Automation is one of the key focus areas in this research. In this

work, a fast, completely automated method to create 3D watertight building models

from airborne LiDAR (Light Detection and Ranging) point clouds is presented. The

developed method analyzes the scene content and produces multi-layer rooftops, with

complex rigorous boundaries and vertical walls, that connect rooftops to the ground.

The graph cuts algorithm is used to separate vegetative elements from the rest of the

scene content, which is based on the local analysis about the properties of the local

implicit surface patch. The ground terrain and building rooftop footprints are then

extracted, utilizing the developed strategy, a two-step hierarchical Euclidean clustering.

The method presented here adopts a ”divide-and-conquer” scheme. Once the building

footprints are segmented from the terrain and vegetative areas, the whole scene is

divided into individual pendent processing units which represent potential points on

the rooftop. For each individual building region, significant features on the rooftop are

further detected using a specifically designed region-growing algorithm with surface

smoothness constraints. The principal orientation of each building rooftop feature

I

II

is calculated using a minimum bounding box fitting technique, and is used to guide

the refinement of shapes and boundaries of the rooftop parts. Boundaries for all of

these features are refined for the purpose of producing strict description. Once the

description of the rooftops is achieved, polygonal mesh models are generated by creating

surface patches with outlines defined by detected vertices to produce triangulated mesh

models. These triangulated mesh models are suitable for many applications, such as

3D mapping, urban planning and augmented reality.

II

Acknowledgements

Pursuing Ph.D. at R.I.T has become one of the most important life experiences of mine.

I enjoyed every single moment here. I am so proud of being a member of R.I.T alumni

community.

This thesis would not have been possible without the help, support, and advice

from my advisor, Dr. Carl Salvaggio. Dr. Salvaggio has unsurpassed knowledge of a

variety of topics in imaging science and grand vision that has been helping my research

stay on the right track. Apart from being a great academic advisor, Dr. Salvaggio is

also a wonderful career and life advisor. I also thank him for being such a trustworthy

friend.

I wish to thank Dr. Nate Cahill for helping me conduct research on problems of

computer vision during our short-term collaboration in my first year at R.I.T. Dr.

Cahill taught me not only the knowledge of advanced image analysis but also the time

management skill as a researcher.

I am extremely grateful to my other research committee members: Dr. Tony Harkin

and Dr. Jinwei Gu for providing insightful advice without which I would not have been

able to make any improvement.

I am also grateful to all the professors from whom I took classes. The knowledge I

have gained through their wonderful teaching has been helping me significantly in my

new career.

I would like to acknowledge the financial and academic support of R.I.T, Center for

Imaging Science and the DIRS group throughout my study here. Thanks to Sue Chan

for being incredibly patient and professional when I have all kinds of questions.

It has been a great honor to work with fellows in the DIRS group. I feel like being

a member of a big family here. There is a huge amount of research data available that

I can have easy access to anytime. Special thanks to Chris De Angelis for providing me

with DIRSIG simulated data. Thanks to Cindy Schultz for always keeping everything

well organized. Thanks to Mike Richardson for helping me understand the important

paperwork when I was about to get the job. Thanks to my fellow officemates, Mike

Harris, David Nilosek, and Katie Salvaggio. With those casual conversations related to

study, research and life, I received a lot of joy and happiness, which helped me a lot on

adjusting myself under great pressure.

III

IV

I also wish to thank many classmates of Class 2010 with whom I shared office

rooms on the second floor in my first year, including Bikash Basnet, Javier Concha,

Aly Artusio-Glimpse, Shagan Sah, Siyu Zhu, Jiashu Zhang, Viraj Adduru and Poon

Kanburapa. We helped each other on homework, projects. It has been a huge pleasure

to study with all of them.

Bin Chen, Javier Concha, Kelly Canham and I had a great time at IGARSS 2012

in Munich, Germany. They were all there supporting me when I was presenting my

research to researchers from places all over the world. The smile of Dr. John Kerekes

who was the session chair at IGARSS 2012 helped me calm down before the speech,

put myself together and embraced the challenge.

I would like to thank the lovely family from Irondequoit. Michele and Charlie are

like parents to me. Tom and Felice are like brother and sister to me. I enjoyed every

holiday we spend together. They have made me feel like I always have a home in

Rochester.

Thanks to Dr. Lingfei Meng for sharing his own experience of how he managed

to survive through the final preparation for his defense. Thanks to A.J. Altman, the

founder of Hover, Inc, for being very supportive on my school work and providing partial

tuition assistance. Thanks to Ravali Kankanala for being my dearest and closest friend

and supporting me unconditionally.

In the end, I thank everyone that directly or indirectly helped me for the past a few

years. I would never forget you wherever I go.

IV

To my mom, dad, sister in China.

Thanks for always having great faith in me, even when I go through incredibly tough

time.

V

Contents

1 Introduction 1

2 Background 3

2.1 DEM, DSM, and DTM . 3

2.2 Camera Model . 3

2.3 Point Clouds: Photogrammetry vs. LiDAR 5

2.3.1 Photogrammetric Technology . 5

2.3.2 Airborne LiDAR . 5

2.3.3 Which is better? . 7

2.4 RANdom Sample And Consensus (RANSAC) 7

2.4.1 Overview . 7

2.4.2 RANSAC Options . 8

2.4.3 Estimation of 3D Plane . 8

2.5 Graph Cuts in Segmentation . 9

2.5.1 Description . 10

2.5.2 The Min-Cut and Max-Flow Problem 11

2.5.3 Binary Optimization by Graph Cuts 11

2.5.4 Multiple Label Optimization by Graph Cuts 13

2.5.5 α-Expansion Move and α-β Swap Move 13

2.6 Region Growing . 13

2.7 Polyline Simplification Methods . 14

2.7.1 Douglas-Peucker Algorithm . 15

2.7.2 Sleeve-fitting Algorithm . 15

2.8 Related Work . 15

VI

CONTENTS VII

2.8.1 Building Footprint Detection . 16

2.8.2 Image-based Reconstruction . 18

2.8.3 LiDAR-based Reconstruction . 19

2.8.4 Fusion of Optical Imagery and Range Data 22

2.9 Objective of this Research . 24

3 Methodology 25

3.1 Overview . 25

3.2 Point Sampled Representation . 27

3.3 Local Analysis . 28

3.3.1 Estimation of Point Density . 28

3.3.2 Concept of ”Local Neighborhoods” 28

3.3.3 K Nearest Neighbors Searching 29

3.3.4 Radius Searching . 29

3.3.5 Estimation of Point Normal and Surface Flatness 30

3.3.6 Variation of the Distribution of Normals 32

3.4 Classification of the Scene . 33

3.4.1 Vegetation Detection by Shape Analysis on High Resolution Dig-

ital Surface Model (HDSM) . 35

3.4.2 Vegetation Detection by Graph Cuts 38

3.5 Terrain and Building Footprints Extraction 53

3.5.1 Euclidean Based Clustering . 53

3.5.2 Two-step Hierarchical Euclidean Clustering 54

3.5.3 Example Results . 56

3.6 Building Rooftop Description . 59

3.6.1 Rooftop Feature Detection . 60

3.6.2 Example Results . 64

3.6.3 Determination of Rooftop Orientation 66

3.7 3D Modeling . 74

3.7.1 Structure of Building Model . 74

3.7.2 Roof Boundary Extraction, Simplification and Refinement 75

3.7.3 Generation of Polygonal Mesh 75

3.7.4 Surface Triangulation . 77

3.7.5 Terrain Hole Filling . 78

VII

CONTENTS VIII

3.7.6 Roof Feature Polygon Clipping and Closing 80

4 Experiments and Visual Results Using Real Data 84

4.1 Implementation and Parameter Setting 84

4.2 Data and Considerations . 85

4.3 Performance and Visualization . 87

4.4 R.I.T Data . 88

4.5 Downtown Rochester and Alcoa Data 92

5 Validation With DIRSIG Simulation 100

5.1 DIRSIG . 100

5.2 Scene Simulation . 101

5.3 Result of Scene Classification . 103

5.4 Result of Terrain and Footprints Detection 107

5.5 Roof Feature Detection and Various Shape Fitting - An Extended Dis-

cussion . 108

5.6 Results of Rooftop Feature Detection and Modeling 112

5.7 Analysis of Modeling Errors . 114

6 Summary 118

6.1 Conclusion . 118

6.2 Limitations . 119

6.3 Recommended Future Work . 120

A Proof 121

A.1 Relationship Between Sum of Squared Difference and Cross Correlation 121

B Source Code Examples 123

B.1 MATLAB Script of the Automatic Workflow 123

B.2 C++ Code for Region Growing Based Rooftop Feature Detection 125

C DIRSIG ODB File 128

VIII

List of Figures

2.1 A digital surface model includes buildings and other objects on the

ground. A digital terrain model represents the bare ground. 4

2.2 Data collecting by airborne LiDAR. The air plane carries a laser scanner

to measure the time traveling distance (on the left), generating a point

cloud (on the right). 6

2.3 A demo graph with two terminal nodes s and t. Each node is connected

with its four neighbors. A minimal cut is found and then the graph is

divided into two parts. 10

3.1 3D scene modeling workflow. It involves a group of modules, such as

scene classification, rooftop feature detection, boundary production, and

mesh modeling. 26

3.2 Two types of nearest neighbor searching (K Nearest Neighbor searching

(K is 6 in the figure) and Radius searching (r is the radius in the figure)) 29

3.3 Normal estimation according to the eigenvector corresponding to the

smallest eigenvalue. The orientation has an ambiguity in nature. The

view point (shown in black triangle) can be added to cancel this ambiguity. 32

3.4 Gaussian normal hemisphere. The left figure shows all normal vectors

within a small neighborhood are very consistent to each other, and the

right figure shows the normal vectors within a small neighborhood dis-

tribute sparsely all over the hemisphere (each red dot represents a normal

vector). Original points are also presented. 33

IX

LIST OF FIGURES X

3.5 Classification of a point cloud representing a scene. Three categories are

defined, which are trees, building footprints, and the terrain. Trees are

to be eliminated from the scene. Buildings are to be reconstructed. The

terrain also needs to be modeled. 35

3.6 One target pixel (red solid square) with some original points (green and

yellow solid squares) around it. Five nearest neighbors are highlighted

with bold boundaries. After sorting, the three green squares become

candidates for the elevation estimation of the target pixel. The mean

value of their elevations is assigned to the target pixel. 36

3.7 HDSM before and after nearest neighbor interpolation. 37

3.8 Comparison of the shape of a tree in the scene and the shape of a Gaus-

sian kernel. 38

3.9 T -map. In this map, tree areas are mainly colored in blue, which could

provide a cue to assist segmenting them out. In the meanwhile, edges

around rooftops are also somehow contaminated due to the limitation of

this approach. 38

3.10 An non-grid graph constructed from a irregularly distributed point cloud.

Each node is a 3D point in the point cloud. It is connected by its four

nearest neighbors. The weights on the edges (black) are based on the

Euclidean distances between them. A minimum cut is found in the right

figure. 40

3.11 Plots of normalized penalty function (data term 3.16) of assigning a label

to a node in the graph with some σn and σf values. 42

3.12 Testing area NO.1 on the northern part of R.I.T campus (including the

CIS building). 44

3.13 Comparison of color-coded normal map for increasing size n of local

neighborhood (testing area NO.1). 44

3.14 Comparison of color-coded surface flatness map for increasing size n of

local neighborhood (testing area NO.1). 45

3.15 Comparison of color-coded normal distribution map for increasing size

n of local neighborhood (testing area NO.1). 45

X

LIST OF FIGURES XI

3.16 Vegetation detection result on testing area NO.1: the top left figure

shows color-coded point cloud based on the elevation; the rest figures

shows the separation of trees from the other content from three different

views. 46

3.17 Testing area NO.2 on the southern part of R.I.T campus 47

3.18 Vegetation detection result on testing area NO.2: the zoom-in region

shows a good example that the method works effectively even sometimes

the tree canopy blocks part of the rooftop. 48

3.19 Testing area NO.3 on the whole northern part of R.I.T campus 49

3.20 Vegetation detection result on testing area of the whole northern part of

R.I.T campus. Bright green points are labeled as vegetations. 50

3.21 A few of zoom-in views of the regions in the whole northern part of RIT

campus showing the details of vegetation extraction by the graph cuts

algorithm. 51

3.22 False alarms of the graph cuts based classification result. 52

3.23 Flow of the two-step hierarchical Euclidean clustering. The special op-

erator refers to the operation of subtracting the terrain part from the

input tree excluded scene. 55

3.24 A scene of the northern part of R.I.T campus, and the vegetative areas

are detected based on the graph cuts algorithm. 56

3.25 A scene of the northern part of R.I.T campus, and the vegetative areas

are removed and only the ground and buildings are left. 57

3.26 The terrain part of the northern part of R.I.T campus. It is obtained by

the first step of the two-step hierarchical Euclidean clustering. 57

3.27 All significant building footprints in the scene of the northern part of

R.I.T campus. They are obtained by the second step of the two-step

hierarchical Euclidean clustering. 58

3.28 A scene of the northern part of R.I.T campus (include both terrain and

building footprints). 58

3.29 Two examples of rooftops with different complexities (courtesy to Google

Map). A simple one could have only one flat surface. A complex one

could have a complicated major outline and many other parts on the

roof as significant features of itself. 59

XI

LIST OF FIGURES XII

3.30 Algorithm flowchart of region growing using smoothness constraint and

curvature consistency to detect features on the rooftop. 63

3.31 Direct result from the region growing based segmentation (Roof NO.1). 64

3.32 After adding tiny regions back to major regions (Roof NO.1). 64

3.33 The profile view of the rooftop (Roof NO.1). 65

3.34 Direct result from the region growing based segmentation (Roof NO.2). 65

3.35 After adding tiny regions back to major regions (Roof NO.2). 65

3.36 The profile view of the rooftop (Roof NO.2). 65

3.37 Direct result from the region growing based segmentation (Roof NO.3). 66

3.38 After adding tiny regions back to major regions (Roof NO.3). 66

3.39 The profile view of the rooftop (Roof NO.3). 66

3.40 A hypothetical example with its principal axes and bounding box. . . . 68

3.41 Search the minimum bounding box. The rectangles in the left image are

different bounding boxes with different orientations. The right image

shows the plot of the area with respect to the orientation. In this figure,

the red rectangle is the final minimum bounding box. 71

3.42 Synthetic data No. 1. Left plot shows where the minimum area is. The

cyan rectangle in the second figure is the final minimum bounding box. 72

3.43 Synthetic data No. 2. Left plot shows where the minimum area is. The

cyan rectangle in the second figure is the final minimum bounding box. 73

3.44 Real example data. Left plot shows where the minimum area is. The

cyan rectangle in the second figure is the final minimum bounding box. 73

3.45 A sketch example showing one building model obtained by combining

three boxes together. 75

3.46 Some polygonal mesh building models with points also plotted on them.

For each building model, every color represents an individual rooftop

feature. For those relatively small features, their shapes are described

by their minimum bounding boxes directly. 76

3.47 The difference between unconstrained Delaunay Triangulation and con-

strained Delaunay Triangulation, the red line in the bottom figure is the

constraint which is the outline of this non-convex polygon. 77

3.48 Part of an actual 3D model and its wireframe after constrained Delaunay

Triangulation. 78

XII

LIST OF FIGURES XIII

3.49 The original points of the terrain (white) and the reconstructed wire-

frame of the Poisson surface. 79

3.50 Some basic non-level roof types. 80

3.51 Two types of interaction between two adjacent faces: over-intersect and

under-intersect. P1 and P2 are supposed to naturally meet and provide

a spine edge. 81

3.52 Pipeline to process the rooftop with multiple structures consisting of

slant surfaces other than level surfaces. 82

3.53 An example of rooftop with both level and slant features. All the slant

features are refined by the extra effort of clipping and closing. 83

4.1 The major data sets tested in this thesis, including partial R.I.T campus

and partial downtown of Rochester, NY. The point densities are about 4

pts/m2, 25 pts/m2, respectively. The intensity property is also displayed

but not used in this research. Ortho-photographs are grabbed from

Google Map. 86

4.2 The data provided by [80]. Two results from both the developed single

building modeling approach and 2.D dual contouring are presented here. 88

4.3 Final result of sample building models in comparison with 2.5D dual

contouring result - Example 1 (from R.I.T campus). 89

4.4 Final result of sample building models in comparison with 2.5D dual

contouring result - Example 2 (from R.I.T campus). 90

4.5 Final result of sample building models in comparison with 2.5D dual

contouring result - Example 3 (from R.I.T campus). 90

4.6 Final scene model of the northern part of R.I.T campus. 91

4.7 Final scene model of the northern part of R.I.T campus (continue). . . . 92

4.8 Final result of sample building models in comparison with 2.5D dual

contouring result - Example 4 (from downtown of Rochester). 93

4.9 Final result of sample building models in comparison with 2.5D dual

contouring result - Example 5 (from downtown of Rochester). 94

4.10 Final result of sample building models in comparison with 2.5D dual

contouring result - Example 6 (from downtown of Rochester). 95

4.11 Final result of sample building models in comparison with 2.5D dual

contouring result - Example 7 (from downtown of Rochester). 96

XIII

LIST OF FIGURES XIV

4.12 Final scene model of the partial City of Rochester. 97

4.13 Final scene model of the partial City of Rochester (continued). 98

4.14 The data collected from a plant in Massena, NY. 98

4.15 Final scene model of the plant in Massena, NY. 99

5.1 The original primitives used in the simulation. From left to right: gab-

bled house, cuboid, cylinder1, cylinder2, sphere. 101

5.2 Simulated point cloud using DIRSIG, and all the objects are labeled to

indicate their locations. 102

5.3 Simulated point cloud using DIRSIG (continued). 103

5.4 Histogram of the variation of point normals distribution in the simulated

scene. Red line indicates where the threshold is. Increasing the threshold

value leads to less aggressive result (green arrow), while decreasing the

threshold value leads to more aggressive result (red arrow). 104

5.5 Result of scene classification using graph cuts based approach. 105

5.6 Result of scene classification using simple threshold based approach. . . 106

5.7 Result from two-pass Euclidean clustering: terrain (black), man-made

objects (other colors). 107

5.8 Result from two-pass Euclidean clustering: terrain (black), man-made

objects (other colors) (continued). 108

5.9 A shape proxy is introduced to test different types of RANSAC fitting on

the point set of the rooftop feature. The one with best score (minimum

error) is finally chosen. 111

5.10 The simple hipped roof type, four faces are detected in (a) and completed

in (b). 112

5.11 Cylinder, sphere and round top detected by the region growing based

method. The unplanar smooth surfaces are detected as a single feature. 112

5.12 The final modeling product of the DIRSIG simulated scene, including

the ground and objects (view1). 113

5.13 The final modeling product of the DIRSIG simulated scene, including

the ground and objects (view2). 114

5.14 Ground truth model and the reconstructed model of the house. 115

XIV

LIST OF FIGURES XV

5.15 The error color-map of the house object. The error value goes up from

the red to the blue (min: 0.008967 m, max: 0.453570 m, mean: 0.151710

m). 116

5.16 Ground truth model and the reconstructed model of the cuboid. 116

5.17 The error color-map of the cuboid object. The error value goes up from

the red to the blue (min: 0.208124 m, max: 0.347489 m, mean: 0.282055

m). 117

XV

Chapter 1

Introduction

Three dimensional building reconstruction has been a highly active research domain for

decades.Various applications such as urban planning, virtual tourism, computer gam-

ing, emergency response and robot navigation have been having increasing demands on

3D urban models. Popular commercial products like Google Earth and Apple Flyover

have already deployed 3D building modeling techniques as a vital component. Those

realistic models are usually made by texture mapping both aerial and ground-level im-

agery onto 3D geometric models. Traditionally, models are created manually. There

are some very capable tools like Trimble SketchUp that allow the layperson to accom-

plish this, however, it does require a huge amount of human effort. It remains a very

challenging and arduous task, especially when a large cityscape needs to be modeled.

In the remote sensing community, several types of data sources are suitable as

inputs for the urban reconstruction task. Optical imagery is the conventional and

most available data source. Research on extracting 3D information from ground or

aerial imagery has been conducted for years. Recent advances in sensors have enabled

techniques to directly capture 3D data over large scale areas. With the emergence of

LiDAR (Light Detection and Ranging) technology, the form of point clouds becomes

a powerful 3D representation, and can been created to improve the generation of 3D

scenes in a more efficient and cost effective fashions.

In the aerial data of an urban setting, the three scene components that dominate

this data are the building rooftops, vegetation, and the background terrain. The de-

tection and extraction of these rooftops from the terrain is hence a crucial step in

building reconstruction. Often times, the outlines of these building rooftops are quite

1

2

complicated making the building modeling process a very challenging task.

In this research, the key contribution is an automatic workflow that exploits useful

information from airborne LiDAR point clouds, effectively and robustly conducting the

task of scene classification and 3D geometric model construction. The workflow detects

building footprints and generates simplified, 3D models using solely LiDAR data from

a large urban scene. One of the major challenges throughout this research is how to

efficiently and accurately separate building regions from the rest of the background

regions in the scene, particularly vegetation, without the assistance of multispectral or

hyperspectral optical imagery. A graph cuts optimization scheme is used for vegeta-

tion detection and removal. In addition, due to the purposeful omission of a generic

rooftop ”template”, an effective region growing based method for the extraction of

major rooftop features is adopted. The algorithm presented for describing rooftops

maintains the geometric integrity of the variety of shapes that exist in an urban land-

scape while utilizing certain regularities in the rooftop geometry usually exhibited by

man-made structures. Rigorous quality evaluation of the developed approach is also

conducted.

In Chapter 2, some basic terms that are used throughout this document are briefly

described. The difference between photogrammetry and LiDAR will be discussed. High

level introductions of specific algorithms that support this research will be presented

as well. Related previous works will be examined, and some major limitations of these

works will be targeted, and the main objective of this research will be addressed. In

Chapter 3, the developed workflow is described in detail. Chapter 4 shows the results

of this workflow when using the real data. A quantitative analysis of the result using

simulated data is discussed in Chapter 5. Chapter 6 draws conclusions, addresses the

limitations of this workflow, and the potential future work.

2

Chapter 2

Background

2.1 DEM, DSM, and DTM

The usage of the terms Digital Elevation Model (DEM), Digital Terrain Model (DTM)

and Digital Surface Model (DSM) is not strictly defined in the photogrammetry and

remote sensing literature. In most cases, the term Digital Surface Model (DSM) repre-

sents the earth’s surface and all the other objects on it. In contrast, the Digital Terrain

Model (DTM) only describes the bare ground surface without any objects such as trees

and man-made objects (Fig.2.1).

The Digital Elevation Model (DEM) is often referred to as a generic term for DSM

and DTM. It represents the height information without further specification on the

earth surface. A DEM could be acquired by techniques such as stereo photogrammetry,

LiDAR, IfSAR, and may also be built by land surveying, etc. [1]. DEMs are widely used

in remote sensing community for many geographical or geological application purposes.

To a certain extent, 3D urban reconstruction could be considered as a subset problem

of DEM production.

2.2 Camera Model

Image-based stereo or multi-view systems have reached a relatively mature state in

recent times. Sometimes accurate camera information is available, which allows higher

density and accuracy and makes geo-referenced models possible.

The most widely adopted camera model is for the pin-hole camera which carries out

3

2.2. CAMERA MODEL 4

Figure 2.1: A digital surface model includes buildings and other objects on the ground.
A digital terrain model represents the bare ground.

a linear central projection [2]. The 3×4 projective matrix in a homogeneous coordinate

system is given by:

P = KR[I| − C] (2.1)

where C is the camera center, I is the identity matrix, and R is the 3 × 3 rotation

matrix derived from the orientation (pitch, roll, and yaw) of the camera. The matrix

K is the interior calibration matrix and defined as:

K =

fx s x0

0 fy y0

0 0 1

 (2.2)

where fx and fy are the focal lengths in the x and y directions, (x0, y0) are the coordi-

nates of the principal point, and s is the skew factor.

The way to project a 3D point onto a 2D plane is given by:

x = PX (2.3)

where X is the 3D coordinates of the point, and x is the 2D coordinates of the projec-

tion, they are both in homogeneous coordinate system.

4

2.3. POINT CLOUDS: PHOTOGRAMMETRY VS. LIDAR 5

2.3 Point Clouds: Photogrammetry vs. LiDAR

2.3.1 Photogrammetric Technology

Photogrammetry is defined by the ASPRS (American Society for Photogrammetry

and Remote Sensing) as ”the art, science, and technology of obtaining reliable infor-

mation about physical objects and the environment through the process of recording,

measuring, and interpreting photographic images and patterns of recorded radiant elec-

tromagnetic energy and other phenomena”[3].

The conventional way of generating 3D information in remote sensing has always

been the photogrammetric method. Traditionally, it requires delicate human effort,

and is a time consuming process. However, several innovations help to develop novel

automated photogrammetry. Firstly, digital imagery collection enables large overlap

between images with negligible cost. The high overlap increases the chance of successful

control point matching and minimize the undetected errors. A typical sixty percent

forward-lap and thirty percent side-lap place a higher reliance on ground control points

matches than imagery with higher piecewise overlap do. Secondly, the progress in au-

tomatic feature detection and matching in the field of computer vision provides greater

opportunities to automate photogrammetry with no ground truth [4]. In conventional

photogrammetry, an human stereo operator can create matches between two images

with the accuracy of a few pixels at best [4]. The automatic dense matching can

achieve a level of accuracy as small as one pixel. Thirdly, the development of sensor

technology provides very high resolution airborne or satellite imagery as well, which

makes the high density point cloud generation process possible.

2.3.2 Airborne LiDAR

LiDAR (Light Detection and Ranging) is a remote sensing technology that operates

in a similar fashion to RADAR sensing, but uses laser light instead of radio waves.

LiDAR scanners, which can be either ground-based or airborne/spaceborne, generate

3D point clouds of their environment by emitting pulses of light and precisely timing

their reflections from a target, or in other words, the sensor-target-sensor round trip

distance (see Fig.2.2). This timing information is used to create a point cloud, a large

set of 3D points that reflects laser-target interactions. The data often requires extensive

processing to filter noise and produce a meaningful 3D point cloud.

5

2.3. POINT CLOUDS: PHOTOGRAMMETRY VS. LIDAR 6

Figure 2.2: Data collecting by airborne LiDAR. The air plane carries a laser scanner
to measure the time traveling distance (on the left), generating a point cloud (on the
right).

6

2.4. RANDOM SAMPLE AND CONSENSUS (RANSAC) 7

2.3.3 Which is better?

There is no definitive statement that claims which technology is better, image-derived

or LiDAR point clouds. During the past decade, LiDAR has gain enormous attention

in industries for practical applications. Leberl et al [4] conducted two test projects

to compare point clouds generated from airborne and ground based LiDAR systems

with those created from optical images. Their result shows the accuracy of the pho-

togrammetric method is still comparable when compared to the LiDAR based method.

The density is actually much higher from the images than from the laser scanned data.

Fifteen additional advantages are identified by their work in order to support the vision

that photogrammetric methods are still going to be very valuable even though under

the pressure of the rapidly growing usage of LiDAR.

2.4 RANdom Sample And Consensus (RANSAC)

2.4.1 Overview

Most building model reconstruction problems require extracting rigorous geometric fea-

tures from the input data in the form of 3D irregularly spaced points. These geometric

features are commonly recognized as lines, planes, and other types of surfaces in 3D.

This estimation can be done by several well-known minimization approaches, such as

least squared minimization. However, outliers in the original input are always a signifi-

cant obstacle to the estimation of these different geometric features, and can jeopardize

the final results dramatically. So, in most modern applications, when it comes to prob-

lems like estimating parameters for a well-defined mathematical model, researchers

first think of the RANSAC algorithm that could deal with an input contaminated by

a significant number of outliers.

The RANSAC algorithm was first introduced by Fischler and Bolles in 1981 [5].

An outlier is an observation or data point that does not fit the model defined by a set

of parameters within some error threshold. Despite many improvements and modifi-

cations, the RANSAC algorithm essentially consists of two stages that are conducted

iteratively [6]. The first stage is called the hypothesis stage. Minimal sample data

are randomly chosen and used to compute the model parameters. The second stage

is called the testing stage. The algorithm checks other elements in the entire dataset

7

2.4. RANDOM SAMPLE AND CONSENSUS (RANSAC) 8

to see if they are consistent to the temporary, or current estimate of, model. During

each iteration, the algorithm examines if the current consensus set is better than any

previous one. It terminates when it is highly unlikely to find a better consensus set.

2.4.2 RANSAC Options

RANSAC has become a crucial tool in the computing society. Since the original idea

came out, a great number of variations have been developed. Torr and Zisserman [7]

proposed two improved versions of RANSAC called MSAC (M-estimator SAmple and

Consensus) and MLESAC (Maximum Likelihood Estimation SAmple and Consensus),

respectively. MLESAC tries to find the solution that maximizes the likelihood rather

than the number of inliers.

2.4.3 Estimation of 3D Plane

The specific RANSAC implementation utilized in this work is mainly used for plane

estimation.

Parameter Estimation

The model of the plane is defined as:

p1 · x+ p2 · y + p3 · z + p4 = 0 (2.4)

where (p1, p2, p3, p4) represent the four coefficients defining a plane M in three dimen-

sional space.

A number of potentially coplanar 3D points (x1, y1, z1), (x2, y2, z2), ..., (xn, yn, zn)

could be used to find the plane, we can write:

p1 · x1 + p2 · y1 + p3 · z1 + p4 = 0

p1 · x2 + p2 · y2 + p3 · z2 + p4 = 0

:

:

p1 · xn + p2 · yn + p3 · zn + p4 = 0

(2.5)

8

2.5. GRAPH CUTS IN SEGMENTATION 9

Let’s rewrite it as:
x1 y1 z1 1

x2 y2 z2 1

: : : :

xn yn zn 1

p1

p2

p3

p4

 = Ap̄ = 0 (2.6)

The optimal parameters are given by:

p̄opt = arg min ‖Ap̄‖2 s.t. ‖p̄‖2 = 1 (2.7)

for which the solution can be computed using Singular Value Decomposition (SVD).

A plane is uniquely defined by three points, so the cardinality of the minimal sample

data is 3.

Error Estimation

The fitting error is calculated as the distance between each point and the plane M
instantiated by p̄. The error between a point (x, y, z) and its orthogonal projection

onto the plane M is given by:

e2 =
([x y z 1]p̄)2

p21 + p22 + p23
(2.8)

assuming the data is affected by Gaussian noise, e2 is χ2 distributed [6].

2.5 Graph Cuts in Segmentation

The work presented here, a very critical requirement is the ability to identify trees,

buildings, and the other background objects in a large scale scene, which can be con-

sidered as an object segmentation problem. Among the fruitful N-dimensional image

segmentation methods, the graph cuts has emerged as a very powerful tool to separate

components in imagery for researchers in the computer vision community. What the

graph cuts algorithm does is it takes several classification decisions jointly, given a set

of discrete variables (nodes in the graph), and it labels each variable while taking into

account dependencies between variables. There are two reasons that motivate the use

of graph cuts [8]. Firstly, the graph cuts is easily interpreted in the geometric form.

9

2.5. GRAPH CUTS IN SEGMENTATION 10

Secondly, the graph cuts algorithm also works as a powerful energy minimization tool

in many vision problems. In particular, the graph cuts approach defines the minimal

cut (smallest sum of link weights) of a discrete graph representing the pixels of 2D im-

ages or points of 3D data. The cut can also be seen as a hypersurface in N-dimensional

space.

Figure 2.3: A demo graph with two terminal nodes s and t. Each node is connected
with its four neighbors. A minimal cut is found and then the graph is divided into two
parts.

2.5.1 Description

In this section, the basic terminology and a review of minimum cut/max flow problem

is introduced. Let G =< V, E > be a graph which includes a set of nodes V and a set of

directed edges E . The node set V has two special terminal nodes that are the source

s and the sink t. Fig.2.3 shows a simple case of a graph with the terminal nodes s and

t, and an s/t cut is conducted.

All directed edges could be assigned some weight w which is nonnegative and can

be interpreted under some certain context. All edges can be broken into two groups in

the graph, namely, n-links and t-links. A t-link connects a non-terminal node with a

10

2.5. GRAPH CUTS IN SEGMENTATION 11

terminal node (blue and red links in Fig.2.3). An n-link connects a pair of non-terminal

nodes (brown links in Fig.2.3).

2.5.2 The Min-Cut and Max-Flow Problem

A cut is a partitioning that divides the graph into two disjoint subsets S and T . S is

defined by s, and T is defined by t. In combinatorial optimization, the cost of a cut is

obtained by adding up the costs of all ”boundary” edges (p, q), where p ∈ S and q ∈ T .

The minimum cut problem is to find a cut with the minimum cost among all possible

cuts. Actually, in combinatorial optimization, the solution of the minimum s/t cut can

also be determined by finding a maximum flow from the source s to the sink t. Ford

et al [9] stated that a maximum flow from s to t is equivalent to a minimum cut. As

matter of a fact, the value of the maximum flow is equal to the cost of the minimum

cut.

For most computer vision problems, people usually deal with 2D, 3D, or even higher-

dimensional data. Boykov et al [10] [11] developed a fast algorithm that outperformed

other previous methods. With the development of GPUs, many accelerated methods

have been implemented, which enable a variety of real-time applications.

2.5.3 Binary Optimization by Graph Cuts

The graph cuts algorithm is a powerful tool in optimization. It was inherently designed

for binary problems. Speaking informally, the input is always supposed to be trans-

formed into a graph and then divided into two desirable subgraphs after the optimal

cutting. In Fig.2.3(b), all non-terminal nodes are grouped into two sets, S and T .

Each node in the graph is labeled with the binary value (0 or 1) according to a given

minimum cut. If node p ∈ S, it is labeled as 0, and if node p ∈ T , it is labeled as 1.

The cost of each cut can be given by:

c(S, T) =
∑

p∈S,q∈T
w(p, q) (2.9)

where w is weight value associated with the edges. This cost could directly be rep-

resented by the energy function of the minimization. The graphs cuts algorithm can

achieve the minimization goal in polynomial time. This is very similar to dynamic

programming. However, dynamic programming only applies to the tree structure, and

11

2.5. GRAPH CUTS IN SEGMENTATION 12

it determines that the energy functions that the graph cuts can solve are limited. Kol-

mogorov and Zabih [12] presented a thorough discussion on the kinds of binary energy

functions that can be minimized by graph cuts.

Unfortunately, most computer vision problems are ill-posed. The energy function

defined as Eq.2.9 is not adequate. Constraints or regulations derived from the data are

required to obtain a reasonable solution. Piecewise smoothness is a natural constraint

or regularized term in most vision problems. In a graph, each node is connected by a

number of nearby nodes which are considered as ”neighbors”. Labeling this query node

should be consistent to the labels of its neighbors in order to maintain the piecewise

smoothness. Thus, like many computer vision problems, the graph cuts approach can

formulate the energy function as Eq.2.10 that extends the cost function Eq.2.9.

E(l) = Edata(l) + Esmooth(l) (2.10)

where l is a label in some finite label set L that only has two labels in binary case.

Edata is typically called the data term which can be defined as

Edata =
∑
p∈V

Dp(lp) (2.11)

where Dp penalizes labeling lp as the element p. Esmooth is called the smoothness term

to keep the piecewise consistency. The general form is shown in Eq.2.12, where N is the

small neighborhood where p and q are connected. The choice of the smoothness term

is quite open, whereas it is very critical and needs to be guaranteed to be as robust as

possible.

Esmooth =
∑

{p,q}∈N
Vp,q(lp, lq) (2.12)

Generally, the data terms are embedded into the t-link (linkage to terminals)

weights, and the smoothness terms are encoded into the n-link (linkage between nodes)

weights while implementing the graph.

12

2.6. REGION GROWING 13

2.5.4 Multiple Label Optimization by Graph Cuts

Even though the graph cuts algorithm provides an inherently binary solution to opti-

mization problems, it can also be used for multiple labeling problems. At this time,

the finite label set L consists of more than two labels. The minimization is usually

approximate as a matter of fact.

2.5.5 α-Expansion Move and α-β Swap Move

Both the expansion and the swap algorithms in discrete optimization try to find a local

minimum for any defined energy function. The number of expansion or swap moves

from each labeling action is exponential with relation to the number of sites in the

graph. However, it is possible to compute the optimal α-expansion or the optimal α-β

swap on a graph. Given a label α, a move called an α-expansion move occurs upon

some site in the graph that was not labeled α is now labeled α. Similarly, given a pair

of labels α and β, a move called an α-β swap move occurs upon some site in the graph

that were labeled α are now labeled β, and some sites in the graph that was labeled β

is now labeled α.

Boykov et al [10] developed efficient graph-based methods to find the optimal α-

expansion or α-β swap given a labeling action l. The algorithms are quite similar in

their structure and are guaranteed to terminate in a finite number of cycles.

2.6 Region Growing

Region growing is well known as a simple, low-level region-based, image segmentation

method. The dimensionality of the image here can be generalized to n-dimension. It

involves the selection of initial seed points.

Let each region be referred to as Ri, where i = 1, 2, ..., n. There are a couple of

rules formulating region growing base segmentation approach:

• The region must fulfill the completeness criteria.
⋃n

i=1Ri = Rwhole.

• Points in a region Ri must be connected based on some predefined criterion, for

instance, the points that have the same color are grouped as one region.

• Each individual region Ri is disjoint to others. Ri
⋂
Rj = ø for all i, j = 1, 2, ..., n.

13

2.7. POLYLINE SIMPLIFICATION METHODS 14

• Each region Ri has its own unique property. Every two adjacent regions can not

have the same property.

In practice, region growing segmentation is mostly applied to 2D gray-scale images.

It exploits the important information that neighboring pixels have similar intensity

values. The basic steps are:

• Select the seed pixel.

• Examine the neighboring pixels and add them to the region if they are similar to

the seed point.

• Repeat the second step for every newly added pixel, and stop if no more pixels

could be added to the current region.

• For the remaining unprocessed pixels, repeat the previous steps.

How to choose the seed depends on the nature of the problem. It could involve

some prior knowledge if it is available. Randomly picking one works fine in most cases

without any prior knowledge. The initial region starts as the location of the seed

point. The criterion of a region membership could be, for example, pixel intensity

value, texture, color. Four-connected neighborhoods or eight-connected neighborhoods

are widely used as the adjacency relationship to grow regions. Adjacent points of the

seed point are kept if after examining and classifying they fulfill all the criteria. The

whole process is iterative and stops until when significant change is observed between

successive iterations.

2.7 Polyline Simplification Methods

The production of rooftop outlines is also a significant aspect of this research. In

most urban areas, the shapes of many rooftops are relatively simple geometric polygons

consisting of lines, right angles, and so on. Algorithms addressing polyline simplification

can shed light on this particular problem. There are several polyline simplification

algorithms that are worthy of being investigated. In this work [13], the popular Douglas-

Peucker polyline simplification method is used to generate the first estimation of the

rooftop outline from LiDAR points. Lach and Kerekes [14] utilized a sleeve-fitting

14

2.8. RELATED WORK 15

approach as a key step to produce building roof boundaries from LiDAR points. Luebke

[15] provides a though survey of polygonal simplification algorithms from a developer’s

perspective. This article identifies issues related to the strengths and weaknesses of

different approaches.

2.7.1 Douglas-Peucker Algorithm

The most widely used, high quality simplification algorithm is the heuristic method

known as the Douglas-Peucker algorithm [16]. Its premise is to reduce the number of

points in a curve and approximate the curve with fewer points. The simplified curve has

a subset of the points that constructed the original curve. At each step, the Douglas-

Peucker algorithm attempts to fit a sequence of points by an approximate line segment

connecting the first point and the last point. The furthest point, of the collection, from

this line segment is found, and if its distance from the line segment is smaller than some

predefined threshold, the line approximation is kept and this point is discarded. If this

furthest point is too far from the approximated line, this point becomes a new end

point of two line segments that connect the previous two end points. The algorithm

runs recursively, dividing the line into the appropriate set of segments.

2.7.2 Sleeve-fitting Algorithm

Zhao and Saalfeld [17] present a linear time sleeve-fitting polyline simplification algo-

rithm. The basic version of the algorithm utilizes a variable angle tolerance measure

to compute maximal subsequences of points of the polyline that could be replaced by a

single line segment. A term called ε-buffering is presented in their paper. It is proven

that the angle-testing procedure locally equals to ε-buffering. The maximum sleeve,

that is a 2D rectangular strip, can be found by iteratively angle-testing and covers the

largest number of consecutive vertices. The center-line of each sleeve is a one-segment

approximation.

2.8 Related Work

The automatic reconstruction of urban building models has become a critical interest

of both photogrammetric and computer vision research during the past two decades.

This section will discuss the previous research into three dimensional urban building

15

2.8. RELATED WORK 16

modeling methods as well as provide a summary of the methods. It is difficult to

categorize all the existing reconstruction approaches, since they can be identified by

several properties, such as the type of input data, the levels of detail, and the degree of

automation. At an early time, Jinhui et al [18] conduct a survey on large scale urban

modeling technologies using a variety of sensors and data acquisition techniques. They

categorize the existing approaches based on photogrammetry, active sensors, and hybrid

sensor systems and examined them with respect to several performance criteria, such as

data acquisition source, level of user interaction, geometric fidelity, model completeness,

and potential applications.

There has been a plethora of work conducted for urban modeling from airborne

aerial images, LiDAR data, or the combination of the two. Musialski et al [19] recently

provided a more comprehensive overview of urban reconstruction from different per-

spectives that are not restricted to aerial data inputs. The complexity and difficulty of

this problem has been approached in many ways, but the synergistic use of muli-modal

datasets has become a prominent pedagogy in this research area. Haala and Kada[20]

conduct a review of a number of state-of-art reconstruction methods and their princi-

ples. They point out ”the difficulties of aerial image interpretation also motivated the

increasing use of three-dimensional point clouds from laser altimetry as an alternative

data source”.

2.8.1 Building Footprint Detection

Man-made building structures are typically the main objects of interest in this research

area. Many works have focused on or start with detecting and isolating buildings from

the entire scene. The extraction of man-made objects is essentially an object recogni-

tion or segmentation problem and the primary step of the reconstruction process that

requires are to find each rooftop from 2D imagery or irregular point clouds. Maas and

Vosselman [21] pointed out that segmentation of laser altimetry data may be obtained

in several ways from an earlier point of view. In many cases, available GIS informa-

tion can be used as reliable and accurate auxiliary information. For those regions with

limited terrain roughness, a reasonable threshold value and the boundaries of buildings

could be indicated by detecting the local maxima and analyzing the histograms of re-

gions around the maxima. The derivation of digital terrain models from laser scanning

data could be applied because it could be considered the inverse of the building detec-

16

2.8. RELATED WORK 17

tion task. Integration of an airborne laser scanner and a multispectral or hypersectral

scanner would also be option if this state-of-art technology is available.

Some very early work started looking at how to extract buildings from high-resolution

Digital Surface Model. Weidner [22] introduced a binarization method using a building

related threshold. An approximation of the topographic surface was computed using a

morphological opening. The difference between the original DSM and the approximated

topographic surface contains the information describing the buildings. Brunn et al [23]

described an approach for building extraction using DSM. They used the height and

differential geometric information to discriminate building structures and vegetative

areas. Two approaches, binary classification and Bayesian networks, were introduced.

Both require high quality data. Morgan et al [24] proposed a reconstruction procedure

that began by re-sampling the irregular points from the laser scanned data into a reg-

ular grid. They also applied a morphological filter with an adaptive window size for

distinguishing between terrain and non-terrain parts. This is the core idea for building

footprint detection. The non-terrain segments are further classified into building area

or vegetative area.

Wang et al [25] developed a Bayesian method for detecting building footprints au-

tomatically from the LiDAR data. The point cloud has to be first segmented into

buildings, trees, and grass as a pre-processing step.

Lafarge et al [26] extracted building footprints from Digital Elevation Models (DEMs)

that are generated from high resolution satellite images. The first step is to extract

a rough description of the shape of buildings (rectangular approximation). A method

based on marked point processes is used to achieve this purpose. This method is to

minimize an energy function by applying a Reversible Jump Markov Chain Monte

Carlo (RJMCMC) sampler embedded into a simulated annealing scheme. The rough

rectangular layouts are then regularized by connecting neighboring rectangles and de-

tecting roof height discontinuities. So, the final obtained building footprints are non-

overlapping structured footprints. In the end, a very simple 3D reconstruction process

is introduced.

Matei et al [27] presented a building segmentation system for dense urban areas,

where the ground is 20% or less of the area. They deal with 3D unorganized points

by employing the 3D grid. Each processing element is then a voxel instead of a point.

In the first stage, each point is classified into ground and non-ground, and the terrain

17

2.8. RELATED WORK 18

is modeled. In the second stage, building segmentation is done by estimating surfels

at voxels locations containing non-ground points. Roof surfaces are refined using the

expectation-maximization (EM) algorithm. A loopy belief propagation framework is

used to enforce neighborhood constraints and sharp boundaries between regions.

Carlberg et al [28] introduced a multi-category classification system for identifying

water, ground, rooftop, and trees from airborne LiDAR data. The whole system acts

as a cascade of binary classifiers. 3D shape analysis and region growing are used to rec-

ognize ”planar” and ”scatter” regions which most likely correspond to terrain/rooftops

and vegetations respectively.

2.8.2 Image-based Reconstruction

Moons et al [29] proposed a method to automatically reconstruct 3D polyhedral models

of generic house roofs from aerial images of residential and urban areas. It addresses

the limitation of using predefined roof models for their reconstruction due to the wide

variety in shapes. This method requires that accurate camera model information is

readily available. The process is formulated as a feed-forward scheme involving four

stages: 2D edge detection and region selection, line segment matching and 3D recon-

struction, 3D grouping and polygonal patch formation, and rooftop model generation

and model fitting.

Kim et al [30] presented an approach to automatically describe a complex rooftop

from multiple images. Image derived unedited elevation data (DEM) is used to assist

feature matching, and to produce rough cues of the presence of 3D structures. Once

all of the 3D line features are obtained, the rooftop hypothesis generation process

introduces the next important issue, time complexity. A level-of-detail technique is

used to reduce time.

Werner and Zisserman [31] investigated an approach for reconstructing buildings

from multiple close-range ground images.The method is targeted at architectural scenes

that usually contain planes with three dominant orientations that are perpendicular to

each other. The approach is to fit generic models, such as planes and polyhedra,

and proceeds in two stages which are coarse model fitting and refinement. The one

parameter plane-sweep method is extended with uncalibrated setting for both plane

fitting and polyhedral model fitting.

Nevatia et al [32] introduced an automatic and interactive modeling method from

18

2.8. RELATED WORK 19

aerial images. For the automatic approach, 2D features such as lines, junctions and

parallel relationships, are extracted from multiple images. 3D features are then derived

from groups of 2D features matched over images. A rough DEM produced by stereo

matching is used to aid feature matching. The last step is to use rigorous Bayesian

learning to select from many potential models in a hypothesized and test paradigm.

Rau et al [33] presented a Split-Merge-Shape algorithm for 3D building modeling in

which an accurate scheme for 3D roof-edge measurements is proposed, however, this

idea is semi-automatic, still requiring manual intervention.

The above image-based methods all require some level of extra input besides images.

A widely studied process of recovering 3D structure without calibrated information from

a set of images that have been taken by a camera that was in motion is called structure

from motion (SFM). Snavely et al [34][35] developed a state-of-art system for generating

sparse point cloud of urban environments based on SFM. However, point clouds from

SFM are rather sparse and do not indicate any solid geometry. Dense matching is

usually used to obtain more dense structure. Multiview stereo is the technique used

for dense matching. Seitz et al [36] provided a detailed overview on multiview stereo

reconstruction algorithms.

2.8.3 LiDAR-based Reconstruction

Elaksher et al [37] developed an approach to utilize the geometric properties of buildings

for the reconstruction of building wire-frames from LiDAR. The finding of building

candidate points is done by convolving the LiDAR DEM with a minimum filter. What

this filter does is to classify points above a certain height as building points. It is a

weak assumption in general, but works well in their limited data set. The building

points are then used to populate a plane parameter space, which is an application of

the generalized Hough transform. Once planes representing the roof surfaces are found,

roof regions are then extracted, and the parameters are refined. The boundaries are

used to form the wire-frames of the buildings.

Rottensteiner [38] presented a method for automatically creating polyhedral build-

ing models without involving ground planes. The whole method consists of two steps:

building detection and building reconstruction. After obtaining regions of interest for

the geometric reconstruction of the buildings, the system handles those ROIs indi-

vidually. The system performs building region detection by thresholding the height

19

2.8. RELATED WORK 20

differences. The geometric reconstruction of the buildings consists of four steps: detec-

tion of roof planes, grouping of roof planes and model generation, consistent estimation

of the model parameters, and model regularization. This techniques handles polyhedral

buildings of arbitrary shape. It does not require assumptions about the regularity of

the footprints.

Verma et al [39] detect and reconstruct 3D geometric models of an urban area with

complex buildings using aerial LiDAR. In their approach, the complex roof types refer

to as saddle-back rooftops could be represented as a combination of simpler roof types,

such as rectangular, L-shape, and U-shape geometric primitives, that all have a uniform

ridge and gutter height. Segmentation of the roof and terrain points is done first. All

points in the point cloud that are not locally co-planar are abandoned assuming that

non-flat points constitute mostly points that fall on trees, fences, and utility poles,

etc. Once all the roof points are identified, they fit local planar patches to the roof

points and group them based on their surface normals. Next, a roof-topology graph

is constructed that not only establishes geometric constraints between faces, but also

helps recognize sub-roofs models by simpler shapes. The final step is geometric fitting.

The roof refinement process fits a watertight polyhedral model to the LiDAR points.

Zhou and Neuman[40] presented an automatic approach for reconstructing building

models from airborne LiDAR data of urban areas. The workflow highlights vegetation

detection, boundary extraction, and roof orientation determination by a data-driven

algorithm. The output of the workflow are polygonal models. For classification of

vegetation from other urban objects, a Support Vector Machine algorithm requiring

one-time training is introduced that utilizes several differential geometric properties

instead of using information such as height and intensity. Points on rooftops are sepa-

rated from the ground points by extracting planar patches. Roof boundary extraction

is an extension of work from a 3D octree contouring algorithm in volumetric geometry

processing[41] preserving the topology of original data. At this last stage, principal di-

rections of building layouts are determined handling arbitrary angles and requiring no

presumptions or preferences. At the end of the workflow, they claim non-flat surfaces

could also be supported involving minimum human interaction. Zhou and Neuman [42]

afterwards presented a streaming framework for seamless building reconstruction from

huge aerial LiDAR point clouds. The building modeling pipeline introduced in [40]

could be adapted into this streaming framework, and it gives the ability to deal with

20

2.8. RELATED WORK 21

hundreds of millions of points in an uniform manner. It is the first attempt to employ

streaming techniques for building modeling from LiDAR data though these techniques

that have been widely used in computer graphics. A series of streaming operators and

the order in which to perform them are defined, and then different modules, including

classification, segmentation, and modeling in the building reconstruction pipeline are

well adapted to this streaming process.

Dorninger et al [43] proposed a comprehensive approach for automated determina-

tion of 3D city models from LiDAR point cloud data, but their approach involves an

interactive initialization referred to as the coarse selection of building regions. Poullis

and You [44] presented a rapid, automated modeling approach for large-scale area re-

construction by using statistical considerations for the segmentation of the buildings.

The goal is to create lightweight, watertight polygonal 3D models from LiDAR data.

Three steps are involved, which are preprocessing, segmentation, and modeling. The

raw 3D point cloud data is first projected on a 2D X-Y map by re-sampling. It is

common knowledge that 3D raw data is very often too large to be processed at time.

Subdividing the raw data into smaller parts and transforming it into 2D is an efficient

representation. The proposed clustering approach is an underlying region growing

method based on the statistical analysis of the geometric properties of the data. The

modeling part involves common surface fitting and boundary refinement techniques.

Toshev et al [45] presented a method for detecting and parsing buildings from

unorganized 3D point clouds that is gathered from a set of range measurement. They

address the problem from the perspective of central scene understanding from raw,

unorganized points. In their work, a building is viewed as a tree whose nodes are

volumetric parts covered by roof and roof parts. All roof or roof parts are the children

of the tree. The hierarchical tree description is claimed to be a natural organization

since a building usually has a main body and other attached smaller parts. They

start by parsing the whole point cloud of a city. Two supernodes, ”building” and

”non-building” are introduced. All nodes descending from the ”building” supernode

are supposed to represent city architecture. A simple grammar is defined consisting

of a set of terminals, a set of non-terminals, a production set, and two supernodes.

An efficient dependency parsing algorithm is used to generate the desired semantic

description.

Sampath and Shan [46] proposed a solution framework for the segmentation and

21

2.8. RELATED WORK 22

reconstruction of polyhedral building models from airborne LiDAR point clouds. The

eigen-analysis is first carried out for each point within its Voronoi neighborhood instead

of k-nearest neighbors. Planar points and non-planar points can be separated based

on the surface normals. All planar points are considered as roof parts and the fuzzy

k-means method [47][48] is used to cluster them. The potential-based clustering is used

to estimate the number of cluster in order to feed the fuzzy k-means method. In the

final step, the parallel and coplanar segments are separated based on the distance and

connectivity.

Verdie et al [49] presented an automatic approach for producing accurate, watertight

and compact building meshes under planar constraints that are especially designed for

urban areas from aerial LiDAR data. The LiDAR points are classified through a non-

convex minimization method for the purpose of labeling points belonging to building

rooftops. A compact mesh generation is performed in two steps: mesh initialization and

mesh simplification with topology preservation. A quadratic-edges collapse-decimation

based algorithm [50] is iteratively used to reduce the size of the mesh.

Lafarge et al [51],[52] presented a novel and robust method for modeling cities from

point clouds. The algorithm is able to construct simultaneously buildings, trees and

terrains. They use LiDAR point clouds for experiments but claim it is not restricted

to LiDAR data inputs.

2.8.4 Fusion of Optical Imagery and Range Data

Many recent achievements in the field of automatic generation of 3D building models

are based on merging data from two or more sources, such as digital optical images and

LiDAR data. The purpose of this is to overcome the drawbacks of particular sensor

types. The ground resolution of LiDAR sensors is still a big limitation. Intuitively, it

would be best to integrate aerial images into the workflow rather than using LiDAR

solely. Though fusion of LiDAR and optical imagery is an efficient way to construct 3D

virtual reality models, one difficulty is registering the optical images with the LiDAR

point cloud, which is often regarded as a camera pose estimation problem.

Früh et al [53] [54] presented a fast approach to automate generation of 3D textured

building models with both ground level and airborne laser scans. The DSM created

from the far-range laser scans is registered with facade models using Monte-Carlo-

Localization.

22

2.8. RELATED WORK 23

In consideration of the combination of LiDAR and geometrically uncorrected image

data for urban modeling, some work has been done on automatic registration of aerial

images with LiDAR data. Wang et al [55] proposed a registration method based on

3D feature detection and matching. A novel feature called 3CS (Three Connected

Segments) is proposed that is composed of connected line segments. 3CS features

detected from both aerial images and LiDAR point clouds are putatively matched. A

two-level RANSAC algorithm is used to remove outliers.

Ding et al [56] developed a fast automated algorithm for texture mapping oblique

aerial images onto a 3D model derived from airborne LiDAR data. They first coarsely

estimate the camera position and the rotation angles with the help of information

from a global positioning system aided inertial system. The pitch and roll angles are

estimated from the vanishing points of vertical lines. Vanishing points of non-vertical

lines are also detected to be used for corner extraction from the images. The second

step of the approach is to use 2D corners extracted from the LiDAR DSM as well as

aerial images. The matches between DSM 2DOCs and image 2DOCs are generated

based on steps of processing, including similarity comparison, Hough transform, and

generalized M-estimator sample consensus. In the end, Lowe’s camera pose recovery

algorithm [57] is used to refine camera parameters for texture mapping.

Mastin et al [58] [59] introduced a novel idea for utilizing mutual information be-

tween the LiDAR and the 2D imagery, which analyzes the statistical dependency in

scenes of optical appearance with measured LiDAR elevation. The LiDAR data adopted

in their research has a probability of detection value that represents the number of mea-

sured photons along with the x, y, and z value. The definition of mutual information

used is the Kullback-Leibler (KL) divergence of the joint distribution and the product

of marginals. So, maximizing MI is equivalent to maximizing the KL divergence. Three

methods of evaluating MI are proposed. The first is simply the MI between elevation in

the LiDAR data and luminance in the image. The second is using the MI between the

luminance in the image and probability of detection in the LiDAR data, which provides

slight benefit in accuracy. The final method is a combination of the first two.

This information merger has advantages, however, finding correspondences between

these two different types of data automatically is often problematic.

23

2.9. OBJECTIVE OF THIS RESEARCH 24

2.9 Objective of this Research

This research describes the development of an aerial LiDAR based reconstruction work-

flow. The major limitations existing in previous works on this problem include requiring

a particular scene type to work on, heavily adopting primitive templates, inefficiency

on multi-layer roof geometry recovery and the lack of ability to provide accurate and

clean boundaries. In this research, the objective is to overcome these limitations. The

developed workflow is expected to work for a wide range of scene types. No primitive

templates are used for estimating the shape of rooftops within the scene. Features on

the rooftop are detected and modeled individually, followed by roof polygon intersec-

tion refinement to provide finer details in the produced models. Boundaries of roof

features are estimated and aligned to the principle orientation that is found using the

minimum bounding box technique.

24

Chapter 3

Methodology

3.1 Overview

Given a LiDAR point cloud covering an urban area, the objective of this research is to

automatically detect and model man-made building structures with complex rooftops.

The output could be either polyhedral models or triangulated meshing models. In

particular, the whole process aims to automatically remove vegetative areas from the

scene and then single out each individual building footprint from the terrain. Geometric

analysis is also conducted for each rooftop and the goal is to extract as many significant

features from the rooftop as possible. The original points on the rooftop are thus divided

into a number of clusters, each of which represents a component of the overall rooftop.

Shape refinement is further applied to each cluster of points, including surface fitting

and outline estimation.

No templates for roof shapes are used. The shape is automatically inferred directly

from the LiDAR point cloud. One issue that needs to be pointed out is that the

airborne laser scanner mostly ”sees” the tops of the buildings. Very few points on the

sides of buildings are captured unless the height of the building is large enough for the

parallax to assist with this. Due to the lack of information about the geometry of the

sides of buildings, it is not possible to portray the details. So, in this research, the

roof outlines are extruded down to the ground level and watertight models are then

produced. Please see Fig.3.1 showing the workflow for the method employed in this

work. The details of the method are briefly summarized in Algorithm.3.1.1.

25

3.1. OVERVIEW 26

Figure 3.1: 3D scene modeling workflow. It involves a group of modules, such as scene

classification, rooftop feature detection, boundary production, and mesh modeling.

26

3.2. POINT SAMPLED REPRESENTATION 27

Algorithm 3.1.1: BuildingModeling(pointcloud, configuration)

comment: The presented method of building detection and modeling.

pc denoised← NoiseRemoval(pointcloud);

LocalAnalysis

{
normals, curvatures← NormalEstimation(pc denoised);

normals dist← NormalsDistribution(pc denoised, normals);

trees, nontrees← V egetationDetection(pc Denoised, normals dist, curvatures);

terrain, others← TerrainExtraction(nontrees);

buildings← BuildingExtraction(others);

for i← 1 to number of buildings

model(i)← ProcessIndividualBuilding(buildings(i));

return

3.2 Point Sampled Representation

One of the main objectives of this research is to reconstruct rigorous geometric models

from the point cloud which represents a finite set of point samples. All operations

are performed directly on the point cloud that is captured by the airborne laser range

scanner (airborne LiDAR).

The input data is given as a point cloud, namely P = {p1, p2, ..., pn}, where n is

the number of points. Each individual point is often represented merely by its Carte-

sian coordinates (x, y, z). Some attributes like intensity, number of returns, or color

information can also be assigned to each point. However, no additional information

associated with the surface properties is provided, such as surface normals and cur-

vatures. Nonetheless, such information with regards to surface properties is the most

important information in terms of 3D reconstruction. Building corners defining the

outline of the rooftop can not be guaranteed to be captured, which also brings diffi-

culty to 3D modeling. Thus, deriving the surface properties must be done before any

further processing.

27

3.3. LOCAL ANALYSIS 28

3.3 Local Analysis

3.3.1 Estimation of Point Density

The point density of the LiDAR point cloud is a very crucial quantity in point cloud

processing. The knowledge of the density can assist many other calculations, such as

nearest neighbor search and estimation of surface properties. If the density is high,

a smaller local area is sufficient to get the needed surface features, on the contrary, a

lower density requires a larger local area to do the same surface calculations which can

introduce larger errors and more uncertainties.

In this research, since the majority of the points are picked up from the top of scene

objects, side points can be simply ignored for point density estimation. All the 3D

points can be then ortho-projected on a 2D horizontal plane to get a quick estimate

of point density. A 2D convex hull can be found around the projected points. So, the

point density is calculated by Eq.3.1.

Density =
Number of points

Area of the convex hull
(3.1)

3.3.2 Concept of ”Local Neighborhoods”

A local neighborhood can be defined by the spatial relationships of the points in the

domain of 3D point cloud processing. Given a point p as the query point, the set

N k = {p1, p2, ..., pk} are the neighbors of p according to some certain rule. The rule

can be defined such that the set P k is sufficient to represent a small surface patch for

feature analysis. Pauly [60] defined this kind of 2-manifold surface formally, and also

addressed that the definition of a surface is based on local neighborhoods. Pauly [60]

also pointed out the local neighborhoods only relies on the geometric locations of the 3D

points, not on some other structural information associated with the point cloud. The

neighborhood of the given point p is independent on the neighborhood of its neighbor

pi(i ∈ [1, k]). In practice, there are two definitions (shown in Fig.3.2) for N k of a given

point p that are generally used, K nearest neighbors and radius searching.

28

3.3. LOCAL ANALYSIS 29

Figure 3.2: Two types of nearest neighbor searching (K Nearest Neighbor searching (K
is 6 in the figure) and Radius searching (r is the radius in the figure))

3.3.3 K Nearest Neighbors Searching

K nearest neighbors (K-NN) are the K closest points to the query point based on the

Euclidean distance (K = 6 in Fig.3.2). K-NN is an easy and simple to understand

algorithm that works very well in practice. This method is adaptive in terms of the

region of interest it operates in according to the density of points. Furthermore, K-

NN always uses the fixed number of neighbors and avoids the degenerate case, such

as a point having zero neighbor. K-NN is non-parametric since it does not require

any assumptions about the underlying data distribution. More analysis could be found

in Duda and Hart [47]. Brute force searching is not recommended in applications.

Many nearest neighbor searching packages use optimization. The most popular one is

FLANN (Fast Library for Approximate Nearest Neighbors) [61] [62] and also used in

this research.

3.3.4 Radius Searching

Radius searching is essentially an extended version of K-NN. Only neighbors within

the region defined by the radius r from the query point are accepted (Fig.3.2). It can

be defined as N k′ = {qi|qi ∈ P, whered(p, qi) < r, i ∈ [1, k′]}. d is usually chosen to be

29

3.3. LOCAL ANALYSIS 30

Euclidean distance as well. The number of neighbors selected depends on the density of

points, so the number chosen may vary. This approach is not adaptive in terms of the

region of interest. Rusu[63] pointed out the radius search is particularly useful for 3D

feature estimation since it is not dependent on the number of point sampled, distance

or rotation angle of the sensor.

3.3.5 Estimation of Point Normal and Surface Flatness

Once the neighboring point set N k of a query point p is determined, it can be used

to estimate the local underlying surface properties around p using statistical analysis.

Normal estimation indicating the orientation of each point is an important problem

in describing the geometric properties of the surface. Normals are heavily used in

this research and also other related areas. There are two widely used approaches

used for normal estimation, one is based on numerical analysis, and the other one is

based on Voronoi diagrams. A thorough study of the two approaches discussing which

approach is appropriate under which circumstances is presented by Dey et al [64]. The

most common and simplest solution is based on plane fitting to the neighboring points

[65]. Generally speaking, eigenanalysis of the covariance matrix of points in a local

neighborhood provides an efficient algorithm for normal estimation and other related

properties, such as curvature. Let p̄ be the centroid of all point in the neighborhood

N k.

p̄ =
1

k
·

k∑
i=1

qi, qi ∈ N k (3.2)

The 3× 3 covariance matrix Cp for the query point p is given by:

Cp =
1

k
·

w1 · (q1 − p̄)
.

.

.

wk · (qk − p̄)

T

q1 − p̄
.

.

.

qk − p̄

, qi ∈ N k (3.3)

where wi is the positive weight factor for qi, and usually set to 1 when contributions from

different points are treated equally. Cp contains the information of the points within

the neighborhood of the query point p. Now the eigenvector problem is presented as:

30

3.3. LOCAL ANALYSIS 31

Cp · ~ej = λj · ~ej , j ∈ {1, 2, 3} (3.4)

The eigenvectors ~ej correspond to the principal components of N k. Since Cp is

symmetric and positive semi-definite, all the eigenvalues λj are nonnegative real values.

The total variation of the neighboring points is given by:

k∑
i=1

|qi − p̄|2 =
3∑

j=1

λj (3.5)

The tangent plane going through the query point p is defined as:

(x− p) · ~n = 0 (3.6)

where ~n is the normal vector of the point p. Assuming 0 ≤ λ1 ≤ λ2 ≤ λ3, the

eigenvector ~e1 corresponding to the smallest eigenvalue λ1 therefore approximates the

normal vector ~n = {nx, ny, nz} or −~n (Fig.3.3). Rusu[63] addresses that there is no

mathematical way to solve for the sign of ~n. The orientation of the normal vector

obtained by Principal Component Analysis (PCA) is actually ambiguous. However,

the solution to this is simple and easy to achieve. As long as the view point is known

for the problem, all normals can be forced to point at the direction of where the view

point is. The consistency of the orientation can also be achieved by the Euclidean

Minimum Spanning Tree (EMST) of the point cloud proposed in [66].

In addition to the surface normal estimation, the eigenanalysis can also indicate

some other properties of the small surface patch around the point p, such as the cur-

vature or the flatness. There are also multiple ways to estimate these properties. The

flatness is a quantitative measurement of the surface variation. Remember λ1 quantita-

tively shows the surface variation along the direction of the surface normal vector since

the eigenvector ~e1 is used as an approximation of the normal vector. The larger λ1 is,

with respect to λ2 and λ3, the more likely the points deviate from the tangent plane,

and vice versa. So, the variation of the surface around the point p can be defined as:

Ff =
λ1

λ1 + λ2 + λ3
(3.7)

This ratio approximates the variation in the flatness in the neighborhood N k of p.

31

3.3. LOCAL ANALYSIS 32

Figure 3.3: Normal estimation according to the eigenvector corresponding to the small-
est eigenvalue. The orientation has an ambiguity in nature. The view point (shown in
black triangle) can be added to cancel this ambiguity.

Informally, smaller values of Ff means all the points within the neighborhood are more

likely distributed on the tangent plane.

Note that the maximum value of Ff is 1/3, which means all points are completely

isotropically distributed. The minimum value of Ff is 0, which means all points fall in

a plane.

At this point, both estimates are highly affected by noise. Instead of least squared

minimization, an alternative approach to fitting a plane using a sample consensus frame-

work. Only inliers in N k are considered for the plane model fitting. A similar scheme

is introduced by Rusu et al [67].

3.3.6 Variation of the Distribution of Normals

A similar eigenanalysis considering the covariance matrix of all the surface normals

within a neighborhood is conducted. The covariance matrix is given by:

Cnp =
1

k
·
∑

q∈N k
~nTq · ~nq (3.8)

Let λn1 < λn2 < λn3 be the three eigenvalues of the covariance matrix Cnp . λn2 mea-

32

3.4. CLASSIFICATION OF THE SCENE 33

sures the maximum variation of the surface normals on the Gaussian sphere that helps

indicate the distribution of normal vectors [60]. So, the variation of the distribution of

normals is approximated as:

Fn = λn2 (3.9)

Fn is another property which functions similarly to Ff . Both of them tend to have

larger values when the local surface tend to be rough. Fig.3.4 shows two real examples

of the distribution of normal vectors on a Gaussian hemisphere. In the left image, the

local surface is flat and horizontal, so all normal vectors cluster together within a tiny

region on the top of the hemisphere. On the contrary, such as what is shown in the right

image, the normal vectors are sparsely distributed over the surface of the hemisphere

because the local surface exhibits significantly more roughness.

Figure 3.4: Gaussian normal hemisphere. The left figure shows all normal vectors within
a small neighborhood are very consistent to each other, and the right figure shows the
normal vectors within a small neighborhood distribute sparsely all over the hemisphere
(each red dot represents a normal vector). Original points are also presented.

3.4 Classification of the Scene

Automatic 3D reconstruction of urban buildings from a point cloud relies on proper

separation of the points of interest from the unwanted scene content (such as trees or

33

3.4. CLASSIFICATION OF THE SCENE 34

small clusters on the ground). This is a scene classification problem. The ultimate

goal of classification in this research is to divide the scene into three categories: vege-

tative areas, the terrain, and building footprints (Fig.3.5). The trees are to be removed

initially. A smooth hole free terrain then needs to be modeled. It is commonly ac-

knowledged that vegetation, mainly in the form of trees in urban or residential regions,

is the most difficult part to be separated from the building footprints. Tree modeling

is not a goal in this research, since trees are irrelevant objects with regards to the

task of building reconstruction, mostly serving as an obscuration. Therefore, detection

and elimination of trees is the first critical mission to be achieved before any further

processing occurs.

Since building modeling is the major objective of this work, it is imperative that

vegetative regions are accurately and efficiently identified and removed. Based on the

discussion in the previous chapter about related works, almost all the building recon-

struction works include scene segmentation or classification due to this requirement. A

great number of classification works in the field of remote sensing have been conducted

for a variety of purposes [68][69][70]. In this effort, an elevation filter was use to help

to distinguish rooftops from trees[13]. The elevation filter is intuitive and simple, but

lacks robustness if there is not much difference in height between the buildings and the

trees. Sometimes the trees may be higher than the buildings in the scene. Anguelov

et al [71] present a Markov Random Field based method for detection and segmenta-

tion of complex targets from 3D ground based range data. Sedlacek and Zara [72]

introduce an interactive graph cuts based segmentation method on image derived point

clouds. Golovinskiy and Funkhouser [73] propose a min-cut based method to separate

the background and the foreground in point clouds.

In this research, two separate approaches are going to be introduced for vegetation

detection and removal. The first approach is simpler and more straightforward, but

exhibits larger errors. The second approach is more robust, reliable and generic, and

was adopted for following processing.

34

3.4. CLASSIFICATION OF THE SCENE 35

Figure 3.5: Classification of a point cloud representing a scene. Three categories are
defined, which are trees, building footprints, and the terrain. Trees are to be eliminated
from the scene. Buildings are to be reconstructed. The terrain also needs to be modeled.

3.4.1 Vegetation Detection by Shape Analysis on High Resolution

Digital Surface Model (HDSM)

High Resolution Digital Surface Model

As mentioned before, the LiDAR points are irregularly spaced. One typical way to gen-

erate regular-spaced DSM is by triangulating the points, temporarily, to a triangulated

irregular network (TIN), and then rastering the TIN onto a 2D plane in order to pro-

duce a digital surface model (DSM). One major disadvantage of this method is that it

highly depends on the performance of the triangulation algorithm, which are typically

computationally expensive. So, the resolution of the DSM is often kept low. Isenburg

et al [74] introduce a streaming way to efficiently generate raster DEMs from mass

points. Here, a novel, simpler interpolation method is used to convert irregular-spaced

mass points to a regularly-spaced high resolution DSM.

Fig.3.6 shows a small 2D grid whose individual cells or pixels are either occupied or

unoccupied by original points from LiDAR. Each blank pixel will be filled with some

value which indicates the elevation at this location. For each target pixel, its five nearest

neighbors are found and sorted in an increasing fashion according to their elevations.

The mean elevation value of the last three is assigned to the target pixel. For instance,

if the elevation values of five neighbors are 120.4 m, 121.0 m,150.5 m,150.5 m,150.8 m

35

3.4. CLASSIFICATION OF THE SCENE 36

target pixel

points with higher elevation

points with lower elevation

indicating nearest neighbors
of the target pixel

Figure 3.6: One target pixel (red solid square) with some original points (green and
yellow solid squares) around it. Five nearest neighbors are highlighted with bold bound-
aries. After sorting, the three green squares become candidates for the elevation esti-
mation of the target pixel. The mean value of their elevations is assigned to the target
pixel.

respectively, the elevation of the target is likely to be 150.6 m.

Raw ungridded 3D points are projected onto a regularly spaced grid in which there

is no loss of spatial resolution. As much information from the original LiDAR data

as possible is retained, and missing information is reasonably estimated. In Fig. 3.7,

the left hand image is an unprocessed version of the gridded 2D projection. The figure

on the right side is the upsampled and hole-filled 2D HDSM. Note that the map is

color coded according to the elevation value of each point. A morphological hole filling

algorithm is performed to fill in holes.

Segmentation

The segmentation module takes the HDSM as input and tries to remove the vegetation

and detect each individual building footprint. This is very crucial step for the upcoming

single-building modeling process. The value of each pixel in the map corresponds to

the height of that point. Different from typical optical imagery, the HDSM is already

inherently grouped as a number of contiguous areas coded in various colors. The

remaining task is to determine which components belong to rooftops, and which belong

to the rest of the scene.

The underlying foundation on which this idea is based is that the shape of an indi-

vidual tree object is similar to a two-dimensional Gaussian-shaped surface. Similar to

36

3.4. CLASSIFICATION OF THE SCENE 37

Figure 3.7: HDSM before and after nearest neighbor interpolation.

two-dimensional image correlation with a Gaussian filter, a correlation with a Gaussian

surface is performed to the HDSM. Instead of the traditional approach of pixel-wise

multiplication, a pixel-wise subtraction is performed. The summation of squared dif-

ferences (SSD) within the neighborhood defined by the kernel would be the value of

the query pixel in the ”to-be-generated” tree map (T -map), namely

T = H	P(r) (3.10)

where H represents the high-resolution digital-surface map, P is the r-by-r standard

Gaussian kernel, and the sign 	 represents a neighborhood-wise subtraction operation

(SSD operation). Appendix.A.1 demonstrates that SSD operation and the computing

of the cross correlation can achieve the same goal of getting T -map. A small SSD value

corresponds to a large cross correlation value, which both indicate the two comparing

parties are similar to each other.

Fig.3.9 shows a T -map in which most blue regions indicate those areas that are

covered by trees. These trees might have the same height as the rooftops, which brings

confusion to the elevation filter while conducting roof segmentation. In accordance

with the clue provided by the T -map, trees can be removed and the building footprints

detection process can be made much easier.

37

3.4. CLASSIFICATION OF THE SCENE 38

Figure 3.8: Comparison of the shape of a tree in the scene and the shape of a Gaussian

kernel.

Figure 3.9: T -map. In this map, tree areas are mainly colored in blue, which could

provide a cue to assist segmenting them out. In the meanwhile, edges around rooftops

are also somehow contaminated due to the limitation of this approach.

3.4.2 Vegetation Detection by Graph Cuts

In this section, a graph cuts based vegetation detection approach for point clouds is

presented. The vegetation detection problem is transformed into the problem of finding

38

3.4. CLASSIFICATION OF THE SCENE 39

a minimum cut in a graph whose nodes are the points in the point cloud. The problem

at this stage can be simply regarded as a binary discrimination problem.

Graph Construction

The conventional way of dealing with 2D image segmentation using graph cuts is to

construct a regular grid graph in which each node represents each individual pixel in

the image, and the edges connecting each pair of adjacent nodes are equally weighted

(Fig.2.3). The adjacency between two nodes is inherently defined. However, a LiDAR

point cloud is an irregularly distributed point set. The points are unorganized in terms

of spatial relationship between each other. Under these circumstances, a weighted

graph, G, containing all the 3D points, V, from the input point cloud can also be

created. Each node in the graph represents each individual 3D point. Each node is

connected by its k = 4 nearest neighbors (Fig.3.10) obtained by K-NN search. Two

imaginary terminal nodes (tree node S and non-tree node T) are added. The strength

of each connection is dependent on the Euclidean distance between the two end nodes.

Closer nodes are supposed to be more strongly connected. The weight function can

be defined in two forms. Either Eq.3.11 or Eq.3.12 is able to describe the connections

between nodes adequately.

W = s · e
− d2

σ2w (3.11)

W = s
′ · 1

d
(3.12)

where s or s
′
is a constant scaling factor, and σw can be set based on the average spacing

of the testing points, and d is the Euclidean distance between two points p1(x1, y1, z1)

and p2(x2, y2, z2) given by:

d =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (3.13)

Energy Function

At this point, the graph has been reasonably constructed. The point set V will be

separated into two disjoint sets belonging to either the terminal node S (tree) or the

terminal node T (non-tree) by finding a minimum cut in the graph. Note that in the

real world, most man-made building structures have flat or smooth rooftops. Also, in

39

3.4. CLASSIFICATION OF THE SCENE 40

Figure 3.10: An non-grid graph constructed from a irregularly distributed point cloud.
Each node is a 3D point in the point cloud. It is connected by its four nearest neighbors.
The weights on the edges (black) are based on the Euclidean distances between them.
A minimum cut is found in the right figure.

most urban areas, there are rarely abrupt changes to the ground plane. Speaking more

formally, the ground surface varies gradually and smoothly across the whole scene,

whereas, in vegetative areas, geometric irregularity plays a major role in describing

the geometric surface of the vegetations, such as tree canopies. Within a small local

surface region, presumably on a rooftop or the ground, all sampled points are supposed

to have normal vectors whose directions are consistent, for the most part to each other.

The degree of the geometric variation of the surface is expected to be as small as

possible. The inverse expectation should be presumed when it comes to the vegetative

areas where it’s natural to have large surface irregularities. Hence, the variations of

point normal vectors and the flatness or smoothness are supposed to be large as well.

These properties of the implicit surface sampled by discrete points should be taken into

account for the cut cost of a potential segmentation. The estimations of the variation of

the normal vector distribution Fn and the surface flatness Ff are derived in Section.3.3.

The energy function follows the generic form defined in Eq.2.10, Eq.2.11, and Eq.2.12.

It is necessary to rewrite it here as:

40

3.4. CLASSIFICATION OF THE SCENE 41

E(l) =
∑
p∈V

Dp(lp) +
∑

{p,q}∈N
Vp,q(lp, lq) (3.14)

This form of energy function only depends on the pairwise interaction between

neighboring points, and therefore the smoothness can only be designed to the first

degree[8].

Performing Segmentation

The previous section discussed how the graph is made and what factors the energy

function should take into account. The construction of the graph is adaptive to the

density of the input point cloud. When the minimum cut is computed, the segmen-

tation is assured to be smooth, which means neighboring points are very likely to

be assigned to the same label. The developed segmentation can be operated with or

without thresholding depending on how the data term is defined. Operating without

thresholding achieves complete automation, whereas with thresholding requires some

prior knowledge. However, they can both be considered as unsupervised strategies. Su-

pervised methods ask users to pick some known points from the data and assign labels

under complete confidence. This could be considered as hard constraints, on the con-

trary to, the soft constraints utilized by the energy function. This interaction increases

the accuracy by sacrificing automation of the algorithm. Thresholding requires prior

knowledge but not interaction because it is also involved in the energy function which

only provides soft constraints. As matter of fact, the threshold could be estimated from

the input data itself. Prior knowledge is not even required. Without loss of generality,

let’s assume labels are integers in L = {0, 1} = {S, T }. Two types of definitions of the

data term are given here corresponding to whether it is based on thresholding or not.

So, the data term can be defined as:

Dp(lp) =

λ if ((Fn + Ff) > t)&(lp == T)

or

((Fn + Ff) < t)&(lp == S)

0 if ((Fn + Ff) > t)&(lp == S)

or

((Fn + Ff) < t)&(lp == T)

(3.15)

41

3.4. CLASSIFICATION OF THE SCENE 42

where λ is a constant value, and t is a threshold that is tunable. Or the data term

could also be defined as:

Dp(lp) = sn · e
−F2

n
σ2n + sf · e

−
F2
f

σ2
f (3.16)

where sn and sf are two coefficients, and σn and σf are the standard deviations that

can be statistically given based on the estimated values about curvatures and variations

of normals in the whole scene. An example of the second type of data term is plotted

in Fig.3.11.

Figure 3.11: Plots of normalized penalty function (data term 3.16) of assigning a label
to a node in the graph with some σn and σf values.

There are several choices for the smoothness term. A robust pairwise form based

on Potts model [10] is chosen. Though energy optimization with Potts Vp,q is NP-hard,

graph cuts can still be used to find an answer that is within a factor of 2 from the

42

3.4. CLASSIFICATION OF THE SCENE 43

optimum [10].

Vp,q(lp, lq) = sv · δ(lp, lq) (3.17)

δ(lp, lq) =

{
0 if lp = lq

1 if lp 6= lq
(3.18)

where p and q denote two points in the point cloud and lp and lq are either 0 or 1. sv

is a coefficient as well.

Both the swap move and the expansion move could be adopted providing equal

segmentation results.

Experimental Results

The campus of the Rochester Institute of Technology is used as one of the major testing

areas in this research. In this area, the vegetative portion is as significant in aerial

coverage as the man-made objects. The height of trees canopies vary throughout scene.

The ground elevation also shows significant variation. Point clouds with low density

(about 4 pts/m2) and high density (about 50 pts/m2) are both available to be examined.

Hence, while conducting the local analysis, the demanded number of neighboring points

can not be fixed and depends on the density of the input point cloud. According to

the experimental experience, the appropriate number of neighboring points would be

as 2 ∼ 3 times as large as the point density.

Fig.3.12 shows the LiDAR image (about 3.5 pts/m2) and the corresponding optical

image for testing area NO.1, where the Chester F. Carlson Center for Imaging Science

building is located on the R.I.T campus. Local analysis is conducted on the point cloud

covering this area. In order to demonstrate how the size of the local neighborhood would

affect the local analysis, the number of neighbors n is chosen as 10, 20, 30, and 40 for

different groups of experiments. The number 10 is actually the appropriate choice

for this data. Fig.3.13 shows the color coded normal maps using differently sized of

local neighborhoods. The three elements [nx, ny, nz] composing a normal vector are

represented by the values of RGB in three color channels.

43

3.4. CLASSIFICATION OF THE SCENE 44

(a) LiDAR Image (tessellated) (b) Optical Image (courtesy to Google Map)

Figure 3.12: Testing area NO.1 on the northern part of R.I.T campus (including the
CIS building).

Figure 3.13: Comparison of color-coded normal map for increasing size n of local neigh-

borhood (testing area NO.1).

44

3.4. CLASSIFICATION OF THE SCENE 45

Figure 3.14: Comparison of color-coded surface flatness map for increasing size n of

local neighborhood (testing area NO.1).

Figure 3.15: Comparison of color-coded normal distribution map for increasing size n

of local neighborhood (testing area NO.1).

45

3.4. CLASSIFICATION OF THE SCENE 46

Fig.3.14 and Fig.3.15 show the corresponding surface flatness maps and surface nor-

mal distribution maps of testing area NO.1 using different sizes of local neighborhood.

It is noticeable that regions covering trees, cars, and rooftop fences have much higher

local flatness values and larger variation of the local surface normal distribution. These

two different kinds of maps basically reflect the same property of the surface. In other

words, areas with higher flatness values are also the areas with larger variation value

of surface normal distribution, and vice versa. Fig.3.16 presents the vegetation result

for testing area No.1 from a few of different visualization angles. The points colored

in green are considered to be representing vegetation after detection. Since, at this

stage, only two categories are to be identified, cars exhibiting as small clusters on the

ground in the scene may also be or not be recognized as vegetations, which does not

impose any significant negative influences on the future terrain and building footprints

extraction.

Figure 3.16: Vegetation detection result on testing area NO.1: the top left figure shows

color-coded point cloud based on the elevation; the rest figures shows the separation of

trees from the other content from three different views.

46

3.4. CLASSIFICATION OF THE SCENE 47

(a) 2D ortho-projected LiDAR Image (tessellated)

(b) Optical Image (courtesy to Google Map)

Figure 3.17: Testing area NO.2 on the southern part of R.I.T campus

47

3.4. CLASSIFICATION OF THE SCENE 48

Figure 3.18: Vegetation detection result on testing area NO.2: the zoom-in region shows

a good example that the method works effectively even sometimes the tree canopy

blocks part of the rooftop.

48

3.4. CLASSIFICATION OF THE SCENE 49

(a) 2D ortho-projected LiDAR Image (tessellated)

(b) Optical Image (courtesy to Google Map)

Figure 3.19: Testing area NO.3 on the whole northern part of R.I.T campus

49

3.4. CLASSIFICATION OF THE SCENE 50

(a) Color-coded point cloud based on the elevation.

(b) Separation of trees from the other content.

Figure 3.20: Vegetation detection result on testing area of the whole northern part of

R.I.T campus. Bright green points are labeled as vegetations.

50

3.4. CLASSIFICATION OF THE SCENE 51

Figure 3.21: A few of zoom-in views of the regions in the whole northern part of RIT

campus showing the details of vegetation extraction by the graph cuts algorithm.

51

3.4. CLASSIFICATION OF THE SCENE 52

Here are some more experimental results. Fig.3.17 shows the LiDAR image (about

3 pts/m2) along with the corresponding optical image of testing area NO.2 on the

southern part of RIT campus. Fig.3.18 shows the classification result of the testing

area NO.2. It is exciting to see how the graph cuts based classification algorithm works

effectively to separate trees from buildings even when the tree canopy blocks a portion

of the rooftop.

Fig.3.19 shows the LiDAR image (about 3.5 pts/m2) and the corresponding optical

image of testing area NO.3 on a large area of the northern part of R.I.T campus.

Fig.3.20 shows the classification result of the testing area NO.3. This area is quite a

challenging testing area, because many trees are in contact with the buildings. However,

the method here delivers a robust outcome. Fig.3.21 provides detailed views of the

classification result. Points on trees (bright green points) are nicely identified and

labeled for future removal.

An important issue with this algorithm needs to be pointed out. The problem is that

relatively tiny point clusters, mainly in forms of roof fences, edge walls, air conditioning

units, pipes and fans on the building rooftops are often grouped into the category of

vegetations (Fig.3.22). The cause of this is also clear. The sampling process always

makes these kinds of features lack regularized geometric properties. These features

are much less important for the future process of rooftop description, therefore, it is a

tolerable issue and the existence of this kind false alarm is tolerated.

Figure 3.22: False alarms of the graph cuts based classification result.

Another relevant issue that also needs to be addressed here is the LiDAR image

and the optical image were not captured at the same time. Therefore, scene content in

both images is not identical. For example, in testing area NO.2, a large eastern part

of the scene was covered by vegetations when the LiDAR image was taken, whereas,

52

3.5. TERRAIN AND BUILDING FOOTPRINTS EXTRACTION 53

it was almost baren when the optical image was captured. The purpose of showing

corresponding optical images is to better present what the testing area looked like from

a more familiar point of view for most readers.

3.5 Terrain and Building Footprints Extraction

Most vegetative area, including unidentified tiny clusters can be successfully removed

by the classification methods presented in the previous section. The remaining portions

of the scene presumably consist of the terrain and all man-made building structures.

At this moment, there is still no knowledge of how to recognize which part belongs

to the terrain and which parts are individual buildings. However, this recognition is

very critical to the upcoming processing. Many current approaches to urban modeling

treat the terrain part as a giant flat surface, which does not account for one important

characteristic of the terrain, the natural variation in elevation values. With regards

to this fact, extracting the terrain from the scene is not a trivial step that can be

neglected. Furthermore, building footprints detection must also be accomplished. Each

building structure can be considered as an important cluster with a significant size on

the ground. Different from point clouds produced by multi-view or stereo matching,

airborne LiDAR point clouds mainly cover the building rooftops. Much fewer points

actually fall on the building sides, and a lot of them might be eliminated through

the step of noise removal. Because of this feature, the ground can be assumed to be

disconnected from the building footprints. All these inherent facts can help to identify

the terrain and the building footprints. The next step is to detect terrain and extract

all possible rooftop patches from the scene which has already had vegetation excluded.

3.5.1 Euclidean Based Clustering

A clustering method is chosen as the approach to conduct the extraction of terrain and

building footprint features. The purpose of this clustering is to divide an unorganized

point cloud into smaller parts each of which is supposed be a meaningful representation

of an object. It is also a spatial decomposition problem which uses Euclidean distance

as the metric. This spatial metric measures the membership to different clusters. The

details of this approach are depicted in Algorithm.3.5.1. Let C be a list of clusters. Q
is a queue of points that waits to be checked. Nk is a set of points that are neighbors

53

3.5. TERRAIN AND BUILDING FOOTPRINTS EXTRACTION 54

of the currently examined point p by radius searching. The algorithm terminates after

every point p in the input point cloud, having been processed and assigned to any

cluster in the list C.

Algorithm 3.5.1: EuclideanClustering(P, radius)

comment: The general steps of Euclidean distance based clustering.

C ← ∅;Q ← ∅;
for each p ∈ P
do if !IsProcessed(p)

then

Insert(Q, p);
for each p ∈ Q

do

Nk ← RadiusNeighborSearch(p, radius);

do

for each p ∈ Nk

do

{
if !IsProcessed(p)

then Insert(Q, p);
if IsProcessed(Q)

then

{
Insert(C,Q);

Q ← ∅
return (C)

As long as various targets in the scene are spatially separated from one another, it is

reasonable to apply the Euclidean based clustering to group and identify points that

make up these targets.

3.5.2 Two-step Hierarchical Euclidean Clustering

A strategy referred to as two-step hierarchical Euclidean clustering (Fig.3.23) was used.

Two consecutive passes, utilizing two different searching radii in the neighborhood, are

conducted.

54

3.5. TERRAIN AND BUILDING FOOTPRINTS EXTRACTION 55

Figure 3.23: Flow of the two-step hierarchical Euclidean clustering. The special opera-

tor refers to the operation of subtracting the terrain part from the input tree excluded

scene.

The idea is to divide the points into a number of clusters based upon their spatial

relationship - Euclidean distance. Points that stay closely in the space are considered as

belonging to the same cluster. It is reasonable to say the terrain represents the largest

areal coverage in most urban scenes. The first step attempts to separate this largest area

from the rest of scene elements (the buildings). Due to the nature of airborne LiDAR

data, the terrain portion of the scene will have very little contact with the buildings,

or other man-made objects, and can be successfully isolated and removed based on

Euclidean clustering with a reasonable radius value (depicted on the left in Fig.3.23).

Once the terrain has been extracted, the remaining features, primarily buildings, can

be also clustered by using a larger radius value than the one used in the first clustering

pass (depicted on the right in Fig.3.23). The choice of these two values depends on the

density of the urban area. If buildings distribute relatively sparsely, the two values are

very different. Otherwise, the two radii can adopt very similar magnitudes.

55

3.5. TERRAIN AND BUILDING FOOTPRINTS EXTRACTION 56

3.5.3 Example Results

In the examples shown below, a scene consisting of the northern part of R.I.T campus

is examined. Assuming all building objects are at least 1 meter above the ground

and the distance between building footprints is larger than 5 meters, the first cluster

radius is 1, and the second cluster radius is 5 (unit: meter). In Fig.3.24, the scene

has been classified into two categories. The green points are identified as tree areas

based on the graph cuts algorithm. Once the detected vegetation are removed from the

scene, the result is shown in Fig.3.25. At this stage, it is ready to apply the two-step

hierarchical Euclidean clustering method. After the first pass, the terrain is recognized

as the largest cluster (Fig.3.26). The remaining clusters are put through the second

pass. The resulting building footprints are shown in Fig.3.27, and Fig.3.28 provides a

complete view of the result of this two-step hierarchical Euclidean clustering process.

Figure 3.24: A scene of the northern part of R.I.T campus, and the vegetative areas

are detected based on the graph cuts algorithm.

56

3.5. TERRAIN AND BUILDING FOOTPRINTS EXTRACTION 57

Figure 3.25: A scene of the northern part of R.I.T campus, and the vegetative areas

are removed and only the ground and buildings are left.

Figure 3.26: The terrain part of the northern part of R.I.T campus. It is obtained by

the first step of the two-step hierarchical Euclidean clustering.

57

3.5. TERRAIN AND BUILDING FOOTPRINTS EXTRACTION 58

Figure 3.27: All significant building footprints in the scene of the northern part of R.I.T

campus. They are obtained by the second step of the two-step hierarchical Euclidean

clustering.

Figure 3.28: A scene of the northern part of R.I.T campus (include both terrain and

building footprints).

58

3.6. BUILDING ROOFTOP DESCRIPTION 59

3.6 Building Rooftop Description

Prior to this point, the whole point cloud was taken as input. The point cloud was put

through the process of noise removal, vegetation detection, and terrain and building

footprints extraction. The input point cloud has been divided into separate parts,

such as the terrain portion, the vegetative areas, and individual rooftop footprints.

Processing each individual cluster of building points is now the major task. After

obtaining all of the desired building rooftop patches, the processing unit is reduced to

each individual rooftop. All building footprints (clusters) can be processed in parallel

utilizing appropriate resources. It is very important to have a reasonable and fine

description of the rooftop from the raw points. Generally speaking, rooftop description

is predictable since in most urban areas, the design of rooftops follows certain rules,

such as common planar surfaces, sharp corners, straight linear edges, and so on. But

at the same time, it is also unpredictable because there is a huge variety in rooftop

shapes. A rooftop can have multiple layers or consist of many significant features. This

contradiction always makes describing a rooftop a challenging task to conduct. Fig.3.29

shows the variety from one roof to another in terms of the complexity, even with the

relatively few numbers of buildings that exist on a college campus compared to a urban

downtown area.

Figure 3.29: Two examples of rooftops with different complexities (courtesy to Google

Map). A simple one could have only one flat surface. A complex one could have a

complicated major outline and many other parts on the roof as significant features of

itself.

59

3.6. BUILDING ROOFTOP DESCRIPTION 60

3.6.1 Rooftop Feature Detection

At this stage, one is ready to produce mesh models from the individual point sets that

represent building footprints. However, in order to achieve constructed models con-

taining fine details, it is necessary to identify those significant features that are parts

of the rooftop and describe them in a complete way. Since there is no prior knowledge

on what kinds of geometric primitives that consist of the rooftop, template fitting is

not an option. The only information available is the raw points and their estimated

normal vectors and curvature values. It is reasonable to segment different features of

a rooftop by comparing the similarities between normal vectors and curvatures within

a local neighborhood. A group of neighboring points probably belong to the same fea-

ture of the rooftop, if they have normal vectors with very similar directions and their

curvatures do not vary significantly within the neighborhood. So, this detection pro-

cess could be interpreted as a region growing based segmentation problem. Rabbani et

al [75] proposed a segmentation method using a smoothness constraint which avoids cal-

culating properties like curvatures. Instead, they calculated the residual value obtained

by plane fitting to a small surface area and utilized it as a substitution to the curvature

property. Their method was only tested on surfaces of indoor objects exhibiting small

size, not on large surfaces like rooftops. The algorithm presented here is similar. The

smoothness constraint is maintained, however, the curvature property is also directly

explored. The presented approach works specifically for building rooftops.

The region growing segmentation process takes a raw unorganized 3D point cloud of

any building rooftop and uses their estimated point normals and estimated curvatures

as well, in accordance with some predefined values as thresholds, to group points that

belong to the same region. The process for estimating the normal vectors and surface

curvatures has been already introduced in Section.3.3. This region growing process

examines the local connectivity and the consistency of normals. Specifically, local

connectivity is a constraint saying that the points belonging to the same surface or

in the same segment should be locally close to each other even though they are not

directly next to each other. It is naturally enforced since nearest neighbor searching

is utilized here to form a local neighborhood. It guarantees these points are spatially

related. Furthermore, the surface belonging to a roof feature should be locally smooth,

which can be considered as another constraint. In many cases of urban rooftops, it is

also reasonable to claim that the surface should be planar. There is no requirement to

60

3.6. BUILDING ROOFTOP DESCRIPTION 61

specify the number of expected roof features. It is completely data driven and depends

on the structure of the roof itself. By changing a small number of parameters, including

thresholds for surface curvature and normal changes, the features of the rooftop can

be revealed and eventually reconstructed to various levels of details. In other words,

the simplicity or complexity of a modeled rooftop can be determined by users of the

algorithm based upon the needs of different applications.

Algorithm 3.6.1: RooftopSegmentation(P, normals, curvatures)

comment: Segment a given point cloud of a rooftop into a group of roof features.

R ← buildEmptyList;

i← 1

while !isEmpty(P)

do

R[i]← ∅
S[i]← ∅
pmin ← getPointwtSmallestCurvature;

insertPoint(R[i], pmin);

insertPoint(S[i], pmin);

removePoint(P, pmin);

for k ← 1 to size(S[i])

do

B[i][k]← knnSearch(S[i][k]);

for j ← 1 to size(B[i][k])

do

p← B[i][k][j]

if p ∈ P and angle(normalp, normalS[i][k]) < δang

do

insertPoint(R[i], p);

removePoint(P, p);
if curvature(p) < δc

do insertPoint(S[i], p);

i← i+ 1

return (R)

The detail of the steps is given in Algorithm.3.6.1. In this piece of pseudo code, P
is the input point cloud or point list. R is a list of regions detected by the segmentation

process. S[i] is a list of initial feature seeds when the algorithm is in the ith round.

The seed points are selected based on their curvature values instead of in a random

61

3.6. BUILDING ROOFTOP DESCRIPTION 62

fashion. Every time, the curvature value of one point is examined and the point will be

put into the seed list if its estimated curvature is the smallest in the point list or small

enough. It guarantees the smoothness property acts as a constraint to make region be

a smooth surface, or a planar surface under many situations.

This algorithm is also depicted in the flowchart shown in Fig.3.30. The algorithm

first picks a point with the smallest curvature value as the starting seed point. Within

a small spatial neighborhood of this seed point, it compares the direction of the nor-

mal vector of any other point with the normal direction of the current seed point. If

the directional difference (angle between two vectors) is larger than a predetermined

threshold (e.g. 5◦), the point being examined does not belong to the group initiated by

the seed point, otherwise, it does. Of those points which have been grouped together by

the seed point, points with curvature values lower than another predetermined thresh-

old (e.g. 0.2) are chosen as new seed points. The procedure continues in an iterative

fashion and stops when all points are visited. During the growing process, the curva-

ture property helps to grow the region and group points which are supposed to belong

to the same region. This approach can successfully segment the major regions that

consist of a complete rooftop. For each segmented region, RANSAC is applied to fit a

particular type of surface (most are planar surfaces) from the candidate points.

Though the normal and curvature parameters are estimated as closely as possible,

they are still represented only by their best approximation. It is inevitable that over-

segmentation occurs due to the nature of the problem. A great number of tiny regions

in which there are only a few points, or even only one point, are generated. Another

refinement step needs to occur to merge or combine these tiny regions with the major

regions to which they likely belong. For each undetermined point, the distance d1

to each estimated surface by RANSAC and the distance d2 to each major region are

calculated. After normalization, d1 and d2 are combined (Eq.3.19) and used as a metric

to determine which major region the target point in the tiny region belongs to.

d = ρ1d1 + ρ2d2 (3.19)

62

3.6. BUILDING ROOFTOP DESCRIPTION 63

Figure 3.30: Algorithm flowchart of region growing using smoothness constraint and

curvature consistency to detect features on the rooftop.

63

3.6. BUILDING ROOFTOP DESCRIPTION 64

3.6.2 Example Results

Segmentation results of several different building rooftops are shown here. Major re-

gions on the rooftop before and after absorbing minor features are presented. The

profile views provide a perspective to illustrate how the plane fitting improves the

flatness of the original planar features.

(a) top view
(b) slant view

Figure 3.31: Direct result from the region growing based segmentation (Roof NO.1).

(a) top view
(b) slant view

Figure 3.32: After adding tiny regions back to major regions (Roof NO.1).

64

3.6. BUILDING ROOFTOP DESCRIPTION 65

(a) Before fitting planes to points (b) After fitting planes to points

Figure 3.33: The profile view of the rooftop (Roof NO.1).

(a) top view
(b) slant view

Figure 3.34: Direct result from the region growing based segmentation (Roof NO.2).

(a) top view (b) slant view

Figure 3.35: After adding tiny regions back to major regions (Roof NO.2).

(a) Before fitting planes to points (b) After fitting planes to points

Figure 3.36: The profile view of the rooftop (Roof NO.2).

65

3.6. BUILDING ROOFTOP DESCRIPTION 66

(a) top view

(b) slant view

Figure 3.37: Direct result from the region growing based segmentation (Roof NO.3).

(a) top view

(b) slant view

Figure 3.38: After adding tiny regions back to major regions (Roof NO.3).

(a) Before fitting planes to points (b) After fitting planes to points

Figure 3.39: The profile view of the rooftop (Roof NO.3).

3.6.3 Determination of Rooftop Orientation

In the previous section, a building rooftop was segmented into different parts. Each

part represents an significant feature of the rooftop. For all planar surfaces, perfect

66

3.6. BUILDING ROOFTOP DESCRIPTION 67

plane models are estimated and all original surface points are realigned in accordance

with the estimated planes. The next critical step is to find an appropriate and rigorous

outline for each rooftop segment. It is not a very straightforward procedure since the

sampling process of LiDAR often misses the points on the corners which are the most

important hints for outline definition. Instead of directly moving on to the discussion

of outline generation, determination of the orientation of each rooftop part is first

discussed.

In this section, the problem domain is changed from R3 to R2. Each set of 3D

points to be processed is ortho-projected onto a 2D plane, because it is easier to look

at this problem from the two-dimensional perspective. The focus of the problem is di-

rected at how to define and determine the principal orientation of a projected rooftop.

The reason that the principal orientation needs to be examined is that it is the highly

valuable information to assist in refining the outlines of the building rooftop features.

One practical observation is the design of urban man-made structures often exhibit roof

edges parallel to the rooftop principal orientation. The principal orientation of an ob-

ject can be described by the principal axises of its minimum bounding box, particularly

speaking, the major axis and the minor axis. Fig.3.40 illustrates a hypothetical roof

part (top-view) with its principal axes and minimum bounding box depicted. Since

the principal axes indicate the orientation of a building rooftop part, determining this

principal orientation is equivalent to finding the principal axes. Furthermore, the prin-

cipal axes can be easily derived if the minimum bounding box is known. Conversely, a

corresponding bounding box is also straightforward to be defined if the two orthogonal

axes are provided. The approach of using minimum bounding box to help determine

the principal orientation is completely data-driven.

On the topic of bounding box fitting, Chaudhuri and Samal [76] introduce a simple

approach for fitting a bounding rectangle to a closed regions. These closed regions can

be convex or concave. A least square approach is used to determine the directions of

major and minor axes of the object. These two axes indicate the principal orientation

of the object. The four vertices of the bounding rectangle (box) are then computed by

pairwise solving the intersections of four lines. They only take boundary points of the

object to conduct the calculation. One major concern about this approach is whenever

the shape of the test object is not symmetrical, such as L shape, the least square

method lacks the capability to provide a robust result of principal axes. Besides, there

67

3.6. BUILDING ROOFTOP DESCRIPTION 68

is no formal mathematical proof to claim the resulting bounding box is the expected

minimum bounding rectangle.

Figure 3.40: A hypothetical example with its principal axes and bounding box.

Determination of Bounding Box Given Arbitrary Orientation of Axes

It is difficult, in one step, to directly compute the accurate principal axes and the

minimum bounding box of a target object. If some estimate of the orientation of the

principal axes is given, the corresponding bounding box of the target object could

be derived using the approach described in this section. Using this same calculation,

and subsequent estimates, a group of corresponding bounding boxes can be obtained by

testing a group of candidate orientations of the principal axes. Therefore, the minimum

bounding box can be found among these candidate bounding boxes.

A bounding box can be defined if the angle, α, between the major axis and the x-

axis is provided in an orthographically projected plane. Consider a 2D ortho-projection

of 3D points of an isolated rooftop part, where (xi, yi), i = 1, 2, ..., n are the 2D points

of the projection. The centroid (x̄, ȳ) is defined as:

x̄ =
1

n

n∑
i=1

xi (3.20)

68

3.6. BUILDING ROOFTOP DESCRIPTION 69

ȳ =
1

n

n∑
i=1

yi (3.21)

The centroid is the center of the bounding box, and also the intersection of the

major and minor axes (principal axes). An equation can be defined as below:

f = (yi − ȳ)− tanα(xi − x̄) (3.22)

or

f = (yi − ȳ)− cotα(xi − x̄) (3.23)

when f = 0, it represents the major or minor axis. If f is larger than zero, (xi, yi)

is above or to the right of the line f = 0; if f is smaller than zero, (xi, yi) is below or to

the left of the line f = 0. Four furthest points in four directions (lower and upper with

respect to the major axis, and lower and upper with respect to the minor axis) can be

derived here. Let (x1, y1), (x2, y2), (x3, y3), (x4, y4) be these four vertices (Fig.3.40).

The four corners of the bounding box can be then computed from these four furthest

vertices with respect to the principal axes. Lines which pass through (x1, y1) and

(x2, y2) and are parallel to the major axis are given as:

(y − y1)− tanα(x− x1) = 0 (3.24)

(y − y2)− tanα(x− x2) = 0 (3.25)

Lines which pass through (x3, y3) and (x4, y4) and are parallel to the minor axis are

given as:

(y − y3)− cotα(x− x3) = 0 (3.26)

(y − y4)− cotα(x− x4) = 0 (3.27)

These four lines describe the four edges of the bounding rectangle. Lines given by

Eq.3.24 and Eq.3.25 are both parallel to the major axis, and lines given by Eq.3.26 and

Eq.3.27 are both parallel to the minor axis. The pairwise intersections of these lines

can give the locations of the four corners (Fig.3.40) of the bounding box.

Eq.3.24 and Eq.3.26 intersect, and then the top left vertex of the bounding box

69

3.6. BUILDING ROOFTOP DESCRIPTION 70

(xtl , y
t
l) is given as:

xtl =
x1 · tanα+ x3 · cotα+ y3 − y1

tanα+ cotα
(3.28)

ytl =
y1 · cotα+ y3 · tanα+ x3 − x1

tanα+ cotα
(3.29)

Similarly, Eq.3.24 and Eq.3.27 intersect, and then the top right vertex of the bound-

ing box (xtr, y
t
r) is given as:

xtr =
x1 · tanα+ x4 · cotα+ y4 − y1

tanα+ cotα
(3.30)

ytr =
y1 · cotα+ y4 · tanα+ x4 − x1

tanα+ cotα
(3.31)

Eq.3.25 and Eq.3.26 intersect, and then the bottom left vertex of the bounding box

(xbl , y
b
l) is given as:

xbl =
x2 · tanα+ x3 · cotα+ y3 − y2

tanα+ cotα
(3.32)

ybl =
y2 · cotα+ y3 · tanα+ x3 − x2

tanα+ cotα
(3.33)

Finally, Eq.3.25 and Eq.3.27 intersect, and then the bottom right vertex of the

bounding box (xbr, y
b
r) is given as:

xbr =
x2 · tanα+ x4 · cotα+ y4 − y2

tanα+ cotα
(3.34)

ybr =
y2 · cotα+ y4 · tanα+ x4 − x2

tanα+ cotα
(3.35)

Each set of ((xtl , y
t
l), (x

t
r, y

t
r), (x

b
l , y

b
l), (x

b
r, y

b
r)) with the centroid (x̄, ȳ) describes a

fitted bounding box for the test object with a certain orientation. The next step is to

figure out which one is the minimum bounding box.

Searching Minimum Bounding Box

The minimum bounding box is defined as the one whose area is the smallest among all

candidates. The range of the orientation, α, is always within [0, 2π). It is reasonable

and practical to conduct an exhaustive searching in the range [0, π) to find out the

particular angle with which the specific bounding box has the minimum area. The

searching space is linear and the size of the space is dependent on the interval between

70

3.6. BUILDING ROOFTOP DESCRIPTION 71

two consecutive steps. The cost function D could be defined as:

D = arg min(Abox(α)) (3.36)

where Abox(α) represents the area of the bounding box and is a function of α.

Figure 3.41: Search the minimum bounding box. The rectangles in the left image are

different bounding boxes with different orientations. The right image shows the plot

of the area with respect to the orientation. In this figure, the red rectangle is the final

minimum bounding box.

Fig.3.41 illustrates how the searching process is conducted. Four candidate boxes

are shown in the figure. The red box corresponding to the red dot in the plot is the

minimum bounding box. The value of D is also shown minimum at where the red dot

locates in the plot. In this case, the optimal value of the angle is 0.

71

3.6. BUILDING ROOFTOP DESCRIPTION 72

Experimental Results on Synthetic and Real Data

For the purpose of testing the effectiveness of the search strategy, a set of objects,

including both synthetic and real data, are analyzed. It is straightforward to produce

synthetic data as binary images shown in Fig.3.42 and Fig.3.43. The white area in the

image is the testing target simulating some random rooftop, and the black area is the

background. Fig.3.44 shows real data derived from some LiDAR rooftop points. Some

preprocessing is conducted here. The 3D points are first projected onto the 2D grid

and transformed to a 2D binary image. All the steps of bounding box determination

are applied to these binary images. Locations where minimum cost values happen can

be easily identified from the plots from Fig.3.42 to Fig.3.44. The results show that this

approach is accurate and fast.

Figure 3.42: Synthetic data No. 1. Left plot shows where the minimum area is. The

cyan rectangle in the second figure is the final minimum bounding box.

72

3.6. BUILDING ROOFTOP DESCRIPTION 73

Figure 3.43: Synthetic data No. 2. Left plot shows where the minimum area is. The

cyan rectangle in the second figure is the final minimum bounding box.

Figure 3.44: Real example data. Left plot shows where the minimum area is. The cyan

rectangle in the second figure is the final minimum bounding box.

73

3.7. 3D MODELING 74

3.7 3D Modeling

Once the orientation of the structure is determined, one can move on to the topic of

final description of building rooftops - building models. Successful extraction of major

rooftop features and estimation of rooftop orientation is not sufficient to deliver a CAD-

like model. This section introduces, as the final major step in the developed workflow,

a description of how to generate simplified polygonal building models and terrain (if

required). The structure of a building model will be first defined. Accurate boundary

production, surface triangulation, and some advanced processing will be also discussed.

For the terrain, the only issue that needs to be addressed is hole filling where vegetation

may have been removed.

3.7.1 Structure of Building Model

After the rooftop feature detection, a building roof is divided into a number of regions.

Each individual region can be described by an arbitrary shape. The boundary of the

shape defines this rooftop feature. In the modeling process, each complete building

model consists of a group of independent structures, each of which corresponds to one

feature on the rooftop, and is produced by extruding its boundary vertically to the

ground. In this fashion, each structure is created as a bottomless volumetric box, and

the vertical sides of each box can form the walls naturally. Obviously, each box can only

have one top but multiple sides (at least three). The combination of all the boxes is

expected to deliver a watertight geometric model. Fig.3.45 gives as an visual example.

The building model used in this research can be represented as:

Building =
⋃
k

Boxk(k = 1...n) (3.37)

Box = Top ∪ Sides (3.38)

Lin et al [77] design their building models in a general, hierarchical-tree based

representation, which also interprets models as a group of boxes (blocks). But, the

form of representation is designed particularly for residential houses. They also proceed

to employ strict rules of structure which contradicts the task here of imposition of no

predefined models.

74

3.7. 3D MODELING 75

Figure 3.45: A sketch example showing one building model obtained by combining

three boxes together.

3.7.2 Roof Boundary Extraction, Simplification and Refinement

For every feature that is part of the rooftop, the boundary is extracted from the 2D

binary image generated by the same 2D projection method introduced in last section.

This outline is a 2D closed contour, namely Bd, which is actually a dense set of sequential

points. The Douglas-Peucker line simplification algorithm [16] is then applied to this

dense set of points. The result becomes a simplified contour, namely Bs, consisting of a

set of vertices whose number is largely reduced but finely representative of the shape of

the original contour. For each line segment e ∈ Bs, its direction is refined by examining

how much it diverges from the principal direction. If the divergence is small enough,

then e will be snapped to the principal direction. For those relatively small features on

the rooftop, the original shapes of theirs are extremely difficult to estimate due to the

limitation of sampling. Thus, for these small features, their minimum bounding boxes

are used to represent their geometry.

3.7.3 Generation of Polygonal Mesh

Given the defined extruded models from the previous section, the next step is the gen-

eration of a polygonal model. The outlines produced in the previous step are arbitrary

polygonal loops. Self-intersecting (one edge goes across another edge in the same loop)

is not allowed to exist. The generated polygons are then connected to the ground level

by adding vertical walls, which can be called ”orthographic-extruding”. The boundary

75

3.7. 3D MODELING 76

loops have already been topologically-corrected, which means though the x and y loca-

tions of each vertex of the loop are determined in 2D fashion, the elevation value of each

vertex is calculated according to the parametric model estimated by RANSAC (non-

level features). Fig.3.46 shows a couple of polygonal meshes with RANSAC rectified

points on them, the non-level features are also highlighted.

Figure 3.46: Some polygonal mesh building models with points also plotted on them.

For each building model, every color represents an individual rooftop feature. For those

relatively small features, their shapes are described by their minimum bounding boxes

directly.

76

3.7. 3D MODELING 77

3.7.4 Surface Triangulation

As this point, each rooftop feature has been described by a fine polygonal contour

that could be convex or concave, but not self-intersecting. When the derived model

is written to files based on industrial standard 3D file formats (ply, obj, json, etc.),

each polygon is recognized as a single face regardless of its possible complicated shape.

The reality is that all 3D rendering engines require the surface element of the geometry

to be triangular facets. In order to meet this demands, each polygonal loop must be

triangulated.

A constrained 2D Delaunay Triangulation [78] is adopted here. For each individual

rooftop feature, once the boundary production is done, all the vertices of the boundary

are used to create a triangulated mesh which is close-to-Delaunay. General Delaunay

Triangulation does not take into account the order of vertices from the input polygon

and makes unnecessary connections between points. Thus, it introduces extra edges

outside the original polygon loop given a non-convex shape. Constraints are usually

added to triangulate a non-convex polygon. It is not necessary to impose constraints

on convex shapes. Fig.3.47 shows the difference between the unconstrained Delaunay

Triangulation and the constrained Delaunay Triangulation. The red contour in the

figure indicates the input non-convex polygon that is used as the constraint. Fig.3.48

shows how the constrained Delaunay Triangulation applies to polygons in the real

model.

Figure 3.47: The difference between unconstrained Delaunay Triangulation and con-

strained Delaunay Triangulation, the red line in the bottom figure is the constraint

which is the outline of this non-convex polygon.

77

3.7. 3D MODELING 78

Figure 3.48: Part of an actual 3D model and its wireframe after constrained Delaunay

Triangulation.

3.7.5 Terrain Hole Filling

The terrain portion extracted from the whole point cloud is incomplete after all the

other objects (vegetations and building footprints) are removed from the scene. Mul-

tiple holes in random shapes are left where buildings or trees were located (Fig.3.26).

When the building models and the terrain model are put back together, the holes on

the ground caused by the buildings can be ignored. However, the trees are removed

permanently and the holes caused by them are exposed if no further processing is done.

Filling the holes and producing a smooth, hole-less ground surface (a.k.a. DEM) be-

comes necessary here. There are some free DEM data available but with very low

resolution (e.g. 10 meters) which is not good enough. Precise DEM estimation is not

one of the major tasks in this research, instead, the purpose of filling the holes is mainly

for visualization and completeness of the scene.

All the points left on the ground with their normals compose a set of oriented

points. A smooth surface is desired. This can be regarded as a spatial Poisson problem,

therefore, a Poisson surface reconstruction [79] technique can be applied to re-sample

the original set of points and produce a smooth ground surface, roughly equivalent to

a precise DEM.

Poisson problems have been arising in a variety of applications. The particular

problem here is taking a set of samples. Each sample is an oriented point. All of

78

3.7. 3D MODELING 79

these oriented points are assumed to lie on or near the implicit surface of an unknown

model. The goal is to reconstruct a watertight, triangulated surface which is the best

approximation of the real surface. Unlike many other surface reconstruction approaches

that usually segment the point set into a group of regions and do local fitting, the

Poisson formulation handles all the oriented points at once and is very resilient to

noise. The most popular implementation was developed by Kazhdan [79] and is used

in this research.

Figure 3.49: The original points of the terrain (white) and the reconstructed wire-frame

of the Poisson surface.

The white dense point set depicted in Fig.3.49 are the original, oriented points. The

green wire-frame shows the triangulated reconstructed surface. It can clearly been seen

that this is a nonuniform resampling process.

79

3.7. 3D MODELING 80

3.7.6 Roof Feature Polygon Clipping and Closing

During the previous discussion, each rooftop feature is considered as an independent

part to be processed, including the shape (plane) fitting and boundary production. The

final combination of all the boxes creates a complete building model. Each polygon

remains intact after the boundary production regardless of potential impacts from

neighboring roof features. So far, this type of impact appears to not be a necessary

concern since most of features we have seen are horizontal planar surfaces, which is

quite common in urban scenes. For this kind of roof polygons, their boundaries have no

contact with each other. Therefore, no impact would be made to the existing outlines.

However, it is also common to find more complicated structures rather than one simple

planar face on the rooftop, such as a shed structure containing one feature only, a gabled

structure containing two connected slant features, or a hipped structure containing more

than three connect slant features (Fig.3.50). For these kinds of structure consisting of

more than one slant feature, the features are supposed to naturally meet together

and produce ridges or spines. Due to the imperfection of input data plus the errors

being generated along the pipeline, this behavior can not be obtained for free. Further

processing is necessary. A way to find these ridges or spines is to find the common

intersections between the planes defined by these slanted polygons. Recovering this

level of detail is also critical to create realistic and tight building models.

Figure 3.50: Some basic non-level roof types.

During the modeling process, it is common to observe two types of interaction

between adjacent non-coplanar faces; over-intersection or under-intersection with each

other (Fig.3.51). In Fig.3.51, polygon P1 (green) and polygon P2 (yellow) are supposed

to meet and produce a natural, sharp spine edge. In the left figure, they are over-

intersected; that is the common intersection of these two polygons is approximately

80

3.7. 3D MODELING 81

used as the spine of the structure. The redundant parts can then be cut off to leave

a clean structure. This step is called ”clipping”. In another case, shown in the right

figure, P1 and P2 are under-intersected. They have no contact with each other. The

solution to this example is to extend the plane (gray outline) defined by P1 to intersect

with P2. The right edge on P2 can be found by conducting ”clipping”. Once the

appropriate edge is found, P1 is then extended to the new found intersecting line in P2.
This step is called ”closing”.

Figure 3.51: Two types of interaction between two adjacent faces: over-intersect and

under-intersect. P1 and P2 are supposed to naturally meet and provide a spine edge.

In order to maintain the automated workflow in place so far, the system must be

able to decide when to apply clipping and closing to rooftop faces. A grouping rule

has to be implemented so that when complicated roof structure is encountered, extra

steps are taken to achieve the desired rooftop geometry. Fig.3.52 shows the logic of

categorizing all the rooftop features into two different kinds, level ones and slant ones,

based on their face normal directions. For the set of slanted faces, it can be furthered

divided into smaller groups. Each group corresponds a single complex structure on

the rooftop, such as gabled shape, hipped shape, or more complicated collections. For

each individual group, the specifically designed clipping and closing strategy can be

81

3.7. 3D MODELING 82

applied in a pairwise fashion. It is important to point out that the groupings from the

original list of rooftop features can be achieved here due to the nature of region growing

approach. The neighboring faces in the list are also neighboring faces on the rooftop.

It is a critical piece of information for the system to decide if two rooftop features are

potentially connected.

Figure 3.52: Pipeline to process the rooftop with multiple structures consisting of slant

surfaces other than level surfaces.

Fig.3.53 shows an example of a particular roof that has a number of level and slanted

features. This is the top of the Bausch & Lomb building in downtown Rochester, NY.

All the slanted faces can be grouped into two clusters. Each cluster contains four

connected faces. Without any processing, it is easy to observe that they are over-

intersected. After the clipping and closing, the appearance of the model looks more

appealing, and accurate than before.

82

3.7. 3D MODELING 83

Figure 3.53: An example of rooftop with both level and slant features. All the slant

features are refined by the extra effort of clipping and closing.

83

Chapter 4

Experiments and Visual Results

Using Real Data

In this chapter, visual results generated by applying the developed workflow on the

real LiDAR data will be presented. The presentation includes both individual building

structures and complete scene models.

4.1 Implementation and Parameter Setting

The whole pipeline has been implemented in MATLAB with geom3d (a MATLAB

library to handle 3D geometric primitives: create, intersect, display, and basic compu-

tations) and C++ with PCL (Point Cloud Library). The main entrance of the workflow

is a standalone MATLAB script (the sample is shown in Appendix B.1). All the ex-

periments were performed on both Windows 7 and CentOS Linux operating systems.

There are a few parameters that are introduced in the pipeline. One of the major

advantages of the developed algorithm is that many parameters, such as the number

of neighbors that needs to be used at multiple places, the search radius while growing

regions, are highly related to the point density, and the point density can be derived

from the input itself (Eq.3.1). The parameters that are not straightforward to be

derived, such as the coefficients used in graph cuts based classification, curvature and

angle thresholds used in region growing algorithm, do not interfere with the result

quality. Thus, these parameters can be very stable on a big range of data. In summary,

84

4.2. DATA AND CONSIDERATIONS 85

all the parameters through the workflow can be either fixed or derived. Very little

effort in tuning parameters is required. However, users are still allowed to specify these

necessary parameters if they receive proper training and understand this workflow well.

Please refer to Appendix B.1 for setting up these major parameters.

4.2 Data and Considerations

The workflow has been tested on various types of LiDAR data collects, including a

university campus, a midsized city and an industrial plant in a rural setting. The point

density varies from about 4 pts/m2 to 30 pts/m2. Fig.4.1 shows the major data sets

used; the R.I.T campus with wide open space between buildings, the dense business

district in downtown Rochester, NY with large and tall buildings and trees. The input

data from airborne LiDAR scanner contain millions of points. The results are produced

using zero knowledge of the type of landscape and object layout in the scenes.

The level of detail of the reconstruction results is constrained by two factors. One

is the input point density, and the other one is the fashion of data collection (aerial or

ground). For instance, the rooftop details such as air-conditioning, chimneys or other

types of small structure that might only be represented by very small number of points

are ignored by the workflow. In addition, since only aerial data is involved in this

research, since ground data is not available, facades of buildings are nearly impossible

to reconstruct with detail and are ignored. All the sides in the reconstructed building

models are chosen to be simple, extruded planar faces.

85

4.2. DATA AND CONSIDERATIONS 86

Figure 4.1: The major data sets tested in this thesis, including partial R.I.T campus

and partial downtown of Rochester, NY. The point densities are about 4 pts/m2, 25

pts/m2, respectively. The intensity property is also displayed but not used in this

research. Ortho-photographs are grabbed from Google Map.

Unlike regular residential areas where rooftops can be always decomposed into some

standard shapes, such as gabled, hipped, shed, or mansard, eclectic university architec-

tural design or variational urban construction discourages the involvement of geometric

86

4.3. PERFORMANCE AND VISUALIZATION 87

primitives. No rooftop templates will be considered in these examples in order to pro-

vide the flexibility of modeling any type of structure.

4.3 Performance and Visualization

The evaluation of the performance of building modeling extraction approaches is agreed

to be a commonly known difficult job. Benchmarks in this field have not been estab-

lished at this point in time. Visual examination is still the most widely used form of

evaluation. Some researchers have developed a few objective ways to come up some

measurements with respect to the input points for evaluation. Unfortunately, it still

can not be accomplished without ground truth. In the next chapter, some rigorous

evaluation will be performed on a simulated data set whose true measurements are

known.

In this section, the visual evaluation and comparison with the widely accepted

approach of 2.5D dual contouring [80] is provided. 2.5D dual contouring can also

create crack-free models composed of rooftops connecting to the ground by vertical

walls through energy minimization. It can recover planar or arbitrary, non-planar

surfaces well, but lacks the ability to produce smooth and rigorous boundary. Shown

in Fig.4.2 are the results from both the presented method and 2.5D dual contouring on

the key data provided by the authors in their paper [80]. It is fair to say the method

presented here produces better geometry with fewer vertices and faces. In other word,

the file size is smaller, which is critical in many applications. Loading large-sized 3D

data in most web browsers using WebGL, is certainly not a preferred choice. Most

GIS applications also favor the type of model produced here rather than those from

previous approaches [80]. The approach presented here is not perfect. There are many

small features, such as chimneys, that are not reproduced by this method.

In regard to vegetation detection, the results are sufficient and satisfactory as dis-

cussed in Section.3.4.2. Tiny rough areas on the rooftop, or rooftop feature contours,

are often recognized as tree points. In order to overcome this, more information, such as

multi-spectral knowledge has to be involved. This is beyond the scope of this research.

Meshlab [81] and CloudCompare [82] are used here to visualize all the 3D models.

These tools are free, open-source and widely adopted in this field. The two software

tools have different ways of triangulating surfaces. As a result, if a non-convex and non-

87

4.4. R.I.T DATA 88

triangulated polygon is loaded, the outcome due to triangulation is often unpredictable.

It is highly recommended that triangulation is preformed before hand as described in

this research.

Figure 4.2: The data provided by [80]. Two results from both the developed single

building modeling approach and 2.D dual contouring are presented here.

4.4 R.I.T Data

Fig.4.3, Fig.4.4, and Fig.4.5 present three building models from R.I.T campus. The

2.5D dual contouring version is also provided. Fig.4.6 and Fig.4.7 show the final mod-

eling product from different view points.

88

4.4. R.I.T DATA 89

Figure 4.3: Final result of sample building models in comparison with 2.5D dual con-

touring result - Example 1 (from R.I.T campus).

89

4.4. R.I.T DATA 90

Figure 4.4: Final result of sample building models in comparison with 2.5D dual con-

touring result - Example 2 (from R.I.T campus).

Figure 4.5: Final result of sample building models in comparison with 2.5D dual con-

touring result - Example 3 (from R.I.T campus).

90

4.4. R.I.T DATA 91

Figure 4.6: Final scene model of the northern part of R.I.T campus.

91

4.5. DOWNTOWN ROCHESTER AND ALCOA DATA 92

Figure 4.7: Final scene model of the northern part of R.I.T campus (continue).

4.5 Downtown Rochester and Alcoa Data

Fig.4.8, Fig.4.9, Fig.4.10, and Fig.4.11 present four building models from downtown

Rochester, NY. The 2.5D dual contouring version is also provided. Fig.4.12 and Fig.4.13

show the final modeling product from different view points. Fig.4.14 is the data cap-

tured from another site, the Alcoa production facility in Massena, NY. Fig.4.15 shows

the final scene model derived from this data.

92

4.5. DOWNTOWN ROCHESTER AND ALCOA DATA 93

Figure 4.8: Final result of sample building models in comparison with 2.5D dual con-

touring result - Example 4 (from downtown of Rochester).
93

4.5. DOWNTOWN ROCHESTER AND ALCOA DATA 94

Figure 4.9: Final result of sample building models in comparison with 2.5D dual con-

touring result - Example 5 (from downtown of Rochester).

94

4.5. DOWNTOWN ROCHESTER AND ALCOA DATA 95

Figure 4.10: Final result of sample building models in comparison with 2.5D dual

contouring result - Example 6 (from downtown of Rochester).

95

4.5. DOWNTOWN ROCHESTER AND ALCOA DATA 96

Figure 4.11: Final result of sample building models in comparison with 2.5D dual

contouring result - Example 7 (from downtown of Rochester).

96

4.5. DOWNTOWN ROCHESTER AND ALCOA DATA 97

Figure 4.12: Final scene model of the partial City of Rochester.

97

4.5. DOWNTOWN ROCHESTER AND ALCOA DATA 98

Figure 4.13: Final scene model of the partial City of Rochester (continued).

Figure 4.14: The data collected from a plant in Massena, NY.

98

4.5. DOWNTOWN ROCHESTER AND ALCOA DATA 99

Figure 4.15: Final scene model of the plant in Massena, NY.

99

Chapter 5

Validation With DIRSIG

Simulation

LiDAR point clouds are obtained through a sampling process of the target scene, thus

the point clouds are not able to represent the true, continuous measurement of the scene

features. The result of reconstruction from LiDAR data should be evaluated against

the true scene measurements in order to present a convincing evaluation procedure.

However this is impossible to do in practice for more than a handful of elements. Though

it is difficult or impossible to get ground truth data of most urban or residential areas,

the validation of how the workflow performs can not be simply ignored. Therefore,

simulated scene data becomes a viable input for for the purpose of validation. The R.I.T

tool called Digital Imaging and Remote Sensing Image Generation (DIRSIG) model

is introduced in this section for the purpose of scene simulation and reconstruction

evaluation. Given a set of scene parameters, including the scene content and sensor

configuration, a simulated LiDAR point cloud can be produced with all the known true

measurements for every feature in the simulated scene.

5.1 DIRSIG

The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is a first

principles based synthetic image generation model developed by the Digital Imaging

and Remote Sensing (DIRS) Laboratory at Rochester Institute of Technology. The

100

5.2. SCENE SIMULATION 101

model is able to generate passive single-band, multi-spectral or hyper-spectral imagery

from the visible through the thermal infrared region of the electromagnetic spectrum.

The model also has an very mature active LiDAR capability and an evolving active RF

(RADAR) capability. The model can be used to test image system designs, to create

test imagery for evaluating image exploitation algorithms, and for creating data for

training image analysts [83]. DIRSIG is used to simulate a LiDAR scene in this work.

5.2 Scene Simulation

In order to throughly validate the capability and accuracy of the workflow, including

scene classification and scene object reconstruction, a primitive scene has been simu-

lated by DIRSIG. The true measurements of all the objects in the scene are known. A

number of objects that have various geometric shapes are chosen to be in the simulated

scene. The placed objects include two identical house with hipped rooftops, a stand-up

cylinder, a partial sphere, a lie-down cylinder, and two cuboids. The details of the

DIRSIG input parameters for these objects is presented in Table.5.2. Appendix.C con-

tains the configuration file used to define the simulated scene. From the position of the

sensor, one third of one of the two houses is occluded by one tree canopy, and half of one

cuboid is occluded by another tree canopy. The terrain in this simulation is a totally

flat surface. The resulting point cloud can be seen in Fig.5.2 and Fig.5.3. Fig.5.1 shows

the original geometric primitives used in the simulation. The half-occluded object (one

of the two cuboids) will not be recovered in this experiment due to the occlusion. The

occluded house will be reconstructed though it is expected to be incomplete. There

are 202,602 points in the original point cloud. After the noise removal, 185,121 points

remain.

Figure 5.1: The original primitives used in the simulation. From left to right: gabbled

house, cuboid, cylinder1, cylinder2, sphere.

101

5.2. SCENE SIMULATION 102

Table 5.1: Parameters of scene objects (unit: meter)
Object Translation (X,Y,Z) Scale Rotation (X,Y,Z)

Cuboid1 4.04, -10.95, 0.34 1.06 0.0, -0.0, 0.0
Cuboid2 -7.57, -22.29, 0.34 1.08 0.0, -0.0, 0.0
House1 10.04, 10.69, -2.08 1.57 0.0, -0.0, 0.0
House2 -38.05, -8.64, -2.04 1.52 0.0, -0.0, -179.73

Object Radius Center PointA PointB

Sphere 4.0 -25, 13, 0.0 n/a n/a
Cylinder1 4.0 13,15,2.5 13, 15, 0 13, 15, 5
Cylinder2 2.0 15, 0.0, 2 10, -3, 2 20, 3, 2

Figure 5.2: Simulated point cloud using DIRSIG, and all the objects are labeled to

indicate their locations.

102

5.3. RESULT OF SCENE CLASSIFICATION 103

Figure 5.3: Simulated point cloud using DIRSIG (continued).

5.3 Result of Scene Classification

There are five vegetative areas in the simulated point cloud. The graph cuts based ap-

proach has been applied to detect these areas. The result is shown in Fig.5.5. In order

to prove that the graph cuts based approach is necessary for the acceptable result, a fur-

ther experiment has been conducted with the approach based on simple thresholding.

Unlike the more sophisticated graph cuts based approach, the thresholding based one

examines the histogram of the variation of point normals distribution and the makes

a one-time judgment. According to some prior knowledge of the coverage of the veg-

etations in the scene or some experimental experience, a threshold value is picked to

putatively separate tree points from non-tree points. Fig.5.4 shows the histogram of

the variation of point normals distribution in which the majority of the points have

small values. It can actually be anticipated by observing the scene content (a large

number of points are on the flat ground). This histogram is used to derive a threshold

(the red line in Fig.5.4) which helps to separate tree and non-tree points. Fig.5.6 shows

103

5.3. RESULT OF SCENE CLASSIFICATION 104

the corresponding test result achieved by thresholding. This type of detector becomes

more and more aggressive with the decreasing threshold value. As we can see, it is

not good enough to precisely separate tree and non-tree points. The algorithm starts

to pick up non-tree points before it finishes detecting the tree points. It explains why

nearly half of the tree points are not detected, and all the points on the roof ridges are

already mis-recognized as tree points using the specific threshold value in the figure.

Figure 5.4: Histogram of the variation of point normals distribution in the simulated

scene. Red line indicates where the threshold is. Increasing the threshold value leads

to less aggressive result (green arrow), while decreasing the threshold value leads to

more aggressive result (red arrow).

104

5.3. RESULT OF SCENE CLASSIFICATION 105

Figure 5.5: Result of scene classification using graph cuts based approach.

105

5.3. RESULT OF SCENE CLASSIFICATION 106

Figure 5.6: Result of scene classification using simple threshold based approach.

106

5.4. RESULT OF TERRAIN AND FOOTPRINTS DETECTION 107

5.4 Result of Terrain and Footprints Detection

After the trees are removed from the scene, only the man-made objects and the terrain

are left. Two-pass Euclidean clustering (see Chapter.3) is applied to separate terrain

and each individual building footprint. The result is shown in Fig.5.7 and Fig.5.8.

Figure 5.7: Result from two-pass Euclidean clustering: terrain (black), man-made

objects (other colors).

107

5.5. ROOF FEATURE DETECTION AND VARIOUS SHAPE FITTING - AN
EXTENDED DISCUSSION 108

Figure 5.8: Result from two-pass Euclidean clustering: terrain (black), man-made

objects (other colors) (continued).

5.5 Roof Feature Detection and Various Shape Fitting -

An Extended Discussion

This section is an extended discussion about the implemented region growing based

roof feature detection algorithm. There are a variety of geometric shapes existing

in the simulated scene, including sphere and cylinders which have non-flat surfaces.

Therefore, extracting these non-planar surfaces successfully becomes more significant

issue than previously attempted. In Section.3.6 that introduces rooftop feature de-

tection, the discussion was mainly focusing on extracting and fitting planar surfaces

on the rooftop. There is a strong reason for that since most features on rooftops are

flat surfaces. However, it does not imply that the region growing based roof feature

detection algorithm is only limited to planar surfaces. As matter of fact, due to the

nature of the algorithm, it can cluster points on non-flat or curved surfaces as well.

RANSAC can then be applied to fit a parameterized geometric shape to those non-flat

points. Schnabel et al [84] presented an automatic algorithm to detect some primitive

shapes from point clouds. Their method aims at detecting planes, spheres, cylinders,

108

5.5. ROOF FEATURE DETECTION AND VARIOUS SHAPE FITTING - AN
EXTENDED DISCUSSION 109

cones and tori. It tries to convert the original point cloud into a set of primitive shapes

with corresponding disjoint sets of points and some remaining points. The authors

also provide the software implementation that the readers can test on their own data.

However, it is still extremely difficult to find the right parameter set. The purpose in

this research also tries to detect various geometric shapes from the point cloud, but in

a different way. Once a rooftop feature is segmented from the roof point set, instead

of only fitting a plane to the point set every time, other types of shape fitting, such as

spherical and cylindrical, are also attempted in order to choose the best shape descrip-

tion for this target rooftop feature. Before moving forward, it is necessary to address

the models of least square fitting for spheres and cylinders [85] which will be used in

the RANSAC framework.

Sphere: a sphere can be defined by its center point (xc, yc, zc) and radius r0. All

the points that are on the sphere satisfy the equation:

(xi − x0)2 + (yi − y0)2 + (zi − z0)2 = 0, i = 1, 2, 3..., n (5.1)

The minimization function for the estimation of a sphere is chosen to be:

f = r2i − r20 (5.2)

where r2i = (xi−x0)2 + (yi− y0)2 + (zi− z0)2. The linearization of the equation is done

by expanding f :

f = −2(xix0 + yiy0 + ziz0) + (x2i + y2i + z2i) + k (5.3)

where k = (x20 + y20 + z0)
2 − r20. Let’s rewrite it as:

−2x1 −2y1 −2z1 1

−2x2 −2y2 −2z2 1

: : : :

−2xn −2yn −2zn 1

xc

yc

zc

k

−

x21 y21 z21

x22 y22 z22

: : :

x2n y2n z2n

 =

f1

f2

:

fn

 (5.4)

For a least square solution, f = 0. The whole equation can be notated as:

Ap−B = 0 (5.5)

109

5.5. ROOF FEATURE DETECTION AND VARIOUS SHAPE FITTING - AN
EXTENDED DISCUSSION 110

A sphere is uniquely defined by at least four points, so the cardinality of the minimal

sample data is 4.

Cylinder: a cylinder can be defined by a point (x0, y0, z0) on its axis and the

direction of the axis (d1, d2, d3) and the radius r. Let (xi, yi, zi) be any point on the

cylinder, then

[d3(yi−y0)−d2(zi−z0)]2 +[d3(zi−z0)−d3(xi−x0)]2 +[d2(xi−x0)−d1(yi−y0)]2 = r20

(5.6)

This equation can be simplified as:

p1x
2 + p2y

2 + p3z
2 + p4xy + p5xz + p6yz + p7x+ p8y + p9z + p10 = 0 (5.7)

where p1 = (d22 + d23), p2 = (d21 + d23), p3 = (d21 + d22), p4 = −2d1d2, p5 = −2d1d3, p6 =

−2d2d3, p7 = −2(d22 + d23)x0 + 2d1d2y0 + 2d1d3z0, p8 = −2(d21 + d23)y0 + 2d1d2x0 +

2d2d3z0, p9 = −2(d21 +d22)z0 +2d1d3x0 +2d2d3y0, p10 = (d22 +d23)x
2
0 +(d21 +d23)y

2
0 +(d21 +

d22)z
2
0 − 2d2d3y0z0 − 2d1d3z0x0 − 2d− 1d2x0y0 − r20.
This can be written as a linear system:

x21 y21 z21 x1y1 x1z1 y1z1 x1 y1 z1 1

x22 y22 z22 x2y2 x2z2 y2z2 x2 y2 z2 1

: : : : : : : : : :

x2n y2n z21 xnyn xnzn ynzn xn yn zn 1

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

= Ap̄ = 0 (5.8)

A cylinder is uniquely defined by at least five points, so the cardinality of the

minimal sample data is 5.

110

5.5. ROOF FEATURE DETECTION AND VARIOUS SHAPE FITTING - AN
EXTENDED DISCUSSION 111

Figure 5.9: A shape proxy is introduced to test different types of RANSAC fitting on

the point set of the rooftop feature. The one with best score (minimum error) is finally

chosen.

In Fig.5.9, unlike what has been introduced in the Chapter 3, a shape proxy is

brought into the shape fitting process. The proxy initiates three different types of

RANSAC shape fitting, including planar fitting, spherical fitting, and cylindrical fit-

ting. Each fitting gives a score back which can be directly or indirectly related to the

error generated during the fitting process. The fit that provides the best score, or the

minimum fitting error, is considered the best shape for the points being considered.

111

5.6. RESULTS OF ROOFTOP FEATURE DETECTION AND MODELING 112

5.6 Results of Rooftop Feature Detection and Modeling

Fig.5.10 and Fig.5.11 show the result of detecting roof features from each footprint.

The hipped rooftop in Fig.5.10 has four faces that were successfully extracted. The

other footprints including non-planar shapes and round shape are classified as single

feature since the smoothness of these surfaces are still high.

Figure 5.10: The simple hipped roof type, four faces are detected in (a) and completed

in (b).

Figure 5.11: Cylinder, sphere and round top detected by the region growing based

method. The unplanar smooth surfaces are detected as a single feature.

112

5.6. RESULTS OF ROOFTOP FEATURE DETECTION AND MODELING 113

Fig.5.12 and Fig.5.13 present the final product of whole simulated scene reconstruc-

tion. One of the two houses is not complete since it was occluded by trees. Detailed

accuracy and error analysis will be provided in next section.

Figure 5.12: The final modeling product of the DIRSIG simulated scene, including the

ground and objects (view1).

113

5.7. ANALYSIS OF MODELING ERRORS 114

Figure 5.13: The final modeling product of the DIRSIG simulated scene, including the

ground and objects (view2).

5.7 Analysis of Modeling Errors

Measuring the geometric accuracy of the final model is the key to evaluate the perfor-

mance of the workflow. 3D urban models can be used for a variety of business purposes.

Providing visual impact is highly likely to be the most important one in many current

applications. Thus, visual inspection is the most popular evaluation method and the

appearance of the model primarily conveys the quality. However, future applications

will utilize these data to make mensuration. Measurements and absolute accuracy will

become a critical criteria to understand for these approaches.

For the house and the cuboid, the optimal way to analyze the error is to measure

the distance error between two mesh models. One is the ground truth model, and the

other is the reconstructed model from the pipeline. Calculating the geometric difference

between two models is actually a common task. Hausdorff Distance metric is used often

for this purpose. Practically, a group of sampled points over a mesh A (reconstructed)

is used to compute the distance, and for each sampling point in A, the closet point on

a mesh B (ground truth) is searched. The result is strongly sensitive to the number of

points that could be picked over mesh A. In this section, the original vertices of the

114

5.7. ANALYSIS OF MODELING ERRORS 115

reconstructed model are used as sample points. For each of them, it searches the closet

vertex in the ground truth model. To better visualize the error, a 3D colored map can

be generated based on the distance values.

For the 3D error map, the Red-Green-Blue color-map is chosen. Red indicates

the minimum error, and blue indicates the maximum error. The color transition from

red to blue indicates the error becomes larger. Fig.5.14 shows the ground truth and

reconstructed models for the house object in the simulated scene. Fig.5.15 illustrates

the error map of the reconstructed house model. In this result, the minimum error is

0.008967 m, the max error is 0.453570 m and the mean error is 0.151710 m. Fig.5.16

shows the ground truth and reconstructed models for the cuboid object in the simulated

scene. Fig.5.17 illustrates the error map of the reconstructed cuboid model . In this

result, the minimum error is 0.208124 m, the max error is 0.347489 m and the mean

error is 0.282055 m. The publicly available CloudCompare tool is used here to assist

in the visualization of colored error map.

Figure 5.14: Ground truth model and the reconstructed model of the house.

115

5.7. ANALYSIS OF MODELING ERRORS 116

Figure 5.15: The error color-map of the house object. The error value goes up from

the red to the blue (min: 0.008967 m, max: 0.453570 m, mean: 0.151710 m).

Figure 5.16: Ground truth model and the reconstructed model of the cuboid.

116

5.7. ANALYSIS OF MODELING ERRORS 117

Table 5.2: Accuracy Evaluation (unit: meter)

Ground truth Modeled

Object Radius Center Radius Center Accuracy (%)

Sphere 4.00 -25.00, 13.00, 0.0 4.21 -25.00, 12.99, -0.31 94.75
Cylinder1 2.00 15.00, 0.0, 2.0 2.22 14.99, 0.01, 1.65 93.1
Cylinder2 4.00 13.00, 15.00, 2.5 4.19 14.98, 15.00, 2.47 95.25

Figure 5.17: The error color-map of the cuboid object. The error value goes up from

the red to the blue (min: 0.208124 m, max: 0.347489 m, mean: 0.282055 m).

For the rest of the parameterized models, such as sphere and cylinder, the optimal

way to analyze the error is to compare the ground truth parameters and estimated

parameters. Please refer to Table.5.7 for the details. The estimated values are products

from RANSAC process. The average accuracy is 94.37%.

This chapter is designed to test the performance of the presented workflow. From

scene classification to object modeling error analysis, it is fair to state the developed

workflow generates fairly accurate modeling product.

117

Chapter 6

Summary

6.1 Conclusion

This research addresses the complicated problem of reconstructing urban models with

a large variety of roof geometry and rich vegetation. The difference between buildings

and trees is observed in terms of the implicit local surface characteristic. An original,

automatic, complete pipeline has been developed for urban reconstruction from aerial

LiDAR point clouds. The whole pipeline is composed of scene classification, build-

ing footprint and terrain detection, rooftop feature segmentation and final building

modeling. There are a number of major contributions from this thesis work.

• The whole pipeline is a fast and fully automated system. No complicated setup

is needed. Parameter settings are straightforward and easy to understand.

• Unsupervised graph cuts optimization on vegetation detection is developed us-

ing implicit surface properties only. No assistance from spectral information is

required.

• A novel two-pass Euclidean clustering technique is developed to separate the

terrain and building footprints.

• Dividing the rooftop into a group of major features using region growing-based

segmentation technique provides the flexibility to explore detailed rooftop ge-

ometry in a thorough fashion. It can handle a wide variety of roof types from

multi-layer urban rooftops to typical residential rooftops as well.

118

6.2. LIMITATIONS 119

• A robust minimum bounding box searching (box rotating) technique is used to

determine the major orientation of the rooftop. The rotating strategy guarantees

that the discovered bounding rectangle is the one with minimum area.

• There is no library of rooftop shape templates required. It is common to define

such a template library if the algorithm is designed to apply to a certain type of

neighborhood, such as residential areas, where most of the rooftops are designed

according to limited types of pattens. However, the intention in this work is

to not restrict the applicability to some particular type of structures only. The

approach can be applied to any type of urban or residential area.

• The developed pipeline provides reliable scalability with respect to the size and

the variety of the input scene.

6.2 Limitations

There are other components in an urban scene other than buildings and terrain. Trees,

bridges, and wire poles are just a few of these components. Trees are removed and not

modeled in this work. Bridges that contain local planar or smooth surfaces are simply

detected as buildings. Wire poles and wires might be or might not be detected, since

the statistical noise removal may recognize these points as outliers and then remove

them before any further processing is done.

Without the support from the ground level input, knowledge of building facades is

not accessible. Important structures on facades, such as overhangs, recessed windows,

bay windows, can not be recovered by this approach. It is a quite common issue when

dealing with aerial laser scanned data. The only solution to this problem is to integrate

both aerial and ground collections.

If a portion of the rooftop is occluded by another structure, such as an overhanging

tree while collecting the data, then the information of the rooftop is incomplete and

the scanned point set results in an incomplete reconstruction.

LiDAR point clouds convey weaker information on object corners compared to pho-

togrammetric data. During the modeling process, the accuracy of corner approximation

is still limited, especially when the point density is fairly low.

One last system-related issue, which is not actually the limitation of the approach

119

6.3. RECOMMENDED FUTURE WORK 120

is that a laser pulse typically is not able to deliver returns from certain transparent

materials, such as glass. Thus, regions made of these type of transparent or non-

reflective materials do not appear in LiDAR point clouds. It brings difficulty to the

modeling process to derive geometry there.

6.3 Recommended Future Work

In the future, calibrated optical imagery should be introduced into this workflow in or-

der to improve the geometry and provide texture on the models. Registration between

these two different modalities is supposed to be conducted before any further process-

ing. The advantages of using optical imagery include getting more accurate edge and

corner estimations by applying edge detection and corner detection which are easier to

determine in the image domain. For example, spectral information contained within

the image can also help classify vegetative areas.

Ground level data, including both LiDAR and imagery, can be involved to provide

the capability of modeling facade details. Particular objects, such as chimneys, bridges,

wire poles, can be reconstructed by defining additional man-made structures besides

buildings and designing special methods for the modeling of these particular shapes.

Currently, one global point density value is used for each LiDAR dataset. Local

point density value can be exploited in order to provide adaptivity for the nearest

neighbor searching. This can improve the accuracy of point normal estimation and

also the Euclidean clustering for building footprint and terrain extraction.

The accuracy of merging minor regions into major regions during the region growing

based rooftop feature detection can be improved by operating multiple minor regions at

once instead of treating them independently to prevent minor regions from two distinct

object components from being merged into a single component.

The efficiency of the workflow could be improved by implementing parallelization

with the help of multi-core processors. Building footprint files can be processed in

parallel. Within one building rooftop, boundaries of all the major features on the top

can be calculated in a parallel fashion as well.

120

Appendix A

Proof

A.1 Relationship Between Sum of Squared Difference and

Cross Correlation

In this section, the relationship between the sum of squared difference (SSD) and the

cross correlation are derived.

Assuming there is an image I, T is the template and the summation over positions

(x, y) under the template that is located at (s, t), the SSD is defined as:

d(s, t) =
∑
(x,y)

(I(x, y)−T(x− s, y − t))2 (A.1)

The cross correlation is defined as:

c(s, t) =
∑
(x,y)

I(x, y) ·T(x− s, y − t) (A.2)

The definition of SSD can be expanded as:

d(s, t) =
∑
(x,y)

(I(x, y)2 − 2I(x, y) ·T(x− s, y − t) + T(x− s, y − t)2) (A.3)

Obviously, the term
∑

(x,y)T(x − s, y − t)2 is a constant value, and the term∑
(x,y) I(x, y)2 can be approximately assumed constant as well. So the remaining term

121

A.1. RELATIONSHIP BETWEEN SUM OF SQUARED DIFFERENCE AND
CROSS CORRELATION 122

−2
∑

(x,y) I(x, y) ·T(x− s, y − t) is −2c(s, t).

Both SSD and the cross correlation are the measure of the similarity between the

image and the template. The larger the value of c is or the smaller the value of SSD

is, the more similar the image and the template are.

122

Appendix B

Source Code Examples

B.1 MATLAB Script of the Automatic Workflow

1 function runProcess

2 % parameters f o r no i se removal

3 conf . nrmean = 10 ;

4 conf . nrstd = 1 . 5 ;

5 conf . num neighbor = 15 ;

6

7 % parameters f o r scene c l a s s f i c a t i o n

8 conf . lambda1 = 1e2 ;

9 conf . lambda2 = 1e4 ;

10 conf .C = 1e2 ;

11

12 conf . m i n c l u s t e r s i z e = 500 ;

13 conf . ghe ight = 130 ;

14

15 % input f i l e

16 p o i n t f i l e = ’ subcamp3 ’ ;

17

18 % reg ion grow based b inary f i l e

19 i f i s un i x

20 b i n a r y f i l e = ’ ! / c i s /phd/ sxs4643 /Research/ r o o f t op s e g / bu i ld / r o o f s e g ’ ;

21 e l s e i f i s p c

22 b i n a r y f i l e = ’ !D:\3 DResearch\merge\ r o o f t op s e g \ r o o f t op s e g \Debug\
r o o f t op s e g . exe ’ ;

23 else

123

B.1. MATLAB SCRIPT OF THE AUTOMATIC WORKFLOW 124

24 d i sp l ay (’ Un iden t i f i ed machine type . ’)

25 end

26 conf . b i n a r y f i l e = b i n a r y f i l e ;

27

28 % parameters f o r roo f t op f e a t u r e d e t e c t i on

29 conf . p t s i n r o o f f e a t u r e = 50 ;

30 conf . theta = ’ 10 ’ ;

31 conf . r e s i d u a l = ’ 0 .015 ’ ;

32 conf . r ad iu s = ’ 2 ’ ;

33

34 conf . o u t f o l d e r = [’ r e g i o n s ’ p o i n t f i l e] ;

35 i f ˜exist (conf . ou t f o lde r , ’ d i r ’)

36 mkdir (conf . o u t f o l d e r) ;

37 end

38

39 % run the whole work f l ow

40 s t a r t (p o i n t f i l e , conf) ;

41 end

124

B.2. C++ CODE FOR REGION GROWING BASED ROOFTOP FEATURE
DETECTION 125

B.2 C++ Code for Region Growing Based Rooftop Fea-

ture Detection

1 template <typename PointT>

2 void sun : : growRegion<PointT > : : computeRegionGrowingSegment ()

3 {
4 std : : cout<<”Region growing method to ex t r a c t f e a t u r e s”<<std : : endl ;

5 i n t num of pts = s t a t i c c a s t <int> (c l oud in−>po in t s . s ize ()) ;

6

7 std : : pa ir<int , f l o a t> r e s i d u a l ;

8

9 p o i n t s f l a g . r e s i z e (num of pts , f a l s e) ;

10

11 for (i n t i = 0 ; i < num of pts ; i++)

12 {
13 r e s i d u a l . f i r s t = i ;

14 r e s i d u a l . second = normals−>po in t s [i] . curvature ;

15 po i n t s cu rva tu r e s . push back (r e s i d u a l) ;

16 cu r va tu r e s t b l . push back (normals−>po in t s [i] . curvature) ;

17 }
18

19 po i n t s cu rva tu r e s . sort (comp func) ;

20

21 i n t num seg pts = 0 ;

22 i n t cu r r en t p t i nd = −1;
23 i n t cu r r en t s e ed = − 1 ;

24 i n t pt count = 0 ;

25 std : : queue<int> s e e d l i s t ;

26 std : : vector<int> cu r r en t ne i ghbo r s ;

27 std : : vector<int> cu r r en t r e g i on ;

28

29 while (num seg pts < num of pts)

30 {
31 cu r r en t p t i nd = po in t s cu rva tu r e s . f r on t () . f i r s t ;

32 po i n t s cu rva tu r e s . pop f ront () ;

33

34 while (p o i n t s f l a g [c u r r en t p t i nd] == true)

35 {
36 cu r r en t p t i nd = po in t s cu rva tu r e s . f r on t () . f i r s t ;

37 po i n t s cu rva tu r e s . pop f ront () ;

125

B.2. C++ CODE FOR REGION GROWING BASED ROOFTOP FEATURE
DETECTION 126

38 }
39

40 i f (cu r r en t p t i nd == −1)
41 {
42 std : : cout<<”No point i s obta ined from the po int l i s t ”<<std : : endl ;

43 return ;

44 }
45

46 cu r r en t r e g i on . clear () ;

47 cu r r en t r e g i on . push back (cu r r en t p t i nd) ;

48 // c l ean the cur rent seed l i s t , the re i s no clear () function o f a

queue

49 s e e d l i s t = std : : queue<int >() ;

50 s e e d l i s t . push (cu r r en t p t i nd) ;

51 p o i n t s f l a g [c u r r en t p t i nd] = true ;

52

53 while (! s e e d l i s t . empty ())

54 {
55 cu r r en t s e ed = s e e d l i s t . f r on t () ;

56 i f (cu r r en t s e ed == −1)
57 {
58 std : : cout<<”No seed i s obta ined from the seed l i s t ”<<std : : endl ;

59 return ;

60 }
61 s e e d l i s t . pop () ;

62 cu r r en t ne i ghbo r s . clear () ;

63 cu r r en t ne i ghbo r s = po in t ne i ghbo r s [cu r r en t s e ed] ;

64

65 // the f i r s t ne ighbor in the neighbor l i s t i s the t a r g e t po int

i t s e l f

66 for (i n t i = 1 ; i < s t a t i c c a s t <int >(cu r r en t ne i ghbo r s . s ize ()) ; i++)

67 {
68 f l o a t theta = ang btw normals (normals , cu r r ent s eed ,

cu r r en t ne i ghbo r s [i]) ;

69

70 i f (p o i n t s f l a g [cu r r en t ne i ghbo r s [i]] == f a l s e && theta <=

the ta th)

71 {
72 cu r r en t r e g i on . push back (cu r r en t ne i ghbo r s [i]) ;

73 p o i n t s f l a g [cu r r en t ne i ghbo r s [i]] = true ;

74

126

B.2. C++ CODE FOR REGION GROWING BASED ROOFTOP FEATURE
DETECTION 127

75 i f (c u r v a tu r e s t b l [cu r r en t ne i ghbo r s [i]] <= r th)

76 {
77 s e e d l i s t . push (cu r r en t ne i ghbo r s [i]) ;

78 }
79 }
80 }
81 }
82

83 num seg pts = num seg pts + s t a t i c c a s t <int >(c u r r en t r e g i on . s ize ()) ;

84 s e g r e g i o n s . push back (cu r r en t r e g i on) ;

85 }
86 return ;

87 }

127

Appendix C

DIRSIG ODB File

1 DIRSIG ODB = 1.0

2

3 OBJECT {
4 OBJ FILENAME = cube . obj

5 UNITS = METERS

6 INSTANCES {
7 INFO = 4.04007577896 , −10.9473018646 , 0 .338058382273 ,

1 .05978679657 , 1 .05978679657 , 1 .05978679657 , 0 . 0 , −0.0 , 0 . 0

8 INFO = −7.5735783577 , −22.2937908173 , 0 .338058382273 ,

1 .08196341991 , 1 .08196341991 , 0 .551539897919 , 0 . 0 , −0.0 , 0 . 0

9 }
10 }
11

12 OBJECT {
13 GDB FILENAME = Dogwood 1 . gdb

14 UNITS = METERS

15 INSTANCES {
16 INFO = −27.2771320343 , −6.22774839401 , −0.103100538254 ,

2 .51196026802 , 2 .51196026802 , 2 .51196026802 , 0 . 0 , −0.0 , 0 . 0

17 INFO = −10.2956752777 , −9.51372528076 , −0.103100538254 ,

1 .28399705887 , 1 .28399705887 , 1 .28399705887 , 0 . 0 , −0.0 , 0 . 0

18 INFO = 3.38845062256 , 4 .95235157013 , 0 .450744509697 ,

1 .36396813393 , 1 .36396813393 , 1 .36396813393 , 0 . 0 , −0.0 , 0 . 0

19 INFO = −13.944776535 , 16 .8119277954 , −0.103100538254 ,

1 .25114524364 , 1 .25114524364 , 1 .25114524364 , 0 . 0 , −0.0 , 0 . 0

128

129

20 INFO = 8.52807044983 , −29.0171470642 , −0.103100538254 ,

2 .06550955772 , 2 .06550955772 , 2 .06550955772 , 0 . 0 , −0.0 , 0 . 0

21 }
22 }
23

24 OBJECT {
25 OBJ FILENAME = house . obj

26 UNITS = METERS

27 INSTANCES {
28 INFO = 10.035027504 , 10 .6866502762 , −2.07783985138 , 1 .56635761261 ,

1 .56635761261 , 1 .56635761261 , 0 . 0 , −0.0 , 0 . 0

29 INFO = −38.0517349243 , −8.63604354858 , −2.04403448105 ,

1 .52244532108 , 1 .52244532108 , 1 .52244520187 , 0 . 0 , −0.0 ,

−179.730717971

30 }
31 }
32

33 OBJECT {
34 OBJ FILENAME = t e r r a i n . obj

35 UNITS = METERS

36 INSTANCES {
37 INFO = 0 .0 , 0 . 0 , 0 . 0 , 5 . 0 , 5 . 0 , 1 . 0 , 0 . 0 , −0.0 , 0 . 0

38 }
39 }
40

41 SPHERE {
42 RADIUS = 4 .0

43 CENTER = −25, 13 , 0 . 0

44 MATERIAL IDS = 4

45 }
46

47 CYLINDER {
48 POINT A = 13 , 15 , 0

49 POINT B = 13 , 15 , 5

50 RADIUS = 4.0

51 CAP A = TRUE

52 CAP B = TRUE

53 MATERIAL ID = 4

54 }
55

56 CYLINDER {

129

130

57 POINT A = 10 , −3, 2

58 POINT B = 20 , 3 , 2

59 RADIUS = 2.0

60 CAP A = TRUE

61 CAP B = TRUE

62 MATERIAL ID = 4

63 }

130

Bibliography

[1] Li, Z., Zhu, Q., and Gold, C., [Digital terrain modeling: principles and methodol-

ogy], CRC (2004).

[2] Hartley, R. and Zisserman, A., [Multiple view geometry in computer vision], vol. 2,

Cambridge Univ Press (2000).

[3] Wolf, P. and DeWitt, B., [Elements of Photogrammetry with Applications in GIS],

McGraw-Hill (2000).

[4] Leberl, F., Irschara, A., Pock, T., Meixner, P., Gruber, M., Scholz, S., and

Wiechert, A., “Point clouds: Lidar versus 3d vision,” Photogrammetric Engineer-

ing and Remote Sensing 76(10), 1123–1134 (2010).

[5] Fischler, M. A. and Bolles, R. C., “Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography,”

Commun. ACM 24, 381–395 (June 1981).

[6] Zuliani, M., “Ransac for dummies,” With examples using the RANSAC toolbox for

Matlab and more (2009).

[7] Torr, P. and Zisserman, A., “Mlesac: A new robust estimator with application to

estimating image geometry,” Computer Vision and Image Understanding 78(1),

138–156 (2000).

[8] Boykov, Y. and Veksler, O., “Graph cuts in vision and graphics: Theories and ap-

plications,” Handbook of Mathematical Models in Computer Vision , 79–96 (2006).

[9] Ford Jr, L., Fulkerson, D., and Ziffer, A., “Flows in networks,” Physics Today 16,

54 (1963).

131

BIBLIOGRAPHY 132

[10] Boykov, Y., Veksler, O., and Zabih, R., “Fast approximate energy minimization

via graph cuts,” Pattern Analysis and Machine Intelligence, IEEE Transactions

on 23(11), 1222–1239 (2001).

[11] Boykov, Y. and Kolmogorov, V., “An experimental comparison of min-cut/max-

flow algorithms for energy minimization in vision,” Pattern Analysis and Machine

Intelligence, IEEE Transactions on 26(9), 1124–1137 (2004).

[12] Kolmogorov, V. and Zabin, R., “What energy functions can be minimized via

graph cuts?,” Pattern Analysis and Machine Intelligence, IEEE Transactions

on 26(2), 147–159 (2004).

[13] Sun, S. and Salvaggio, C., “Complex building roof detection and strict descrip-

tion from lidar data and orthorectified aerial imagery,” in [Proceedings of IEEE,

IGARRS 2012, Analysis Techniques: Image Processing Techniques, Feature De-

tection in Images], IEEE (July 2012).

[14] Lach, S. and Kerekes, J., “Robust extraction of exterior building boundaries from

topographic lidar data,” in [Geoscience and Remote Sensing Symposium, 2008.

IGARSS 2008. IEEE International], 2, II–85, IEEE (2008).

[15] Luebke, D., “A developer’s survey of polygonal simplification algorithms,” Com-

puter Graphics and Applications, IEEE 21(3), 24–35 (2001).

[16] Douglas, D. and Peucker, T., “Algorithms for the reduction of the number of points

required to represent a digitized line or its caricature,” Cartographica: The Inter-

national Journal for Geographic Information and Geovisualization 10(2), 112–122

(1973).

[17] Zhao, Z. and Saalfeld, A., “Linear-time sleeve-fitting polyline simplification algo-

rithms,” in [Proceedings of AutoCarto], 13, 214–223 (1997).

[18] Hu, J., You, S., and Neumann, U., “Approaches to large-scale urban modeling,”

Computer Graphics and Applications, IEEE 23(6), 62–69 (2003).

[19] Musialski, P., Wonka, P., Aliaga, D., Wimmer, M., van Gool, L., Purgathofer, W.,

Mitra, N., Pauly, M., Wand, M., Ceylan, D., et al., “A survey of urban reconstruc-

132

BIBLIOGRAPHY 133

tion,” in [Eurographics 2012-State of the Art Reports], 1–28, The Eurographics

Association (2012).

[20] Haala, N. and Kada, M., “An update on automatic 3d building reconstruction,”

ISPRS Journal of Photogrammetry and Remote Sensing 65(6), 570–580 (2010).

[21] Maas, H.-G. and Vosselman, G., “Two algorithms for extracting building models

from raw laser altimetry data,” ISPRS Journal of Photogrammetry and Remote

Sensing 54(23), 153 – 163 (1999).

[22] Weidner, U., “An approach to building extraction from digital surface models,” In-

ternational Archives of Photogrammetry and Remote Sensing 31, 924–929 (1996).

[23] Brunn, A. and Weidner, U., “Extracting buildings from digital surface models,”

International Archives of Photogrammetry and Remote Sensing 32(3 SECT 4W2),

27–34 (1997).

[24] Morgan, M. and Tempfli, K., “Automatic building extraction from airborne laser

scanning data,” International Archives of Photogrammetry and Remote Sens-

ing 33(B3/2; PART 3), 616–623 (2000).

[25] Wang, O., Lodha, S., and Helmbold, D., “A bayesian approach to building foot-

print extraction from aerial lidar data,” in [3D Data Processing, Visualization, and

Transmission, Third International Symposium on], 192–199, IEEE (2006).

[26] Lafarge, F., Descombes, X., Zerubia, J., and Pierrot-Deseilligny, M., “Automatic

building extraction from dems using an object approach and application to the

3d-city modeling,” ISPRS Journal of Photogrammetry and Remote Sensing 63(3),

365 – 381 (2008).

[27] Matei, B., Sawhney, H., Samarasekera, S., Kim, J., and Kumar, R., “Building

segmentation for densely built urban regions using aerial lidar data,” in [Computer

Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on], 1–8,

IEEE (2008).

[28] Carlberg, M., Gao, P., Chen, G., and Zakhor, A., “Classifying urban landscape

in aerial lidar using 3d shape analysis,” in [Image Processing (ICIP), 2009 16th

IEEE International Conference on], 1701–1704, IEEE (2009).

133

BIBLIOGRAPHY 134

[29] Moons, T., Frère, D., Vandekerckhove, J., and Van Gool, L., “Automatic modelling

and 3d reconstruction of urban house roofs from high resolution aerial imagery,”

in [Computer Vision ECCV’98], 410–425, Springer (1998).

[30] Kim, Z., Huertas, A., and Nevatia, R., “Automatic description of buildings with

complex rooftops from multiple images,” in [CVPR 2001. Proceedings of the 2001

IEEE Computer Society Conference on], 2, II–272–II–279 (2001).

[31] Werner, T. and Zisserman, A., “New techniques for automated architectural re-

construction from photographs,” Computer VisionECCV 2002 , 808–809 (2002).

[32] Nevatia, R. and Price, K., “Automatic and interactive modeling of buildings in

urban environments from aerial images,” in [Image Processing. 2002. Proceedings.

2002 International Conference on], 3, 525–528, IEEE (2002).

[33] Rau, J., Chen, L., and Wang, G., “An interactive scheme for building modeling

using the split-merge-shape algorithm,” International Archives of Photogrammetry

and Remote Sensing 35(B3), 584–589 (2004).

[34] Snavely, N., Seitz, S., and Szeliski, R., “Photo tourism: exploring photo collections

in 3d,” in [ACM Transactions on Graphics (TOG)], 25(3), 835–846, ACM (2006).

[35] Snavely, N., Seitz, S., and Szeliski, R., “Modeling the world from internet photo

collections,” International Journal of Computer Vision 80(2), 189–210 (2008).

[36] Seitz, S., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R., “A comparison

and evaluation of multi-view stereo reconstruction algorithms,” in [Computer Vi-

sion and Pattern Recognition, 2006 IEEE Computer Society Conference on], 1,

519–528, IEEE (2006).

[37] Elaksher, A. and Bethel, J., “Reconstructing 3d buildings from lidar data,” In-

ternational Archives Of Photogrammetry Remote Sensing and Spatial Information

Sciences 34(3/A), 102–107 (2002).

[38] Rottensteiner, F., “Automatic generation of high-quality building models from

lidar data,” Computer Graphics and Applications, IEEE 23(6), 42–50 (2003).

134

BIBLIOGRAPHY 135

[39] Verma, V., Kumar, R., and Hsu, S., “3d building detection and modeling from

aerial lidar data,” in [CVPR 2006. Proceedings of the 2006 IEEE Computer Society

Conference on], 2, 2213 – 2220 (2006).

[40] Zhou, Q.-Y. and Neumann, U., “Fast and extensible building modeling from air-

borne lidar data,” in [Proceedings of the 16th ACM SIGSPATIAL international

conference on Advances in geographic information systems], GIS ’08, 7:1–7:8, ACM

(2008).

[41] Zhou, Q., Ju, T., and Hu, S., “Topology repair of solid models using skeletons,” Vi-

sualization and Computer Graphics, IEEE Transactions on 13(4), 675–685 (2007).

[42] Zhou, Q. and Neumann, U., “A streaming framework for seamless building re-

construction from large-scale aerial lidar data,” in [Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on], 2759–2766, IEEE (2009).

[43] Dorninger, P. and Pfeifer, N., “A comprehensive automated 3d approach for build-

ing extraction, reconstruction, and regularization from airborne laser scanning

point clouds,” Sensors 8(11), 7323–7343 (2008).

[44] Poullis, C. and You, S., “Automatic reconstruction of cities from remote sensor

data,” in [CVPR 2009. Proceedings of the 2011 IEEE Computer Society Conference

on], 2775–2782, IEEE (2009).

[45] Toshev, A., Mordohai, P., and Taskar, B., “Detecting and parsing architecture at

city scale from range data,” in [Computer Vision and Pattern Recognition (CVPR),

2010 IEEE Conference on], 398–405, IEEE (2010).

[46] Sampath, A. and Shan, J., “Segmentation and reconstruction of polyhedral build-

ing roofs from aerial lidar point clouds,” Geoscience and Remote Sensing, IEEE

Transactions on 48(3), 1554–1567 (2010).

[47] Duda, R., Hart, P., and Stork, D., “Pattern classification,” New York: John Wiley,

Section 10, l (2001).

[48] Berkhin, P., “A survey of clustering data mining techniques,” Grouping multidi-

mensional data , 25–71 (2006).

135

BIBLIOGRAPHY 136

[49] Verdie, Y., Lafarge, F., and Zerubia, J., “Generating compact meshes under planar

constraints: An automatic approach for modeling buildings from aerial lidar,” in

[Image Processing (ICIP), 2011 18th IEEE International Conference on], 877–880,

IEEE (2011).

[50] Garland, M. and Heckbert, P., “Surface simplification using quadric error metrics,”

in [Proceedings of the 24th annual conference on Computer graphics and interactive

techniques], 209–216, ACM Press/Addison-Wesley Publishing Co. (1997).

[51] Lafarge, F. and Mallet, C., “Building large urban environments from unstructured

point data,” in [Computer Vision, 2011 IEEE International Conference on], 1068–

1075, IEEE (2011).

[52] Lafarge, F. and Mallet, C., “Creating large-scale city models from 3d-point clouds:

A robust approach with hybrid representation,” International Journal of Computer

Vision , 1–17 (2012).

[53] Fruh, C. and Zakhor, A., “Constructing 3d city models by merging aerial and

ground views,” Computer Graphics and Applications, IEEE 23(6), 52–61 (2003).

[54] Frueh, C. and Zakhor, A., “Constructing 3d city models by merging ground-based

and airborne views,” in [Computer Vision and Pattern Recognition, 2003. Pro-

ceedings. 2003 IEEE Computer Society Conference on], 2, II–562, IEEE (2003).

[55] Wang, L. and Neumann, U., “A robust approach for automatic registration of

aerial images with untextured aerial lidar data,” in [CVPR 2009. Proceedings of

the 2009 IEEE Computer Society Conference on], 2623 –2630 (june 2009).

[56] Ding, M., Lyngbaek, K., and Zakhor, A., “Automatic registration of aerial imagery

with untextured 3d lidar models,” in [CVPR 2008.Proceedings of the 2008 IEEE

Computer Society Conference on], 1–8, IEEE (2008).

[57] Lowe, D., “Three-dimensional object recognition from single two-dimensional im-

ages,” Artificial intelligence 31(3), 355–395 (1987).

[58] Mastin, A., Kepner, J., and Fisher, J., “Automatic registration of lidar and optical

images of urban scenes,” in [CVPR 2009. Proceedings of the 2009 IEEE Computer

Society Conference on], 2639–2646, IEEE (2009).

136

BIBLIOGRAPHY 137

[59] Mastin, D. A., Statistical methods for 2D-3D registration of optical and LIDAR

images, Master’s thesis (2009).

[60] Pauly, M., [Point primitives for interactive modeling and processing of 3D geome-

try], Hartung-Gorre (2003).

[61] Muja, M. and Lowe, D. G., “Fast approximate nearest neighbors with automatic

algorithm configuration,” in [International Conference on Computer Vision Theory

and Application VISSAPP’09)], 331–340, INSTICC Press (2009).

[62] Muja, M. and Lowe, D. G., “Fast matching of binary features,” in [Computer and

Robot Vision (CRV)], 404–410 (2012).

[63] Rusu, R. B., Semantic 3D Object Maps for Everyday Manipulation in Human

Living Environments, PhD thesis, Springer (2009).

[64] Dey, T., Li, G., and Sun, J., “Normal estimation for point clouds: A comparison

study for a voronoi based method,” in [Point-Based Graphics, 2005. Eurographic-

s/IEEE VGTC Symposium Proceedings], 39–46, IEEE (2005).

[65] Berkmann, J. and Caelli, T., “Computation of surface geometry and segmentation

using covariance techniques,” Pattern Analysis and Machine Intelligence, IEEE

Transactions on 16(11), 1114–1116 (1994).

[66] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W., “Surface

reconstruction from unorganized points,” SIGGRAPH Comput. Graph. 26, 71–78

(July 1992).

[67] Rusu, R., Marton, Z., Blodow, N., Dolha, M., and Beetz, M., “Towards 3d point

cloud based object maps for household environments,” Robotics and Autonomous

Systems 56(11), 927–941 (2008).

[68] Secord, J. and Zakhor, A., “Tree detection in urban regions using aerial lidar and

image data,” Geoscience and Remote Sensing Letters, IEEE 4(2), 196–200 (2007).

[69] Charaniya, A., Manduchi, R., and Lodha, S., “Supervised parametric classification

of aerial lidar data,” in [Computer Vision and Pattern Recognition Workshop,

2004. CVPRW’04. Conference on], 30–30, IEEE (2004).

137

BIBLIOGRAPHY 138

[70] Koch, B., Heyder, U., and Weinacker, H., “Detection of individual tree crowns in

airborne lidar data,” Photogrammetric engineering and remote sensing 72(4), 357

(2006).

[71] Anguelov, D., Taskarf, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G.,

and Ng, A., “Discriminative learning of markov random fields for segmentation of

3d scan data,” in [Computer Vision and Pattern Recognition, 2005. CVPR 2005.

IEEE Computer Society Conference on], 2, 169–176, IEEE (2005).

[72] Sedlacek, D. and Zara, J., “Graph cut based point-cloud segmentation for polyg-

onal reconstruction,” Advances in Visual Computing , 218–227 (2009).

[73] Golovinskiy, A. and Funkhouser, T., “Min-cut based segmentation of point clouds,”

in [Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th Interna-

tional Conference on], 39–46, IEEE (2009).

[74] Isenburg, M., Liu, Y., Shewchuk, J., Snoeyink, J., and Thirion, T., “Generating

raster dem from mass points via tin streaming,” Geographic Information Science

, 186–198 (2006).

[75] Rabbani, T., van Den Heuvel, F., and Vosselmann, G., “Segmentation of point

clouds using smoothness constraint,” International Archives of Photogrammetry,

Remote Sensing and Spatial Information Sciences 36(5), 248–253 (2006).

[76] Chaudhuri, D. and Samal, A., “A simple method for fitting of bounding rectangle

to closed regions,” Pattern recognition 40(7), 1981–1989 (2007).

[77] Lin, H., Gao, J., Zhou, Y., Lu, G., Ye, M., Zhang, C., Liu, L., and Yang, R.,

“Semantic decomposition and reconstruction of residential scenes from lidar data,”

ACM Transactions on Graphics,(Proc. of SIGGRAPH 2013) 32(4) (2013).

[78] Chew, L. P., “Constrained delaunay triangulations,” Algorithmica 4(1-4), 97–108

(1989).

[79] Kazhdan, M., Bolitho, M., and Hoppe, H., “Poisson surface reconstruction,”

in [Proceedings of the fourth Eurographics symposium on Geometry processing],

(2006).

138

BIBLIOGRAPHY 139

[80] Zhou, Q.-Y. and Neumann, U., “2.5d dual contouring: A robust approach to cre-

ating building models from aerial lidar point clouds,” in [Computer Vision ECCV

2010], 115–128 (2010).

[81] “http://meshlab.sourceforge.net/.”

[82] “http://www.danielgm.net/cc/.”

[83] “http://dirsig.org/.”

[84] Schnabel, R., Wahl, R., and Klein, R., “Efficient ransac for point-cloud shape

detection,” Computer Graphics Forum 26, 214–226 (June 2007).

[85] Forbes, A. and National Physical Laboratory, G. B., [Least-squares Best-fit Geo-

metric Elements], NPL report DITC, National Physical Laborarory (1991).

139

