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Relating Multimodal Imagery Data in 3D 

By 

Karl C. Walli 

 

Chester F. Carlson Center for Imaging Science 

College of Science 

Rochester Institute of Technology 

 

ABSTRACT 

This research develops and improves the fundamental mathematical approaches and 

techniques required to relate imagery and imagery derived multimodal products in 3D.  Image 

registration, in a 2D sense, will always be limited by the 3D effects of viewing geometry on the 

target.  Therefore, effects such as occlusion, parallax, shadowing, and terrain/building elevation 

can often be mitigated with even a modest amounts of 3D target modeling.  Additionally, the 

imaged scene may appear radically different based on the sensed modality of interest; this is 

evident from the differences in visible, infrared, polarimetric, and radar imagery of the same 

site. 

This thesis develops a ‘model-centric’ approach to relating multimodal imagery in a 3D 

environment.  By correctly modeling a site of interest, both geometrically and physically, it is 

possible to remove/mitigate some of the most difficult challenges associated with multimodal 

image registration.  In order to accomplish this feat, the mathematical framework necessary to 

relate imagery to geometric models is thoroughly examined.  Since geometric models may need 
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to be generated to apply this ‘model-centric’ approach, this research develops methods to 

derive 3D models from imagery and LIDAR data.  Of critical note, is the implementation of 

complimentary techniques for relating multimodal imagery that utilize the geometric model in 

concert with physics based modeling to simulate scene appearance under diverse imaging 

scenarios.  Finally, the often neglected final phase of mapping localized image registration 

results back to the world coordinate system model for final data archival are addressed. 

In short, once a target site is properly modeled, both geometrically and physically, it is possible 

to orient the 3D model to the same viewing perspective as a captured image to enable proper 

registration. If done accurately, the synthetic model’s physical appearance can simulate the 

imaged modality of interest while simultaneously removing the 3-D ambiguity between the 

model and the captured image.   Once registered, the captured image can then be archived as a 

texture map on the geometric site model.  In this way, the 3D information that was lost when 

the image was acquired can be regained and properly related with other datasets for data 

fusion and analysis. 
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Figure 3-7  The basic process for relating images to a model when the camera pose is unknown.  
The main difference here is that the initial camera pose must be solved for using 
correspondences or user manipulation of the model pose.  At this point the process 
then mimics the one described earlier in Section 3.1. ............................................. 3-10 

Figure 3-8  Algorithm 7.1 – The Gold Standard Algorithm for estimating P from world to image 
point correspondences in the case that the world points are very accurately known. 3-
11 

Figure 3-9  This simple graphic displays how a linear estimate of a nonlinear function can 
provide a rough estimate of the local/global minimum location, within some margin 
of error. ..................................................................................................................... 3-15 

Figure 3-10  On the left is the working image with the same 12 locations selected as on the 
model; these locations are twice the number required for resectioning with a model 
(6 GCPs). .................................................................................................................... 3-17 

Figure 3-11  On the left, the DLT provides a good starting point for LMA to optimize a solution.
 ................................................................................................................................... 3-18 

Figure 3-12  The figure above show a 2D SWIR image (A) and an image projection of a 3D model 
that was textured/attributed using the same LIDAR SWIR intensity returns that were 
utilized to create the facetized 3D model. ................................................................ 3-19 

Figure 3-13  The results of automated registration (using SIFT & RANSAC), between the 2D SWIR 
image and the 3D LIDAR model are apparent. ......................................................... 3-20 

Figure 4-1  This graphic depicts the six basic steps required for relating multiple images to 
recover sparse structure via the Bundle Adjustment process.  Once invariant features 
are extracted and matched, a linear estimate of the 3D point set is fed into a Bundle 
Adjustment process to simultaneously optimize the model points and camera 
parameters. ................................................................................................................. 4-2 

Figure 4-2  The epipolar relationships of the cameras, image points, and model points. .......... 4-4 

Figure 4-3  Hartley & Zisserman’s 7-Point Fundamental Matrix using RANSAC. ........................ 4-5 

Figure 4-4  Process for tiling images larger than 2kx2k for SIFT feature extraction and matching.
 ..................................................................................................................................... 4-7 

Figure 4-5  Displays the utility of RANSAC plane fitting to SPC terrain data for outlier removal.. 4-
8 

Figure 4-6  Rectification of the matches must be performed for accurate 3D estimation of the 
SPC. .............................................................................................................................. 4-9 

Figure 4-7  The 3D estimate of structure is dependent on the baseline between the images, so 
corrections are required that change the image pixel locations to be aligned with the 
flight line path.  This amounts to a coordinate system conversion of the matched 
locations to one that is defined by the axes connecting both camera location at the 
time of acquisition. ................................................................................................... 4-10 
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Figure 4-8  The overlapping images above (red & yellow) are registered and have matches that 
are common to all (cyan).  These common locations can then be utilized for 3D 
registration or as seeds for the DPC extraction process (Section 4.3.3). ................. 4-11 

Figure 4-9  Once the image bundle is optimized using SBA, it is possible to relate the images, 
cameras and 3D point cloud into a 3D mathematical framework to determine the 
region of overlap for DPC interrogation and additional processing. ........................ 4-12 

Figure 4-10  The basic process for developing Dense Point Clouds using Epipolar relationships 
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Figure 4-11  Example showing the angular diversity required to recover 3D Terrain from 
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Figure 4-12  Thousands of invariant keypoints generated and matched using the SIFT algorithm.
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Figure 4-13  Depiction of the Fundamental Matrix constraint between images which is used for 
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Figure 4-14  Graphic showing two collection stations of an airborne sensor utilized to recover 
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Figure 4-15  Corrections are required to compensate for aircraft pitch, yaw, and roll and flight 
line orientation as discussed earlier in Section 4.2.1.3.  These are done by projecting 
the matches onto a virtual focal plane and then transforming them to a coordinate 
system aligning the x-axis to the flight line connecting the two image centers. ..... 4-21 

Figure 4-16  The interim estimates of the four individual SPC’s can be seen compared to the 
camera locations. ...................................................................................................... 4-23 

Figure 4-17  Example results of the Sparse Bundle Adjustment process on the Sparse Point 
Cloud.  Here the absolute global coordinates (A) can be compared to the facetized 
surface (B), visualized in Google Earth (C), or re-projected back into any of the images 
contained within the bundle (D). .............................................................................. 4-26 

Figure 4-18  The image derived SPC mesh fidelity can be directly compared to both hi-fidelity ~1 
[m] LIDAR terrain and a lo-fidelity ~30 [m] Digital Elevation Map. .......................... 4-27 

Figure 4-19  Left: Image with single point chosen.  Middle/Right: Corresponding epipolar lines in 
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Figure 4-20  Left: Initial estimate of the structure of the dense point cloud from three images. 
Right: Result after SBA, world coordinate mapping and projective image texturing. .. 4-
30 

Figure 4-21  Resulting 3D structure recovered from three overlapping images using Dense Point 
Correspondences (The model provided by Pictometry is embedded within Google 
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Figure 4-22  Matching between a nadir and oblique images using ASIFT and then RANSAC with 
the Fundamental Matrix as the fitting model (Images courtesy Pictometry Int. 
(Pictometry 2010)). ................................................................................................... 4-32 

Figure 4-23  Growing 3D depth maps based on the initial SPC results and epipolar relationships.  
In the upper left inset, the 3D SPC is projected back onto the base image.  For these 
locations the depth information is already known (upper right) and can be used to 
constrain the matching locations in the other images (lower left) to follow a general 
surface function. ....................................................................................................... 4-33 

Figure 4-24  The structure and composition of a Bundle Adjustment Jacobian matrix. ........... 4-35 

Figure 4-25  The structure and composition of the normal equations (~Hessian matrix). ....... 4-35 

Figure 4-26  A sparse matrix obtained when solving a modestly sized bundle adjustment 
problem. This sparsity pattern is of a 992x992 normal equation (i.e. approx. Hessian) 
matrix, where black regions are nonzero blocks. (Lourakis and Argyros 2009) ....... 4-36 

Figure 5-1  The basic process for relating 3D models and structure using a 3d Conformal 
transform.  As in the previous sections, the key here is to relate similar features 
within the two datasets in order develop a mathematical relationship.  The only 
added complexity is in the additional dimensionality and possible feature disparity of 
the datasets. ................................................................................................................ 5-2 

Figure 5-2  The Midland Site SPC (top) resulting from BA of tens of thousands of 3D points 
compared to the millions of 3D points embedded within a LIDAR DPC (Bottom). .... 5-3 

Figure 5-3  Relating the SPC pts to DPC points via an iterative nearest neighbor approach. ..... 5-5 

Figure 5-4  The image derived SPC mesh above is compared to a LIDAR derived DPC mesh below 
for comparison in Meshlab.  The absolute coordinates of the image derived results 
are only as accurate as the projected location of the base image, so a final 
translation, acquired from the matched locations (right), may be necessary. .......... 5-7 

Figure 5-5  The results of the linear 3D Translation and Meshlab (Pisa 2010) implemented ICP 
nonlinear refinement can be visualized above.  Note the general agreement between 
LIDAR and SPC surfaces as they fight for visibility across the scene. ......................... 5-8 

Figure 5-6 This illustrations shows the initial LIDAR DPC with grayscale intensity attributed 
points on the left.  This can be utilized to produce a clean facetized model utilizing 
the author’s MATLAB code as shown in the graphic on the right. ............................. 5-9 

Figure 5-7  This graphic portrays a manual feature correspondence generation that can be used 
to relate a Faceted Model to a LIDAR DPC that has been facetized.  Once 
accomplished, the initial relationship is improved through nonlinear ICP analysis. 5-10 

Figure 5-8  The graphic above shows how the Conformally transformed site model can then be 
placed on the same LIDAR dataset that was now used to create a bare-earth terrain 
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Figure 5-9  The Bundle Adjusted VanLare Site SPC (top), was projected back into the base image 
(Middle) and can then be compared directly with the FM where the base image is 
used as a UV texture on the terrain (Bottom). ......................................................... 5-13 

Figure 5-10  The Control Points used to related the GE and AANEE models (top) and the 
resulting transformation of the local points into Global UTM coordinates when 
compared to their matching Google Earth locations (bottom). ............................... 5-16 

Figure 6-1  Multimodal image synthesis using DIRSIG’s physics based modeling *courtesy Dr. 
Mike Gartley ................................................................................................................ 6-1 

Figure 6-2  Multimodal imagery registered to GE textured terrain using user assisted GCP 
selection and overlaid upon the initial sensor derived (IMU/GPS) global coordinate 
predictions.  The inverted contrast of water in VNIR and Infrared is circled. ............ 6-2 

Figure 6-3  This figure illustrates the MSRA Approach to 3D Multimodal Registration, where A) is 
the modeling phase, B) is the physics based simulation phase, C) is the 2D image 
registration phase, and D) is the Image archival phase onto a model. ...................... 6-4 

Figure 6-4  This flowchart illustrates three different paths for generating geometric models for 
DIRSIG simulation.  From left-to-right they are Existing/User Created, LIDAR Derived, 
and Multiview Image Derived models with varying degrees of fidelity. .................... 6-5 

Figure 6-5  This Hi-Fidelity model of the VanLare Waste Water Processing plant is representative 
of an existing geometric model placed in Google Earth that utilizes UV mapped image 
textures for added realism (courtesy Pictometry Int.) ............................................... 6-6 

Figure 6-6  This illustration depicts the process of adding spectral reflectance curves to  a 
realistic scene model in DIRSIG using Hyperspectral or Advanced Spectrometer Data 
(ASD) to properly simulate material appearance in various spectra. ......................... 6-7 

Figure 6-7  Illustrates the UV Texturing process:  A) The wireframe model, B) The faceted model, 
C) The UV textured Model, D) The flattened (unwrapped) model with overlaying 
image texture, and E) The textured wireframe model. .............................................. 6-8 

Figure 6-8  This graphic illustrates the process used to turn a UV Texture map (A), into a 
material class map LUT (C) by first segmenting the image with a K-Means classifier 
(B). ............................................................................................................................... 6-9 

Figure 6-9  This flowchart depicts the process utilized for DIRSIG model creation using hybrid 
models and imagery. ................................................................................................. 6-11 

Figure 6-10  This figure illustrates the process utilized to register a site model (A), to a faceted 
LIDAR dataset (B), to assess model fidelity and to ensure proper building placement 
and dimensions (C).  Finally the model is placed on the bare earth LIDAR terrain (D) to 
create a hybrid scene using both the LIDAR terrain and Image derived building 
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Figure 6-11  Example geometric shapes that could be used to represent tree foliage when 
paired with LIDAR point returns. .............................................................................. 6-14 

file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409932
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409932
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409932
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409933
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409933
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409933
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409934
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409934
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409935
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409935
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409935
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409936
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409936
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409936
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409937
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409937
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409937
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409938
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409938
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409938
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409939
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409939
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409939
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409940
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409940
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409940
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409941
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409941
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409941
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409942
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409942
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409943
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409943
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409943
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409943
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409943
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409944
file:///C:/Users/Karl%20Walli/Documents/Research/Dissertation/Multimodal%203D%20Reg%20-%20Walli_proof.docx%23_Toc269409944


xxi 
 

Figure 6-12  The process by which a LIDAR Return Point Cloud (A), can be transformed into 
model facets textured with real imagery of the forested terrain (B).  The results of 
this process can be viewed above in MATLAB (C) or Meshlab (D). .......................... 6-15 

Figure 6-13  The final model of the VanLare site, as viewed in Blender, using manually derived 
multiview imagery building models (courtesy Pictometry Int.) and LIDAR derived 
terrain and tree models. ........................................................................................... 6-16 

Figure 6-14  This flowchart depicts the process utilized for DIRSIG model creation using LIDAR 
data and imagery. ..................................................................................................... 6-17 

Figure 6-15  This graphics shows the 3 stages in transforming LIDAR data from a Point Cloud (A), 
to a faceted model (B), and finally texturing that model with the intensity return of 
the LIDAR itself (C). ................................................................................................... 6-18 

Figure 6-16  The LIDAR Direct process involves utilizing Imagery (A), to create a material map in 
order to physically describe the site.  Here, automated segmentation of the terrain 
(B) is used in concert with user assisted ID of site materials (C). ............................. 6-19 

Figure 6-17  By using the spatial, brightness, and facetized characteristics of the LIDAR returns, 
aggregate material identification for DIRSIG should be possible. ............................ 6-20 

Figure 6-18  The relative quality of terrain information as derived from LIDAR, Multiview 
Imagery, and RADAR respectively. ............................................................................ 6-22 

Figure 6-19  The ability to use Multiview Imagery derived Surface Elevation Maps to 
orthorectify an image is shown above. ..................................................................... 6-23 

Figure 6-20  The physics based simulation process that DIRSIG utilizes for synthetic image 
generation (Digital Imaging and Remote Sensing Laboratory 2006). ....................... 6-26 

Figure 6-21  The general process involved when associating emissivity curves to intensity values 
from an image texture map.  Here a region of interest was extract from the image 
and compared to the 44 curve emissivity plot (bottom) and the DC Histogram (right).  
Ideally, a simulation could link every DC value to a specific emissivity curve (i.e. 256 
curves needed here). ................................................................................................ 6-28 

Figure 6-22  When only one emissivity curve exists in the material file, all of the image texture 
intensity values will be associated with only the singular curve.  This will result in no 
texture information “coming through” in the DIRSIG simulation. ........................... 6-29 

Figure 6-23  The resulting emissivity expansion of the original gravel roof material from 44 
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Figure 6-24  The simulated DIRSIG images above illustrate the need for material files with 
numerous emissivity curves to allow proper reconstruction of image texture within a 
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Figure 6-25  The Hybrid DIRSIG model of the VanLare Water Processing Plant shown at an 
oblique view.  From this vantage it is possible to see the detail on the sides of 
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buildings, but, the tree facets are reduced in size due to the cosine viewing effect. .. 6-
32 

Figure 6-26  In the figure above, the Southern (left) and Northern (right) sections of the VanLare 
plant are again visible at an oblique angle, but, now in slightly greater detail. ....... 6-32 

Figure 6-27  On the left is a contrast enhanced image of the VanLare plant taken by the WASP 
imaging system, while on the right, is similarly enhanced DIRSIG simulation of the 
same site using the WASP view and the Hybrid model of the site. .......................... 6-33 

Figure 6-28  The Northern portion of the VanLare Plant around the Smokestack and storage 
vats, imaged by WASP (left) and simulated by DIRSIG (right). ................................. 6-33 

Figure 6-29  The Southern portion of the VanLare Plant around the administration buildings, 
imaged by WASP (left) and simulated by DIRSIG (right). .......................................... 6-34 

Figure 6-30  On the left is an image of the VanLare plant taken by the WASP SWIR sensor, while 
on the right, is a DIRSIG simulation of the site, in the same spectral region, using the 
WASP view and the Hybrid model of the site. .......................................................... 6-35 

Figure 6-31 The LIDAR Direct process involves utilizing Imagery Textures and Materials Maps 
(A), with user assisted identification of dominant site materials (B) for ingestions into 
DIRSIG to physically simulate the site (C). ................................................................ 6-36 

Figure 6-32  The LIDAR Direct DIRSIG simulation’s similarity to real imagery is readily apparent.  
The ability to relate LIDAR derived models, textured with archival imagery, to newly 
acquired images is key to the model centric approach. ........................................... 6-36 

Figure 6-33  DIRSIG simulated image in the SWIR region (A) compared to an actual image from 
the WASP sensor acquired in the same  SWIR region and from a similar camera 
position and orientation. .......................................................................................... 6-37 

Figure 6-34  The basic process for relating multimodal image bundles utilizing DIRSIG.  Here the 
model show various “colored” cubes that represent the 3D physical model which can 
be projected into an image of various modalities. ................................................... 6-38 

Figure 6-35  The images above show the initial WASP SWIR image paired with its DIRSIG 
simulation and the initial features matched using SIFT (A), the outliers removed using 
RANSAC with the F-Matrix (B), which were supported by using RANSAC with the M-
Matrix (C),  and finally where the largest contributing error match was removed using 
RMSDE analysis. ........................................................................................................ 6-45 

Figure 6-36  In the left plot, the initial RMSDE is plotted  w.r.t. the number of good matches.  
After the largest error contributor was removed, the data was used to create a new 
model with error distributed slightly more linearly. ................................................ 6-47 

Figure 6-37  The results of the transformed DIRSIG simulated image (right), when compared to 
the WASP SWIR image (left)...................................................................................... 6-47 

Figure 6-38  Here a WASP SWIR image of VanLare can be compared to the LIDAR Direct DIRSIG 
Simulation of the site. ............................................................................................... 6-49 
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Glossary 

Bundle Adjustment.  A photogrammetric process utilized to relate multiple cameras, images 

and the resulting sparse structure by solving for the camera’s external and internal parameters 

w.r.t. corresponding image control points. 

Dense Point Cloud (DPC).  An array of 3D points, that is often associated with a LIDAR dataset 
and is described by a global coordinate system. 

Discrete Linear Transform (DLT).  A  linear technique that can provide an initial estimate of a 
solution space that is often desired to seed a non-linear optimization algorithm.  

Exterior Orientation Parameters (EOP).  These parameters refer to the location of the camera 
lens *X, Y, Z+ and the orientation of the camera *ω, φ, κ+ at the time of image capture. 

Faceted Models (FM).  This refers to the traditional computer graphics models that contain 
vertices and facets to represent the 3D structure of a scene. 

Interior Orientation Parameters (IOP).  These parameters refer to the intrinsic properties of 
the camera and include focal length, principle point, focal plane skew, and radial distortion. 

Levenberg-Marquardt Algorithm (LMA).  A robust nonlinear optimization technique often used 
in computer vision problems for estimating the solution to nonlinear least squares problems. 

Random Sample Consensus (RANSAC).  A technique for robustly removing outliers from a 
dataset.  It does this by minimally sampling the data a statistically significant number of times 
to create a mathematical model that maximizes the number of inliers within an error region. 

Space Resectioning.  A photogrammetry term that implies solving for a camera’s pose by 
relating points in one image to those in another, or to a model. 

Sparse Bundle Adjustment (SBA). The term “sparse” here relates to the sparse matrix 
techniques utilized to solve for extremely large, but, weakly correlated parameters involved 
when solving for most Bundle Adjustments. 

Sparse Point Cloud (SPC).  The array of 3D points locally defined within a 3D coordinate system. 

Sparse Structure Bundle (SSB).  This includes the entire bundle of sparse structure, images and 
related camera positions within a common and local 3D coordinate system. 

UV Texture Map.  A standard technique in the graphic modeling community used to realistically 
texture 3D models.  This technique maps a composite texture, mapped in the normalized 
‘         , to the vertices of select model facets; thus obtaining the name “UV Texture Map”. 

World Coordinate System (WCS).  The absolute coordinate system linked to the global grid.
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1 Introduction 

1.1 Use of Imagery Data is now Mainstream 

Over the course of the last decade, the use of imagery based products from airborne and 

satellite platforms have become mainstream.  Applications like Google Earth/Maps (Google 

Earth 2010) and Bing Maps (Microsoft Corporation 2010) allows a user to plan travel, assess 

real-estate, teach their children geography, or visualize where the latest ‘crisis du jour’ is 

happening in the world at the click of a mouse button.  The ability to seamlessly view hundreds 

of integrated image products in visual databases has thrown open the doors on the once “niche 

field” of imagery analysis, integration, fusion, and database archival.   

 

The VanLare Water Processing Plant – Google Earth Software View 

Figure 1-1 – This Google Earth (Google Earth 2010) view of the VanLare Site contains a hi-fidelity model courtesy Pictometry 
Int. (Pictometry 2010) and is representative of the realistic representations possible within today’s GIS environments.  
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Along with this keen new interest by the general population in seeing a “bird’s eye view” of the 

world, comes new mathematical advancements from the field of computer vision that are 

allowing robots to perceive their surroundings and avoid obstacles.  What do these two 

observations have in common?  They both require the processing of large volumes of imagery 

that are captured from a multitude of vantage points, registered together, and provided in local 

or global 3D coordinate systems that allow for integration, fusion and archival.   

1.2 The Problem 

Although great strides have been made in the automated registration of grayscale imagery from 

similar viewing geometries, there are still great challenges in developing robust automated 

techniques for registering images taken from varying viewing geometries and from different 

spectral modalities.  The challenges for 3D multimodal registration are many and are directly 

linked to the angular and spectral disparity of the datasets themselves (Van Nevel 2001).  The 

3D influences of the scene-to-sensor viewing geometry creates occlusions and parallax effects, 

the changing solar illumination causes varying shadow positions, and the diverse appearance of 

the scene due to a sensor’s spectral responsivity ensures the continuing difficulty in 

automatically registering and relating remotely sensed imagery of a site (Figure 1-2). 
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1.3 The Solution 

For decades, imagery analysts (the author included) have tried to register images within a 2D 

construct only to find that this solution space is barely adequate to accomplish the task at hand.  

It should always be kept in mind that an image is a projection of the 3D world from a certain 

vantage point.  This 2D projection contains all of the 3D influences of the environment including 

the terrain, foliage and the buildings.  A 2D solution to relating imagery is only justified when 

these images are taken from similar vantage points or if the 3D influences are negligible, such 

as when the terrain is flat or if these influences have been removed through ortho-rectification.  

It should be no surprise to those that have been frustrated with the limitations of 2D image 

registration, that this 3D problem necessitates a 3D solution. 

Figure 1-2  The registration challenges resulting from viewing geometry including parallax, occlusion, & shadowing (left) 
and spectral diversity (right) are visible above (synthetic SAR and PI images of VanLare courtesy Dr Mike Gartley). 
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In previous work by the author (Walli, Multisensor Image Registration utilizing the LoG Filter 

and FWT 2003), a case study was developed that demonstrated the results of an automated 2D 

image registration algorithm over an urban section of San Diego, CA that contained large 

amounts of terrain relief and building parallax (Figure 1-3).  These images were taken with 

enough angular disparity to exhibit significant amount of parallax, thus frustrating automated 

registration attempts with low error.  

 

In this example, the 1 meter resolution Ikonos imagery (GeoEye, Inc 2010) was used to obtain 

~200 good feature matches.  Unfortunately, these correspondences resulted in a rather poor 

error analysis result, when attempting to relate them using a 2D transformation.  Even after 

considerable refinement/culling of ~75% of the matched feature locations, through error 

Figure 1-3  This graphic shows the result of registering two images of San Diego, where ~75% of the correctly matched 
features (red squares) were discarded in a vain attempt to obtain subpixel registration accuracy to a 2D model. 

The Limitation of 2D Image Registration 
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analysis and removal (covered in Section 2.5), the final registration provided only mediocre 

results.  This is because the 2D solution space was inadequate in its dimensionality to 

encompass the matched features, which were highly nonplanar.  This dilemma provided a great 

deal of justification for the author to pursue a full 3D solution to the image registration 

problem, especially as it pertained to the challenges of accurately fusing multimodal imagery 

data for the project described below. 

1.4 The Advanced ANalyst Exploitation Environment (AANEE) 

The AANEE program was conceived by Dr John Schott as a demonstration of what could be 

accomplished if the current “state-of-the-art” in synthetic scene modeling, image registration, 

and process modeling were combined in a seamless virtual environment for an intelligence 

analyst.  The main thrust of this project is to immerse an analyst within an environment where 

the datasets are archived in a visual database that is easy to interact with and where the data 

can be interrogated in an intuitive fashion.   

In the world of AANEE, a user could fly through a scene, stop at a building of interest and click 

on a wall.  Once this is done, the building wall would verbally tell the user when it was made 

along with other historical facts.  The user would then have pull-down menu options that would 

allow for temporal playback of imagery that might highlight any change to the building over 

time.  Additionally, the user may request imagery that has been collected in multi-modal 

spectra other than the traditional visual RGB or Panchromatic bands shown in (Figure 1-4). 
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To enable AANEE to be more than just a game simulation environment, it is necessary to be 

able to use the 3D scene model as a “skeleton” from which to project layers of imagery 

products for immediate visual inspection and long term archival.  Because once an imagery 

based product is registered to an accurate 3D model, it is possible to regain the 3D nature of 

the scene that was lost when the image was acquired, but only if it is projected back onto the 

model from the same vantage point that it was taken.  In this manner, a 3D database of 

archived imagery can be saved as image textures on the model and can be categorized 

temporally, spectrally, and of course spatially as seen in Figure 1-5.   

The VanLare Water Processing Plant – AANEE Software View 

Figure 1-4 – The scenes above show the same model of the VanLare Plant from within the AANEE software program.  Note 
the accurate casting of shadows and the ability to predict occlusions due to the 3D modeled site and landscape. 
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1.5 The 3D Model as an Archival Database 

Recent advancements in computer vision (epipolar geometry) provide the ability to understand 

and model our world in 3D.  This allows elegant new solutions to tough old image registration 

problems such as understanding and compensating for the effects of scene projection while 

relating common features from a database of images.  Additionally, a hi-fidelity 3D model of a 

scene can help predict and mitigate the effects of occlusion and shadowing if the orientation of 

the model (pose) can be determined at the time of image acquisition. 

Knowledge of these challenges are critical for understanding the author’s ‘model-centric’ 

approach to registration and so a significant portion of this document will be spent in 

developing techniques (Chapters 2-5) that will be utilized to mitigate these effects.  The need 

for a 3D Model, for accurate registration of most visible band imagery products, is augmented 

The VanLare Water Processing Plant – AANEE Software View 

Figure 1-5 - This view of the VanLare site from the AANEE software program contains projections of additional RGB and 
LWIR data from RIT’s WASP sensor over the site and terrain model, before registration; using only sensor IMU/GPS data. 
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by the need for a physical model when registration of multi-modal imagery is required.  The 

author will show how physics based modeling of a scene using the Center for Imaging Sciences 

(CIS) Digital Imagery and Remote Sensing Image Generation (DIRSIG) program can be utilized to 

simulate multimodal imagery that is good enough to automatically register to real data (Section 

6.3).  This will allow for DIRSIG to act as a physical Rosetta Stone for relating a potentially large 

range of disparate imagery products.  The ‘model-centric’ approach to relating data and how 

DIRSIG is utilized to enable multi-modal image registration is covered in detail in Chapter 6. 

1.6 Summary 

With the growing interest in integration and fusion of imagery based data, fundamental 

research is required in the vital area of mathematical data-relationship development and 

database archival.  The author has been continually amazed at how often “well registered” data 

is taken for granted as an assumption in both fusion applications and change detection 

scenarios.  Neglecting the essential step of developing a framework to properly relate the data 

in a true 3D sense is to ignore the sensor acquisition pose and the structure in a scene and the 

effect that they can have on the final registered product.  Both image modality fusion and 

change detection algorithms should perform at their best when the initial data has been 

accurately related in 3D. 

The research covered herein develops the fundamental mathematical approaches and 

techniques required to relate multimodal imagery and imagery derived products in 3D.  

Additionally, it improves upon some well established methods for relating imagery derived 

products, by applying new epipolar geometry and efficient mathematical techniques.  Finally, 
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the author’s physical modeling approach to relating multimodal imagery is a cornerstone of the 

value added research contained within this document.   The figure below depicts the five major 

subcategories that will be covered in this research and their related sections in the document. 

 

 

Figure 1-6  The five primary areas of research contained in this dissertation are covered in Chapters 2-6. 
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2 Image Registration 

Image registration, in a 2D sense, will always be limited by the 3D effects of viewing geometry 

on the target.  Therefore, effects such as occlusion, parallax, shadowing, and terrain/building 

elevation can often be mitigated with even a modest amounts of 3D target modeling.  Once a 

target is modeled and textured with representative imagery, it is possible to orient the scene 

based model to the same viewing perspective as any remotely sensed image to enable proper 

registration. If done accurately, the 3-D ambiguity between the model and the image can be 

removed and the newly registered image can now be utilized as an additional texture layer on 

the model.  If this is done with enough precision, the 3D information that was lost when the 

image was acquired can be regained and properly related to other imagery and data of the 

target scene.  The basic process for registering two images is provided below in Figure 2-1. 

 

Figure 2-1  The basic process for automatically relating images. 
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2.1 Invariant Feature Extraction 

Due to the significant amount of research into automated image registration over the years, 

there are several techniques that have been developed that work reasonably well.  Currently, 

the most robust techniques appear to be multiscale edge based techniques due to their robust 

ability to extract repeatable structure from within a scene, even when relating multimodal 

imagery.  For this reason, the choice of filters to help identify and extract these invariant edge 

features from images is a critical design decision for any automated registration process.   

In detailed experimentation (K. Mikolajczyk 2002), it was found that the maxima and minima of 

a normalized version of the Laplacian of Gaussian (LoG) produce the most stable image features 

compared to a range of other possible image functions, including the gradient, Hessian, and 

Harris Corner Detector (Harris and Stephens 1988).  Due to the proven performance of the LoG 

filter and its Difference of Gaussian (DoG) approximation, to robustly extract invariant features 

from imagery, these two filters will be explored further. 

2.1.1 Laplacian of Gaussian (LoG) Filter 

The idea for using edge detection filters for robust feature extraction was sparked while 

performing research into automated image registration (Walli, Multisensor Image Registration 

utilizing the LoG Filter and FWT 2003).  It quickly became apparent that the LoG filter could be 

utilized to consistently pinpoint features within an overhead image that might be utilized for 

image registration.  By applying a threshold to the LoG filtered image, it is possible to isolate 

regions that have similar rates-of-variation within a scene and to do so in a repeatable fashion.  

This is due to the “second derivative” (  ) nature of the Laplacian filter which produces high 
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output for well defined edges.  Figure 2-2 demonstrates the effect of the LoG filter on a 

synthetic dataset that resembles the letter “X” but could represent a crossroads or building in 

an overhead image.   

 

Figure 2-2  Demonstration of the LoG filter effects on synthetic edge data. 

The effect that the LoG filter has on an image is very similar to the lateral-brightness adaptation 

of the human eye (also known as lateral inhibition) that leads to the “Mach band effect”.  

Evidence of this is provided by Gonzalez and Woods, when they maintain that certain aspects of 

human vision can be modeled mathematically in the basic form of the LoG equation (Gonzalez 

and Woods 2007).  This phenomenon is demonstrated in Figure 2-3, with an exaggeration of 

grayscale edge steps.   

 

Figure 2-3  Edge-exaggeration resulting from convolution with a 1D LoG filter 
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The Laplacian is the second derivative of a function.  This equation takes the following forms for 

both the 1-D and 2-D versions, as shown in (1) and (2):  

     
   

   
 (1) 

   
 

     
   

   
 

   

   
 

 
(2) 

 

Additionally, this function can be approximated with the following 1-D & 2-D digital filters as 

seen below in (3) and (4):  

           

 
(3) 

 

 

     
   
    
   

  

 

(4) 

 

A graphical representation of the effects of this filter when applied to a 1-D step function 

(Figure 2-4.a) that has been first convolved with a Gaussian low-pass filter (Figure 2-4.b) 

follows.  It can be seen why the 2nd Derivative filters are also called “zero-crossing” edge 

detectors since the knife edge input (Figure 2-4.a) goes to unity precisely at the zero crossing 

between the positive and negative peaks of Figure 2-4.d.   

Although the LoG filter can be easily deconstructed into its component parts as seen below, it is 

more commonly implemented in one convolution step with a kernel similar to Figure 2-5. 
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The 5x5 filter approximation and the “Mexican Hat” (LoG) function are shown below. 

The Laplacian is very good at highlighting variation within an image.  This result is useful if the 

variation is equivalent to information content or edges, but, detrimental if that variation is 

represented by noise.  On its own, the Laplacian will accentuate all high frequency components, 

including noise, along with the edges.  For this reason the image is first convolved with a 

Gaussian filter, to diminish the effects of noise, before the Laplacian filter is applied.   

0 0 -1 0 0 

0 -1 -2 -1 0 

-1 -2 16 -2 -1 

0 -1 -2 -1 0 

0 0 -1 0 0 

Figure 2-5  A 1-D representation of the LoG function and the composite 5x5  approximated filter. 

a) Knife edge input     b) Gaus Low Pass    c) 1st Derivative      d) 2nd Derivative 

Figure 2-4  Visual effect of the Laplacian of Gaussian Filters in succession. 
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The results of the LoG thresholding process provide automated Ground Control Point (GCP) 

feature extraction within each image, as seen in Figure 2-6.  Once these GCPs have been 

identified, a point matching routine (Section 2.2) can be utilized to relate the subset of similar 

points from each image.  These related points can then be used to develop a transformation 

equation, for registration of the two images. 

2.1.2 Difference of Gaussian Filter 

The Difference of Gaussian (DoG) Filter is an approximation to the Laplacian of Gaussian Filter 

(Gonzalez and Woods 2007).  Like the LoG, the image is first blurred with a low-pass Gaussian 

convolution filter which has an initial         , where the Gaussian is mathematically 

described by, 

Gaussian 
Function 

   
      

 

     
  

 
 
     

   
  

 
 

(5) 
 

   

Figure 2-6  The results of the LoG filter and thresholding of maxima to create Control Points. 
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The image can be smoothed using two different Gaussian widths (         ) as shown below in 

Equations (6) and (7). 

Image 
Blurred 
w/    

  
         

             
 

(6) 
 

   
Image 
Blurred 
w/    

  
         

             
 

(7) 
 

   

Now the Difference of Gaussian can be accomplished by subtracting the two blurred images , 

DoG 
Filter 

  
       

 
          

    
                    

 
(8) 

 

 

 

The DoG can be seen as the 1D difference between the two Gaussian kernel widths (Drakos and 

Moore 2007) and is then compared to the Log Filter in the inset of Figure 2-7 (Gonzalez and 

Figure 2-7  The 1D visualization of the inverted DoG as the result of subtracting two Gaussian kernels of different widths 
(Drakos and Moore 2007).  The inset graphic shows little if any perceivable difference between the LoG and DoG convolution  

kernels (Gonzalez and Woods 2007). 

 

Gσ2  
Gσ1  

-DoG = Gσ1 -  Gσ2 

DoG (dashed) 
vs 

LoG (solid) 

DoG = Gσ2 -  Gσ1 
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Woods 2007).  So at this point, it is possible to extract distinct features from the edge detail 

within an image.  In fact, by utilizing the LoG and DoG kernels it is possible to accentuate and 

identify the best edge detail and from these regions extract robust invariant features from a 

scene. 

2.2 Matching Invariant Features 

The following technique, which is utilized for matching corresponding features, was originally 

utilized in astronomy to register images of “star fields” (Chandrasekhar 1999).  Since the LoG 

filter can be utilized to reduce an image to repeatable point sources, the author was able to 

successfully implement the same approach to properly filtered terrestrial images. 

The accuracy of registering images utilizing the LoG technique boils down to how well related 

areas of both images can be identified, isolated, and matched.  Even though the LoG threshold 

procedure simplifies the registration process by reducing the images to point sets.  It is the 

accurate matching of points, from dissimilar point sets, that will determine the utility and 

ultimate success of most registration processes. 

 

.    . 

. 

.  

.  . 

Filter 
Images 

Point 
Match 

Routine 

 

Compute 
Transform 

Base 
Image

s 

Working  
Image 

Figure 2-8  Matching points to determine the Image Transform. 
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Throughout the next two sections, robust point matching techniques are introduced and 

applied to the task of image registration.  An important concept to keep in mind is that the 

matched points will provide the matrix equation inputs to solve for the geometric relationship 

between two images.  So, if an image is shifted, rotated, and scaled with respect to (w.r.t.) a 

reference image, then we require three sets of matched points (6 equations) to solve for the 5 

DOF required to register this image pair.  If we have more matched points than required, the 

solution is over-determined and it is possible to either select a subset of the “best” point 

matches that uniquely determine the solution or utilize a linear regression model to estimate 

the best fit to the data and obtain subpixel registration accuracy. 

2.2.1 Point Matching using Distance Similarity 

This process utilizes a point’s distance from every other point in a scene and creates an array of 

distances with this data.  This is done with each point in the image, from which a matrix of 

distances is created. The point distance matrices, from each image, are then compared row-to-

row for the total number of matching distances.  The two rows that have the greatest number 

of distance matches (within some designated error) are considered matched points as shown in 

Figure 2-9.   
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The distance between any two points is equal to the square root of the sum of the squares: 

Distance,                      .  For our reference image points 2 and 3, this 

becomes:                     .  In the matrix, each row and column represents 

that point’s distance from the other points, which are also related to their equivalent row and 

column.  In our example above, point-1 from the reference image would match point-2 from 

the warp image, since they have the greatest number of matching distances in their equivalent 

rows and columns. 

Additional similarity metrics can also be imposed to compare the relative relationship of a 

feature to its proposed match, in order to cull bad matches.  Angle relationships were 

introduced by utilizing a 3D matrix comparison of vertex angles.  Additionally, the normalized 

Base Image Working Image 

Figure 2-9  Determining matching points through equivalent distances to other points. 
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LoG maxima and minima are compared to help discriminate features and mitigate the effects of 

illumination variation. 

Scale invariance can be established by comparing the ratio of point distances to every other 

point or through the use of multi-scale techniques, such as image pyramid (Wavelet) analysis 

(Walli, Multisensor Image Registration utilizing the LoG Filter and FWT 2003).  Additionally, 

scale effects can be addressed directly in the filter itself by implementing a scale normalized 

version, where              (Lindeberg 1994). 

Finally, projective invariance can be addressed through the comparison of the cross ratio of 

distance ratios.  This cross ratio, of four collinear points, is the most fundamental projective 

invariant and can be visualized below (Hartley and Zisserman 2004) and (Kraus, Harley and Kyle 

2007). 

 

Figure 2-10  Each set of points has the same cross ratio and are related via line-to-line projectivity  
(Hartley and Zisserman 2004). 
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2.2.2 Point Matching using Localized Gradient Similarity 

The Shift Invariant Feature Transform (SIFT) operator (D. G. Lowe 2004), has become a “gold 

standard” in 2D image registration due to its ability to robustly identify large quantities of semi-

invariant feature within images.  Whereas the author’s LoG and Wavelet Registration (LoGWaR) 

technique could produce hundreds of extracted GCPs per image, the SIFT technique can 

produce thousands on images of comparable size.  This is extremely useful when attempting to 

create sparse structure from matched point correspondences.  In addition, more recent 

independent testing has confirmed that the SIFT feature detector, and its variants, perform 

better under varying image conditions than other current feature extraction techniques 

(Moreels and Perona 2006) (Mikolajczyk and Schmid 2005). 

 

Figure 2-11 - Figure 2-13, portray the basic approach that the SIFT algorithm uses for feature 

Figure 2-11  For every octave of scale space the initial image is convolved with Gaussians of 
varying standard deviations and subtracted from their neighbors producing a DoG pyramid 

(D. G. Lowe 2004). 
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extraction (D. G. Lowe 2004).  The process begins by filtering the image with Gaussians of 

varying standard deviation across a given image scale, where            By varying sigma by 

a constant value across an octave, Lowe was able to show mathematically the equivalence of 

this filter to the scale normalized LoG.  These smoothed images are then subtracted from each 

other to extract the edge detail at varying spatial frequencies, thus giving the technique its 

name “Difference of Gaussian”.  This is then repeated at each image octave (dyadic power), 

where the image is decimated (scaled in half) to some arbitrary fraction of the former image 

dimension. 

The next step is to extract the maxima and minima keypoints from the filtered images.  This is 

accomplished by comparing each sample point to its neighbors in the same filter image and its 

scale neighbors that will have extracted slightly difference spatial frequencies due to the 

Gaussian width changes induced by varying sigma. 

Each location is selected as a minimum or maxima only if it is the largest or smallest among 

Figure 2-12  Maxima and Minima of the DoG pyramid stacks are detected by comparing each pixel 
with its 26 neighbors in 3x3 regions at the current and adjacent scales (D. G. Lowe 2004). 
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these neighbors, as shown in Figure 2-12.  Lowe argues that the cost of checking every location 

is acceptable since most sample points will be eliminated after the first few checks. 

Figure 2-13, shows how SIFT maps out the gradients of the surface surrounding the keypoint 

locations.  In this example, each 4x4 subregion is described as an 8 element orientation 

histogram, where the individual gradient magnitude is added to the “closest” bin.   

While the example above (Figure 2-13) only shows an 8x8 element analysis around a keypoint, 

the actual algorithm observes a 16x16 region.  This regional mapping is then stored into a 128 

element vector (4x4x8) of orientation histograms that can be utilized to compare against the 

regional descriptions of keypoints in other images.  Lowe refers to the closest histogram vectors 

in different images as “nearest neighbors” and assigns them as a potential match.  If these 

descriptors are then normalized, they can be quite robust against the effects of scene 

illumination (D. G. Lowe 2004). 

A demonstration of the robust, invariant feature detection possible with the SIFT algorithm is 

available in Figure 2-14.  In this example, thousands of keypoints were generated on two 1kx1k 

images of the VanLare site to create hundreds of good matches for developing a precise 

Figure 2-13  Keypoint descriptors are created by computing the gradient magnitude and orientation, Gaussian weighted 
by the pixels location, surrounding a keypoint.  These samples are then accumulated into 8 bin orientation histograms, 

which summarize a 4x4 subregion (D. G. Lowe 2004). 
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registration transform.  It is easy to see the general flow of the correspondences from one 

image to the next and to visually detect outliers that deviate from the norm. 

Lowe maintains that the best candidate match for each keypoint will be the one that has the 

minimum Euclidean distance from the invariant descriptor vector under analysis.  A simple way 

to compare the minimum Euclidean distance of description vectors is to take the dot product of 

two vectors to gauge their similarity as a potential match.  This technique is very similar to the 

common spectral signature comparison algorithm called Spectral Angle Mapper (SAM). 

Since some descriptors will not have any “good” match, because they were not detected in the 

other image, it is necessary to devise a technique to cull outliers early in the process.  An 

effective method is to compare the distance of the closest match, to that of the second closest.  

This measure performs well because an actual correspondence will often have their closest 

Figure 2-14  Thousands of invariant keypoints generated and matched using the SIFT algorithm. 
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potential match much closer, relative to the second closest, than an incorrect match.  False 

matches will often have several other matches that are relatively close due to the high 

dimensionality of the feature space.  Lowe found that rejecting all matches with a closest-to-

next closest ratio of 0.8 would eliminate ~90% of the bad matches while eliminating only ~5% of 

the good matches (D. G. Lowe 2004). 

2.3 Transform Development 

Once a valid set of correspondences, or matched GCPs have been obtained via automated or 

user assisted means, it is possible to utilize these points to develop a transform to warp the 

working image into the spatial domain of the base image.  This polynomial expression is 

covered in several pieces of literature (Schott 2007) and (Schowengerdt 2007), and takes the 

following general form of (9) & (10), where [x, y] represents the warp image coordinates and [X, 

Y] represents the base image coordinates. 
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(10) 

 

This section will utilize a subset of the general polynomial expressions, both 1st order and 

affine.  The affine coefficients are the linear relationships that allow for shift, scale, rotation and 

skew between two images of interest and are represented by the first 3 terms in the 

polynomial expressions below in (11) and (12).   The last, multiplicative term, completes the 1st 
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order polynomial expression with a coefficient which enables a projective transformation from 

the warp image to the base image domain. 

                            (11) 

 

                            (12) 

 

This 1st order polynomial expression can be put into a compact 3x3 matrix notation which is 

convenient for mathematical manipulation as is evident in (13), 

  

         

         

       
   

         

         

         

    
(13) 

 

where H is the homogeneous 2D image transform (homography), that relates the warp image 

to the base image.  In order to solve for a projective transformation, the warp image coordinate 

would take the following forms (Hartley and Zisserman 2004), shown in (14) and (15). 
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The ability to relate images utilizing a matrix transformation approach is extremely useful and is 

covered very well in “Digital Image Warping” (Wolberg 1990).  By utilizing a homogeneous 

coordinate system to represent the points and transformation allows us to linearize the 

solution for least squares analysis.  To implement a homogeneous coordinate system, we 

essentially add another dimension to the image point and transform descriptions.  This can be 
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accomplished by the following mathematical representations for the reference (base) image 

locations    and working (warp) image locations    (Wolberg 1990). 

Working 
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Inverse 
Solution 
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Where,       represents the Psuedo Inverse Least Squares solution to  .  The five rotation, 

scale, and translation parameters can be extracted by utilizing the following equations, 
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Although care must be taken to avoid division by zero with some of these solutions, alternate 

equations can be obtained when necessary. 

2.4 Constraining the Transform Results – 2D Conformal and Affine 

Due to the construction of the homogeneous coordinates and 2D homography in matrix 

notation, it is often easier to solve for the full projective solution than it is for an affine or 

conformal (rigid body) transformation.  This is in part due to the ease of solving for the 3x3 

projective through the linear least squares (pseudo-inverse, Eq 2-22) method.  However, many 

times, we will want to constrain the solution to the transformation that changes the data least 

and still relates them properly.  This minimalist approach is not only relevant for 2D image 

registration, but, 3D structure registration as well (Section 5.4).   Since it is often beneficial to 

induce only the rigid body effects of rotation, scaling, and translation (RST), the following Direct 

Linear Transform (DLT) approach can be utilized to solve for the 4 unknown parameters (R, S, 

Tx, Ty) of the 2D conformal transformation (DeWitt and Wolf 2000). 
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The least squares solution can be obtained through the pseudo-inverse technique (26).  It is 

useful to note that the    and    coefficients are not only part of the rotation matrix, but, also 

contain the rigid body scaling component of the conformal transform          .   

In a similar manner, The DLT technique can also be utilized to solve for the six unknowns of the 

affine transform (R, Sx, Sy, Tx, Ty, and either kx or ky), where shear parallel to the x-axis results 

in           and shear parallel to the y axis delivers          .  

                
(36) 
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2.5 Outlier Removal and Error Analysis 

Once the initial matched point set has been obtained by automated means, it will always be 

necessary to test for bad matches or “outliers”.  The following two methods offer robust outlier 

removal, but, are fundamentally different in their conception.  The statistical RMS Distance 

Error (RMSDE) technique utilizes the weight of all of the matches to estimate a solution and 

removes those matches with the most error or those that vary by some standard deviation 

from the mean.  Alternatively, the RANdom SAmple Consensus (RANSAC) algorithm (Fischler 
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and Bolles 1981) can be utilized to robustly remove outliers from the data and will be discussed 

in greater detail in Section 2.5.2. 

2.5.1   RMSDE Analysis 

The RMSDE metric computes the deviation from a polynomial model to determine registration 

accuracy.  RMSDE, is one of the more common techniques utilized in remote sensing for judging 

the “goodness” of a registered dataset.  In fact, the RMSDE technique is even used by ENVI to 

judge deviation of matches from the prescribed polynomial model to judge registration 

accuracy.  Discriminating outliers based on deviation from a mathematical model describing the 

transform from one image domain to another is shown in Figure 2-15.  By analyzing the error 

associated with each matched point from the polynomial model of choice, it is possible to reject 

bad matches. 

One way to do this is through analysis of the standard deviation from the RMSDE. Any matches 

that deviate significantly from the mean (> 1 STD) can then be removed.  If additional iterations 

are required to derive a transform within a given error constraint, the matches below a given 

threshold could be removed based on their deviation from the mathematical model.  
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This can be done iteratively to determine a statistical solution that is of low enough error to 

satisfy the accuracy of registration required for a given task.  Figure 2-15 shows this process, 

which utilizes an iterative statistical solution to cull the outliers.  Note the distinctive “knee” in 

the curve of the error plot; is a good indicator of the presence of outliers.  The iterative pruning 

of match points can deliver a registration with subpixel accuracy.  In fact, it is an easy task to 

continually remove the match with the greatest error, until the total RMSDE is less than a user 

defined quantity.  Obviously, one would like to maintain a significant number of points relative 

to the degrees of freedom while still ensuring that the matched locations encompass as much 

of the two images as possible. 

2.5.2 Random Sample Consensus (RANSAC) Analysis 

The RANSAC technique iteratively and randomly samples the minimal amount of matches 

required to develop a given mathematical relationship.  Once this is done, it determines the 

 Figure 2-15   Utilizing RMSDE as a Metric to cull Outliers; note the distinctive “knee” in the error curve. 
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number of inliers and outliers from that relationship using prescribed error thresholds.  After a 

statistically meaningful number of samples have been taken, it will remove outliers based on 

the best (most inliers) model that was derived.  Figure 2-16, graphically portrays this robust 

technique (Hartley and Zisserman 2004). 

 

RANSAC has proven to be a robust technique for outlier removal, even in the presence of large 

numbers of incorrect matches.  Also, because it is not necessary to test all the sets of points for 

a solution, it can be efficiently utilized with techniques like SIFT that provide large numbers of 

automated matches.  This technique will be covered in greater detail starting in Section 4.1. 

For most of the 2D image-to-image registration and outlier removal, the SIFT algorithm will be 

utilized in conjunction with RANSAC, unless otherwise noted, due to their robust performance 

under various imaging conditions.  In the next section we will increase the dimensionality of 

one of the datasets in order to relate images with 3D models. 

Figure 2-16  A) A dataset with outliers; B) Shows how a line can be determined with the minimal number of two points and 
how the inliers are tallied; C) Shows how two close points can provide poor extrapolation and low inlier count; D) Shows the 

“correct” solution for culling the outliers. 
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3 Relating Images to Models 

 

Since 2D registration will always be limited by the effects of projective viewing geometry, 

occlusion, shadowing, terrain elevation and building height variations, it is essential to model 

the 3D influences on a scene so that they can be adequately mitigated.  If a 3D model of the 

target scene is available, it is possible to orient the model to the same viewing perspective as 

the camera that acquired the image and then project it onto the same 2D plane as the target 

image.  Once this is accomplished with enough accuracy, traditional 2D registration techniques 

can be utilized to relate the image to the projected model. Essentially, the 3D ambiguity 

between the model and the image are removed and the image can then be utilized as a texture 

map on the model. If this is done properly, the 3D nature of the image that was lost when the 

image was acquired can be substantially regained. 

3.1 Known Camera Pose 

This approach relies on knowledge of the camera pose (position and orientation), to estimate 

the proper 3D scene projection relative to the remotely sensed image. Once the initial model 

orientation is estimated, this knowledge can be utilized with scene based registration to 

properly overlay imagery within Geographical Information System (GIS) applications, such as 

Google Earth (Walli and Rhody, Automated Image Registration to 3-D Scene Models 2008).   

This technique can allow a user to properly place imagery within a 3D environment using simple 

geographic location descriptions that can be coded in script languages, like the Keyhole Markup 

Language (KML).  Additionally, projected imagery from the camera acquisition location has 
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been implemented with the AANEE program (Section 1.3) as a technique to blend various 

modalities of interest (i.e. Pseudo-Color IR) as shown in Figure 3-1 below. 

 

The process in Figure 3-2, describes the basic steps required to solve for precise image-to-

model registration when the camera pose is known.  This step can be implemented as a way to 

mitigate any residual error in the accuracy of the sensor’s Inertial Measurement Unit (IMU) 

pointing and Global Positioning System (GPS) location parameters. 

Figure 3-1  In this Pseudo-Color composite of the WASP SWIR/MWIR/LWIR composed as an RGB image stack, the Northern 
Bldg at the VanLare Plant (Red Circle) was recently built and is evidently made of a different material than its neighbors. 
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3.1.1 Approach 

For this section we assume that the camera pose is available and that we have a model that has 

been textured with imagery of a similar modality.  Since this approach primarily focuses on 

removing the 3-D ambiguity of the registration process, it should be applicable to most 

automated 2-D image registration techniques if even rudimentary models of a scene are 

available. Additionally, since all remotely sensed images are influenced by the 3-D world in 

some manner, it is important to understand and control these effects whenever possible.  The 

utility of relating these two datasets should be readily apparent from Figure 3-3.  Here a crude 

model has been textured (by draping an image-Section 15.1) and oriented to the acquisition 

view of another image to remove some of the undesirable 3D influences. 

Figure 3-2  The process for relating an image to a model when the camera pose is known starts with changing 
the orientation of the model to mimic the known sensor view.  Then the extraction and matching of similar 

features from the image and model can occur in similar 2D construct.  These matches are then used to refine 
the model pose (due to IMU/GPS precision error) for final projective texturing of the image on the model. 

Image to Model Registration with Known Pose 
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Since we can orient our model to the respective orientation dictated by the known camera 

pose, it is possible to project our model into a similar space to that of the target image and 

utilize traditional point extraction techniques for feature extraction.  Additionally, since we 

have assumed that the model is textured with imagery of a similar modality, the extracted edge 

detail should provide similar features from both the projected model and target image. 

With powerful physics based modeling software, like Digital Imaging and Remote Sensing Image 

Generation (DIRSIG), it is possible to replicate the appearance of many modalities including 

visible, infrared, polarimetric, synthetic aperture radar, and low light panchromatic (Digital 

Imaging and Remote Sensing Laboratory 2006).  This increases the probability of extracting 

similar features from a wide range of potential modalities, since the edge detail should be 

accurately generated if the model is geometrically correct and removes the 3D ambiguity. 

The feature matching in this section will be approached in the same way as traditional 2D 

feature matching in Section 1.2.  However, when utilizing a GIS environment such as Google 

Figure 3-3  Even rudimentary models textured with images (top) can be used to simulate the 3D effects of scene projection, 
shadowing, and occlusion evident within real images (bottom) and can thus allow for precise 2D registration. 
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Earth (Google Earth 2010), care must be taken to ensure that the modeled scene contains the 

appropriate terrain and building models, but that the working image is unaltered.  In this way, 

when the pose of the acquisition camera has been properly encoded into the viewport, the 

working image should closely resemble the modeled scene (Walli and Rhody, Automated Image 

Registration to 3-D Scene Models 2008). 

 

Figure 3-4  The general process utilized to register images to GIS modeled scenes. 
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 If the IMU/GPS information is sufficiently accurate, then a 2D affine relationship will often 

provide acceptable accuracy to relate the model projection to the target image.  This approach 

provides a piece-wise affine solution to the projective problem presented by our camera pose 

estimation.  It can be likened to a linear estimate of a nonlinear problem that provides 

acceptable levels of error over small regions of the solution space and is shown in Figure 3-4, 

where a hi-fidelity model of the VanLare site was provided by Pictometry International 

Corporation (Pictometry 2010). 

3.1.2  Case Study - Using Google Earth Models and WASP Imagery 

This section provides a brief summary of results obtained when implementing the procedure 

outlined above.  For this case study, Google Earth (GE) was utilized as the GIS visualization tool, 

with detailed Collada models of the Frank E. VanLare Water Treatment Plant embedded within 

the standard satellite imagery and 30[m] terrain elevation maps.  The working imagery was 

obtained from RIT’s Wildfire Airborne Sensing Program’s (WASP) multimodal sensor suite that 

provides 4kx4k Visible Near Infrared (VNIR) and 640x512 Short Wave Infrared (SWIR), Mid-

Wave Infrared (MWIR), and Long Wave Infrared (LWIR) images. 

A significant limitation in utilizing GE’s as the GIS for 3D scene representation, is that terrain 

overlaid image descriptions are limited to heading angle and a Latitude/Longitude box.  This can 

limit the transformations to those of an affine nature if preprocessing of the imagery is not 

performed.  Additionally, this tool was designed for square North/South and East/West “box” 

areas, and so the working imagery was designed for ortho-rectification as a requirement for 
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proper implementation.  After working through some of GE’s limitations, the results, seen in 

Figure 3-5 and Figure 3-6, show that precise registration is available by utilizing this technique. 

 

Figure 3-5  The top image with initial IMU/GPS pose and the bottom after affine correction.  Both images are displayed in 
Google Earth with 30m accuracy terrain and detailed Pictometry model of the VanLare Site. 
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The careful observer will note the displacement of building models from their placement w.r.t. 

the imagery in Figure 3-5, especially over the settling ponds in the SE area of the VanLare Plant.  

In the multimodal results of Figure 3-6 the registered image is overlaid on top of the initial 

IMU/GPS location.  This shows the relative placement and correction obtained from in-scene 

registration compared to the initial hardware solution. 

 

In order to overcome the GE limitations for texturing the terrain with imagery, it is essential to 

implement mathematical techniques that link the camera orientation parameters to the 2D 

Projective Homography (Seedahmed 2006).  This technique requires that a true planar 

Figure 3-6  Comparison of Registered VNIR WASP image (outlined in green) overlaid on its initial location (outlined in red) 
with the detailed site model in GE. 
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relationship exists between the correspondences used to create the projective transformation.  

While this may not always be the case, the statistical techniques developed by the author in 

Sections 2.5.1 and 6.4.1.1 to ensure accurate RMSDE consistency of the model with the match 

points can be utilized to constrain the solution space.  This is particularly relevant and 

applicable to the Section 6.4.1.1, where a 2D planar relationship between the image and model 

is warranted due to accurate scene modeling. 

3.2 Unknown Camera Pose 

Given the utility of using camera information to remove 3D ambiguity from a registration result, 

the next logical task is to determine this camera information from “in-scene” information when 

it is not available.  The ability to estimate the position and orientation of a camera (camera 

pose), without prior knowledge, is often essential for relating imagery of a given scene.  The 

ability to use known 3D control points and corresponding image locations to retrieve camera 

position and orientation when the image was acquired is referred to by photogrammetrists as 

“space resectioning”.  Resectioning images can be a very powerful technique, since the camera 

information for a given image of interest, may not be readily available.  Even when it is, the 

accuracy of that information may be unknown or may not be precise enough to use without 

further refinement.  This resectioning process is shown in Figure 3-7. 
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The resectioning approach implemented by the author is similar to the Maximum Likelihood, 

“Gold Standard Algorithm” proposed by Hartley & Zisserman (Hartley and Zisserman 2004); 

which is shown in Figure 3-8: 

Figure 3-7  The basic process for relating images to a model when the camera pose is unknown.  The main difference here 
is that the initial camera pose must be solved for using correspondences or user manipulation of the model pose.  At this 

point the process then mimics the one described earlier in Section 3.1. 

Image to Model Registration with Unknown Pose 
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Since the mathematical formulation and execution for this algorithm are treated exhaustively in 

Chapters 12 & 13, they will only be covered briefly in the following sections to highlight areas of 

additional interest. 

3.2.1 Approach - Feature Extraction and Matching 

As noted above, the data that we want to relate in this section is the 2D information from an 

image to that of a known 3D model.  By orienting our model to the viewing geometry of an 

arbitrary scene image, we wish to determine information about the camera that acquired that 

imagery of our 3D modeled site.  Specifically, we wish to determine the internal and external 

camera parameters (see Chapter 11). 

Figure 3-8  Algorithm 7.1 – The Gold Standard Algorithm for estimating P from world to image point correspondences in the 
case that the world points are very accurately known. 
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The case of feature extraction in this scenario is not as straightforward as in the image-to-image 

registration of Chapter 2.  Here, we have a 3D model which we can easily rotate to an 

orientation that approximates our image view through user assisted computer graphic 

manipulation.  MATLAB’s (The Mathworks, Inc. 2010) graphical plotting interface allows these 

manipulations through simple mouse-driven commands, when the rotation button is active (see 

figures in the next Case Study - Section 3.2.3). 

Once this is accomplished, we can implement a “back-culling” facet routine to extract only 

those features visible in the Graphical User Interface (GUI) window.  In this way, it is possible to 

isolate all of the vertices that should be present as image corners within a scene.  Since faceted 

models are often overly-simplified renditions of the original scene, these vertices will be a 

subset of the corners within a scene.  For this reason, it is possible to utilize automated 

techniques to extract the semi-invariant features necessary to match a model with an image 

utilizing “facet culling” and corner/edge detection techniques.   

Once the common invariant features have been extracted from the model and image, the 

critical and yet daunting task of relating correspondences begins.  The problem is challenging in 

this situation, because of the dissimilarity in the two datasets and uncharacterized error in the 

model points may make them extremely difficult to relate automatically.  Finally, regardless of 

the specific approach utilized to automatically match features, both the statistical RMSDE and 

RANSAC techniques can be used for outlier removal and error minimization. 
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3.2.1.1 Using the Projected Model and Image 

When a hi-fidelity model is available (which is texture mapped with imagery of the same 

modality), traditional 2D image registration techniques may be applied to extract 

correspondences.  This was the approach utilized in Section 3.1, for the final registration step.  

Recall that the model was projected onto a similar 2D plane as the image where features can be 

extracted via traditional edge detection algorithms such as SIFT (D. G. Lowe 2004), LoGWaR 

(Walli 2003), or Harris Corner Detector (Harris and Stephens 1988).   

If 2D registration of the projected model and image is feasible, direct methods to relate the 

underlying 3D resectioning relationships between the image and the model using the 

fundamental matrix (see Section 14.2) and 2D homography can be utilized (Seedahmed 2006).  

This allows for an automated comparison of the projected model vertices with the extracted 

invariant match points for potential commonality and precise model to image registration. 

3.2.1.2 Using Feature Distances 

A related method is to relate the image and model features based on a feature distance 

relationship, such as the technique utilized in LoGWar.  Since the user assisted orientation can 

remove most of the projective effects between the model and the image, it is possible to utilize 

the projection of the observed vertices for comparison to the extracted image features.  The 

distance relationship is naturally invariant to shift and rotation, and scale invariance is achieved 

through the ratio of distances.  Additionally, the projective effect is invariant when comparing 

the cross ratio of distance ratios along a line.  As long as the dissimilarity in point sets doesn’t 

preclude a robust solution, this technique can also provide a viable automated solution. 
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3.2.1.3 Using Semi-Automated Tools and User Assistance 

If completely automated techniques prove to be too difficult to provide a linear estimate of the 

image resectioning solution, manual selection of no less than 6 model vertices that are visible 

within the image may be required.  Of course, due to error in the model representation of the 

real world, image point selection and other error, additional correspondences will provide 

increased accuracy when using least squares estimated solutions (Section 3.2.3).   

3.2.2 Develop Linear and Non-Linear Solutions 

An initial linear estimate of the camera pose is obtained by performing a Direct Linear 

Transform (DLT).  A more detailed discussion regarding the DLT’s implementation w.r.t. 

estimating the full 11 parameter camera pose problem is available in Appendix B (Chapter 12).  

Once an initial linear estimate of the solution “puts us in the ball park” of the correct solution, it 

can often provide nonlinear techniques with a faster solution that has greater likelihood of 

converging at the true global minimum.  A simple graphic that can help visualize this concept is 

shown in Figure 3-9. 
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Also, it is often possible to simplify the solution space by making initial assumptions.  For 

example, in near-orthographic imaging scenarios, it is often acceptable to assume the camera 

roll and pitch are negligible (~0o), for initial estimation purposes (DeWitt and Wolf 2000).  

Additionally, a user could easily obtain an initial estimate of the camera parameters by rotating, 

scaling, and translating a model to the approximate orientation and position displayed in the 

image. 

Unfortunately, due to the inherently nonlinear interactions of the camera pose parameters, a 

linear solution will normally be insufficient to provide the required accuracies necessary to 

relate a 3D model with an image.  In this case, an iterative nonlinear estimation process will 

normally be required to arrive at satisfactory results.  Due to the proven performance of the 

Levenberg-Marquardt Algorithm (LMA) to efficiently and robustly solve for many nonlinear 

problems (Hartley and Zisserman 2004), we will utilize it here to solve for the camera pose 

parameters.   

Figure 3-9  This simple graphic displays how a linear estimate of a nonlinear function can provide a rough estimate of the 
local/global minimum location, within some margin of error. 
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 The LMA is a hybrid of the Gauss-Newton algorithm (GNA) and the method of gradient decent.  

Although it tends to be more robust than GNA when starting far from the minimum, it often 

converges more slowly to that minimum (H. Rhody 2009).  Additional details regarding the 

general implementation of the LMA with specific application to the resectioning of images-to-

models is provided as a reference in Chapter 13.   

As in any iterative solution, the key metric to adequately quantify is that which you are 

minimizing against.  In the case of 2D imagery features and 3D model control points, that metric 

is the geometric distance between the 2D features and the projected 3D model control points 

into that 2D space. 

Minimization 
Equation 

             
 

 

 (40) 

 

 

Where   is the projection matrix,     is the location of the projected 3D model point onto the 

2D image space and xi is the corresponding image feature.  The solution is the minimum of the 

total (summed) square error over all the points considered.  If the measurement errors are 

Gaussian, this will be the Maximum Likelihood estimate of   (Hartley and Zisserman 2004).   

Specific to the LMA, a damping factor μ is applied that weights the direction and step size of the 

decent into the minimization valley.  When large, this damping term delivers a short step in the 

steepest descent direction; which is good if the current iteration is far from the solution.  

However, when μ is small, it is possible to achieve nearly quadratic final convergence (Madsen, 

Nielsen and Tingleff 2004). 
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3.2.3  Case Study - Estimating Model Pose from unknown Imagery 

This example demonstrates the ability to recover an unknown camera’s pose of a scene, when 

it acquired an image of the Center for Imaging Science (CIS) at RIT.  In this study, the model 

vertices and corresponding image locations (12 GCPs) were selected manually and are visible in 

Figure 3-10.  

 

In its attempt to minimize error, LMA took the initial sum of the squared projected geometric 

error from 16 million [pix] to 25 [pix], after only 29 iterations.  Not only did the total squared 

error reduce drastically, the parameter minimization provided good results, which are visible in 

Figure 3-11.  Here the resectioning is utilized to determine the DLT estimate on the left and the 

LMA optimization on the right. 

Figure 3-10  On the left is the working image with the same 12 locations selected as on the model; these locations are twice 
the number required for resectioning with a model (6 GCPs). 
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This study demonstrates the ability to determine a modeled scene’s pose w.r.t. an image.  

Future research in this area will attempt to develop automated techniques to relate the model 

and the working image.  Key to enabling this would be to automate the matching of model 

vertices to corresponding image locations.  This could be accomplished by projecting the 

vertices onto the image plane and matching them with HCD features, using the distance 

matching technique covered in Section 2.2.1.   

Another approach is to match the projected model image to the working image, as 

demonstrated in the previous case study.   This requires accurate modeling of the scene, but, 

allows the use of traditional 2D image registration technique to derive correspondences.  The 

point correspondences can then be utilized to solve for the resectioning parameters directly 

from a 2D projective transformation (Seedahmed 2006). 

DLT Estimate – 12pts DLT then LMA – 12pts 

Figure 3-11  On the left, the DLT provides a good starting point for LMA to optimize a solution. 
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Additionally, the DLT and LMA techniques covered in Chapter 12 & 13 can be applied to image-

to-image resectioning, instead of image-to-model. Finally, the estimated structure of the scene 

can be constrained by the known model facets to limit the projective ambiguity common in 

image sparse structure reconstructions. 

3.3 SWIR Imagery to SWIR Attributed LIDAR Models 

In this section we will explore an interesting example of completely automated 2D imagery to 

3D model registration utilizing WASP imagery and LIDAR data (Kucera International Inc. 2010), 

as seen in Figure 3-12.  

 

Below, in Figure 3-13, the two datasets were related automatically using techniques developed 

in Chapter 2.  It is useful to note that, in this example, no sensor viewing orientation was 

utilized to estimate the sensor-to-scene view in order to remove the 3D projective effects and a 

good registration was still possible.   

 

Figure 3-12  The figure above show a 2D SWIR image (A) and an image projection of a 3D model that was textured/attributed 
using the same LIDAR SWIR intensity returns that were utilized to create the facetized 3D model.  
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The robustly matched correspondences can be utilized to relate via a 3D Homography in-order 

to re-orient the model view (using linear or non-linear techniques) until minimal error exists 

with the imaged view of the scene (Section 3.2).  Alternatively, if a good 2D planar relationship 

can be derived from the matched correspondences, as discussed in Section 3.1.2, the EOPs can 

be directly recovered and used to reorient the LIDAR model (Seedahmed 2006).  Once 

corrected, the model orientation should be suitable for direct archival of the imagery onto the 

model via projective texturing. 

In the next section we will leverage some of the techniques developed here, since Chapter 4 

focuses on the task of deriving coarse 3D models from only 2D imagery.  So it should be 

apparent that the 3D mathematical projections of models into a related 2D space for 

registration provide a critically important mathematical framework for this section. 

Figure 3-13  The results of automated registration (using SIFT & RANSAC), between the 2D SWIR image and the 3D LIDAR 
model are apparent. 

Automated Image-to-Model registration using SIFT & RANSAC. 
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4 Deriving Sparse Structure from Images 

Using multiple view imagery to derive sparse structure is known in the photogrammetry 

community as Bundle Adjustment (BA) and in the computer vision community as Structure from 

Motion (SfM).  Since the BA technique has been around for decades, why is there such a 

current “Buzz” in scientific literature about its application and utility? 

This area of research has recently experienced a renaissance, due to its successful application 

to several computer/robotic vision projects.  The quest to have robots perceive their 

surroundings with some degree of 3D knowledge, cheaply and robustly, has innumerable 

applications.  To accomplish this feat, the computer vision community has turned to 

inexpensive cameras and dusted off the photogrammetrist’s technique of BA.  However, to 

make robots react to an ever changing environment, they needed to “speed up” the 

enormously unwieldy BA implementation.  To do this efficiently requires sparse matrix 

techniques, thus the name Sparse Bundle Adjustment (SBA).   

Additionally, the mathematical formalism provided by Hartley and Zisserman’s Multiple View 

Geometry (Hartley and Zisserman 2004) text has provided a much needed foundation in this 

quickly developing area.  Finally, for a robot to “see”, it must be able to efficiently and robustly 

extract invariant features from its surroundings via the 2D imagery it has as its source of 

perception.  With proven feature detection algorithms like SIFT, this now becomes feasible.  

But, it is only the parallel breakthroughs in these areas are finally allowing the dream of 

rudimentary computer vision to be fulfilled.  It is fitting that the remote sensing community 
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benefit from this as well, especially since the seeds of computer vision were planted over a 

generation ago by early photogrammetrists.  The basic process for recovering 3D structure from 

images is depicted in Figure 4-1. 

 

Two processes for recovering sparse structure will be covered in the following sections.  Both 

techniques utilize SIFT and SBA to “bookend” the beginning and end of the structure recovery 

process.  The first method is a combination of epipolar constraints combined with proven 

photogrammetric tools, such as the collinearity equation and image rectification to deliver 

world coordinate system structure from known camera parameters.  The second process is 

entirely enabled by multiple view epipolar geometry methods and provides relative local 

structure recovery even when most of the camera parameters are unknown. 

Recovering 3D Structure from multiple 2D Images (3D from n2D). 

Figure 4-1  This graphic depicts the six basic steps required for relating multiple images to recover sparse structure via the 
Bundle Adjustment process.  Once invariant features are extracted and matched, a linear estimate of the 3D point set is fed 

into a Bundle Adjustment process to simultaneously optimize the model points and camera parameters. 

1 2 3 

4 5 6 
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4.1 Feature Extraction and Matching 

Since both of these approaches use the same technique for image feature extraction and 

matching, it will be covered separately to avoid redundancy.  It should be noted that the 

invariant features used to relate the images for SfM processing are the same features for which 

the 3D structure is computed and compose the resulting Sparse Point Cloud (SPC). 

As in Chapter 2, invariant feature are extracted from the images of overlapping content.  These 

features then need to be matched for potential correspondence.  Here we will utilize the SIFT 

algorithm and its extracted keypoints to match the description vectors that are the closest and 

assign them as potential matches in each pair of images.  Once this is done, the image sets are 

tested for the requisite number of matches, determined by the number of correspondences 

necessary to solve for the Fundamental Matrix (7-8 points plus outlier probability) and/or the 

2D Homography (4 points plus outlier probability).   

The following diagram, adapted from (Hartley and Zisserman 2004), helps depict this epipolar 

constraint (Figure 4-2).  In this diagram the Fundamental Matrix    dictates that for a given 

model point   on plane  , a ray must pass from the camera center   (a focal length behind the 

image plane) through the image location   and this ray will be imaged by the camera    as an 

epipolar line   , passing from the image of the same model point    to that cameras epipole   .  

The epipole is the image of the other camera center (which may be off the image).  Thus, 

       (41) 

 

and so,      must be in the left null-space of   and    must be in the right null-space of    . 
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     (42) 

 

So, for a given point  , the preliminary match point must lie along the epipolar line    in order 

for it to be valid.  So, the matches that do not fit this epipolar constraint are then culled.   

 

Even in the presence of several outliers, these relationships can be utilized in concert with 

RANSAC (Section 2.5.2) to develop a robust Fundamental Matrix.  Once this is accomplished, 

the Fundamental Matrix can then be used to constrain the SIFT match set to remove most 

outliers.  These steps can be accomplished using the ‘7-Point Fundamental  Matrix’ algorithm 

(Hartley and Zisserman 2004) depicted in Figure 4-3.  Unfortunately, it is possible that an 

erroneous set of correspondences may still fulfill the Fundamental Matrix constraints, so 

additional constraints may be required to further cull the data (4.2.1). 

 

Figure 4-2  The epipolar relationships of the cameras, image points, and model points. 
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4.2 Modern Photogrammetric Techniques 

Automated synthetic scene generation is now becoming feasible with calibrated camera 

remote sensing. This section implements computer vision techniques that have recently 

become popular to extract ”structure from motion” (SfM) of a calibrated camera with respect 

to a target. This process is similar to Microsoft’s popular “PhotoSynth” technique (Microsoft, 

2009), but, blends photogrammetric with computer vision techniques and applies it to 

geographic scenes imaged from an airborne platform.  Additionally, it has been augmented 

with new features to increase the fidelity of the 3D structure for realistic scene modeling. This 

includes the generation of both sparse and dense point clouds useful for synthetic 

macro/micro-scene reconstruction.   

Although, the quest for computer vision has been an active area of research for decades, it has 

recently experienced a renaissance due to a few significant breakthroughs. This section will 

Figure 4-3  Hartley & Zisserman’s 7-Point Fundamental Matrix using RANSAC. 
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review the developments in mathematical formalism, robust automated point extraction, and 

efficient sparse matrix algorithm implementation that have fomented the capability to retrieve 

3D structure from multiple aerial images of the same target and apply it to geographical scene 

modeling. 

Scenes are reconstructed on both a macro and a micro scale.  The macro scene reconstruction 

implements the scale invariant feature transform to establish initial correspondences, then 

extracts a scene coordinate estimate using photogrammetric techniques. The estimates along 

with calibrated camera information are fed through a sparse bundle adjustment to extract 

refined scene coordinates.  The micro scale reconstruction uses a denser correspondence done 

on specific targets using the epipolar geometry derived in the macro method.   

4.2.1 Approach – Depth Recovery from Overlapping Images 

The basic method for implementing the Modern Photogrammetric approach is to: 

1. Derive Initial Correspondences utilizing the SIFT Algorithm 

2. Cull Outlier Matches for Precise Image Bundle Relationship and 3D Structure 

a. Check for agreement with the Fundamental Matrix using RANSAC 

b. Check for general agreement with a planar SPC fit using RANSAC 

3. Rectify Images by projecting points onto a virtual focal plane  

4. Estimate the 3D structure utilizing linear techniques 

5. Determine Correspondences with multiple image matches 

6. Prepare Match Datasets for Sparse Bundle Adjustment (SBA) 

7. Relate SBA results to WCS using Camera info and Back Projection  
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4.2.1.1 Derive Correspondences 

Deriving correspondences is implemented similar to Section 2.2.2, but, here the author has 

implemented an image tiling approach that overcomes the self-imposed 2k x 2k limitation of Dr 

Lowe’s SIFT implementation currently available from his website (D. Lowe 2005).  This 

technique provides about 5x the number of invariant features and 3x the correspondences as 

the reduced resolution imagery and is implemented as shown in Figure 4-4.  Here the Hi-

Resolution and Low-Resolution tiles are layered to provide the proper combination for 

multiscale image pyramid analysis within the SIFT algorithm. 

 

4.2.1.2 Culling Outliers 

First the SIFT correspondences are run through a RANSAC algorithm constrained against the 

resulting Fundamental Matrix as in Section 2.5.2.  This compares the candidate feature matches 

against the epipolar relationships derived from the initial point set.  Matches that do not 

support this relationship (42) are culled as outliers.  Occasionally outliers may still fulfill this 

requirement and additional techniques for outlier removal are required.  

Figure 4-4  Process for tiling images larger than 2kx2k for SIFT feature extraction and matching. 
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Thankfully, additional culling of outlier matches can be applied to most remotely sensed image 

bundles, due to the near-planar target terrain.  Once the linear estimate of the elevation of 

each point in the match set has been obtained, a RANSAC plane fitting technique can often be 

utilized to remove any remaining outliers (i.e.        of the distribution from the plane or 

    ) as demonstrated in Figure 4-5. 

 

4.2.1.3 Rectify Images using the Collinearity Equation 

Unless the acquisition platform is accomplishing purely nadir imaging (looking perpendicular to 

the earth’s surface) it is necessary to rectify the image or image correspondences to enable 

proper linear 3D structure estimation.  The approach taken here is to back-project the image 

correspondences onto a virtual focal plane that is located at the focal length (f), but, is situated 

perpendicular to the earth’s surface as depicted in Figure 4-6.  This is a critical correction that 

generalizes the linear 3D recovery techniques covered in Section 4.3.2.4. 

Figure 4-5  Displays the utility of RANSAC plane fitting to SPC terrain data for outlier removal. 
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4.2.1.4 Estimate the 3D Structure – Linear Photogrammetric 

The basic technique to derive 3D structure from images was derived from a photogrammetric 

approach (DeWitt and Wolf 2000).  Although this technique is easy to comprehend and 

implement, it has severe limitations for use.  The reason for this is that it assumes the sensing 

platform is performing Nadir Imaging along a flight path that is parallel to one of the image 

axes.  This essentially means that there is no pitch and roll and the heading is constant w.r.t. the 

other images and runs in straight lines.  Unfortunately, with airborne platforms this is seldom 

the case and corrections must be incorporated for robust performance.  The previous section 

corrected for the pitch and roll of the sensor, but, we still must accommodate for the deviation 

of the image axes from the flight line.  This is covered in Section 4.3.2.4 and visible in Figure 4-7. 

Sensor 
Orientation 

x 
y 

z 

Nadir View 

Oblique View 

Virtual FP 

ω=5o 

ω=5o 

Match Point Projection 
onto Virtual Focal Plane 

Figure 4-6  Rectification of the matches must be performed for accurate 3D estimation of the SPC. 
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4.2.1.5 Isolate Correspondences with Multiple Matches and Prepare for SBA 

Once the 3D estimate of the matches is accomplished, the next step is to group the image 

matches into sets, based on location similarity as displayed in Figure 4-8.  It should be no 

surprise that similar regions are isolated by the SIFT algorithm across multiple images, due to 

the gradient nature of the feature mapping.  In this way, a set of images may have a few 

features that are isolated in every image that has common overlap within the set.   

The SBA algorithm of Lourakis and Argyros (Lourakis & Argyros 2004) is optimized for speed and 

efficiency and is utilized in Section 4.4 to provide an optimized point cloud w.r.t the camera’s 

EOPs/IOPs and 3D point locations.  It can easily optimize against several camera variables and 

the structure of tens of thousands of 3D points simultaneously to produces an image bundle 

Figure 4-7  The 3D estimate of structure is dependent on the baseline between the images, so corrections are required that 
change the image pixel locations to be aligned with the flight line path.  This amounts to a coordinate system conversion of 

the matched locations to one that is defined by the axes connecting both camera location at the time of acquisition. 
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that is mutually self-consistent.  However, as with any engineering code, it requires specific 

formatting for the input variables and special care when preparing the camera IOPs and EOPs.   

The SBA code weights the matches based on the number of correspondences and their 

projected covariance.  For this reason, a sorting algorithm has been developed and 

implemented by the author to extract match sets from the image bundle in a pyramid fashion, 

where the 4 match set is extracted from the 3 match set which is in turn extracted from the 

most common 2 match set to remove redundancy before sending them into the SBA algorithm. 

 

Figure 4-8  The overlapping images above (red & yellow) are registered and have matches that are common to all (cyan).  
These common locations can then be utilized for 3D registration or as seeds for the DPC extraction process (Section 4.3.3). 
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4.2.1.6 Relate SBA Results to WCS using the Collinearity Equation 

Once a good image bundle and SPC is produced using SBA, it can be related back to the WCS 

directly by utilizing the camera Exterior Orientation Parameters (EOPs) and Interior Orientation 

Parameters (IOPs) which can also be optimized in this process.  Additionally, the recovered 

height information can be utilized in concert with the Collinearity Equations to re-project into 

any given image orientation as shown below in Figure 4-9. 

 

The last step in the image bundle process is to automatically identify the Regions of Overlap 

(ROO) of the resulting image relationships (Figure 4-9) for seamless integration of Dense Point 

Cloud (DPC) processing (Nilosek, et al. 2009).  This process utilizes the Fundamental Matrix 

relationship between two matched images and interrogates each pixel of the base image to 

develop a correspondence in the working image as shown in Figure 4-10.  Since we know that 

Figure 4-9  Once the image bundle is optimized using SBA, it is possible to relate the images, cameras and 3D point cloud into 
a 3D mathematical framework to determine the region of overlap for DPC interrogation and additional processing.  

An Image Bundle Mathematical Construct 
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for any given pixel in the base image there must be a corresponding pixel (if not occluded) 

located in the working image, it is efficient to look along the epipolar line for a match to 

constrain the search.  Due to intense interest by the computer vision community, active 

research is currently ongoing in this field with some promising initial results (Pollefeys, et al. 

2004) & (Ma, et al. 2006), but, still with much room for growth and discovery. 

 

 

Even though the epipolar constraint for deriving dense correspondences greatly reduces the 

search space, the effects of parallax and occlusion may greatly change the localized region’s 

appearance.  However, there are some automated techniques like the Affine SIFT (ASIFT) 

(Morel & Yu, 2009) or the Log Polar algorithm (Cyganek 2008), that could be utilized to provide 

Figure 4-10  The basic process for developing Dense Point Clouds using Epipolar relationships between images. 
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scale, shift, and rotation invariant approaches for dense correspondence matching and outlier 

removal to address this challenging feature matching problem (Nilosek, et al. 2009). 

4.3  Case Study – Creating Sparse Structure using Airborne Data 

The seeds of computer vision were actually planted by photogrammetrists over 40 years ago, 

through the development of “space resectioning” and “bundle adjustment” techniques. But it is 

only the parallel breakthroughs, in the previously mentioned areas that have finally allowed the 

dream of rudimentary computer vision to be fulfilled in an efficient and robust fashion. Both 

areas will benefit from the application of these advancements to geographical synthetic scene 

modeling. This section explores the process the authors refer to as Airborne Synthetic Scene 

Generation (AeroSynth) process (Walli, Nilosek, et al. 2009).  

The AeroSynth technique for recovering 3D structure from images is a blend of the both the 

photogrammetric and computer vision approaches.  It utilizes the automatic feature 

isolation/matching, epipolar relationships and SBA of computer vision and melds it with the 

linear 3D point estimation and collinearity relationships of photogrammetry.  As a result, the 

image bundle and SBA-SPC can be related to the WCS and directly injected into GIS applications 

for automatic analysis and comparison to existing archival data. 

 

4.3.1 AeroSynth Introduction 

Recovering 3D structure from 2D images requires only that the scene is imaged from two 

different viewing geometries and that the same features can be accurately identified.  Figure 

4-11, depicts a site of interest imaged from multiple views using an airborne sensor; here the 
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point of interest is the top of a smokestack that will be imaged with the effects of parallax 

displacing it with respect to other features within the scene.  This parallax displacement effect 

has been used for decades within the photogrammetry community to recover the 3D structure 

within a scene (DeWitt and Wolf 2000).  Unfortunately, robust automated techniques to match 

similar features within a scene have been fairly elusive until very recent breakthroughs in the 

area of computer vision (Section 2.2). 

 

4.3.2 Recovering Sparse Structure from Images 

The key to automatically recovering 3D structure from an imaged scene is to identify reliable 

invariant features, match these features from images with diverse angular views of the target 

and then generate accurate mathematical relationships to relate the images.  This information 

can then be utilized in concert with the camera external and internal orientation parameters to 

derive scene structure that is defined within the World Coordinate System (WCS) of choice. 

Figure 4-11  Example showing the angular diversity required to recover 3D Terrain from Airborne Imagery. 
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4.3.2.1 Airborne Dataset 

For this study, the working imagery was obtained from the Rochester Institute of Technology, 

Center for Imaging Science’s (RIT/CIS), Wildfire Airborne Sensing Program (WASP) multimodal 

sensor suite (Rhody, Van Aardt, Faulring, & McKeown, 2008).  This sensor provides 4kx4k Visible 

Near-Infrared (VNIR) and 640x512 Shortwave Infrared (SWIR), Midwave Infrared (MWIR), and 

Longwave Infrared (LWIR) images.  Google Earth (GE) was utilized as the GIS visualization tool, 

with a detailed model of the Frank E. VanLare Water Treatment Plant (Pictometry, 2008) 

embedded within the standard satellite imagery and 30 [m] terrain elevation maps (Figure 4-11 

& Figure 4-14).  Additionally, Figure 4-11 shows the region of overlap (outlined in red) of 5 

WASP images where the site of interest is contained in the central (base) image. 

 

4.3.2.2 Invariant Feature Detection and Matching 

The SIFT technique can consistently isolate thousands of potential invariant features within an 

arbitrary image as seen in Figure 4-12.  This is extremely useful when attempting to create 

sparse structure from matched point correspondences, since any matching features can then 

be processed to obtain the 3D structure of the imaged scene.  In addition, more recent 

independent testing has confirmed that the SIFT feature detector, and its variants, perform 

better under varying image conditions than other current feature extraction techniques 

(Moreels and Perona 2006) & (Mikolajczyk and Schmid 2005) 

The SIFT algorithm utilizes a Difference of Gaussian edge detector of varying widths to isolate 

features and define a gradient mapping around them.  These gradient maps are then compared 

for similarity in another image and matches result from the most likely invariant feature pairs.  
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Once potential matches are found, outliers can be culled based on the requisite epipolar 

relationships that must exist between two images of the same scene.  This has always been 

challenging in the past due to the effects of parallax, but, can now be robustly addressed using 

techniques highlighted in the next section. 

 

4.3.2.3 Outlier Removal 

To successfully remove erroneous matches derived using the SIFT algorithm, the potential 

match set will be processed using the Random Sample Consensus (RANSAC) technique (Fischler 

and Bolles 1981), in conjunction with the fundamental matrix relationship between images of 

the same scene (Figure 4-12).  RANSAC has proven to be a robust technique for outlier removal, 

even in the presence of large numbers of incorrect matches (Hartley & Zisserman, 2004).  Since 

it is not necessary to test all the sets of points for a solution, it can be efficiently utilized with 

techniques like SIFT that provide large numbers of automated matches. 

Figure 4-12  Thousands of invariant keypoints generated and matched using the SIFT algorithm. 
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In the diagram above, Figure 4-13, the Fundamental Matrix F dictates that for a given 3D scene 

point X, a ray must pass from the camera center C (a focal length behind the image plane) 

through the image location x and this ray will be imaged by the camera C’ as an epipolar line l’, 

passing from the image of the same model point x’ to that cameras epipole e’ (Hartley and 

Zisserman 2004).  The epipole is the image of the other camera center (which may be off the 

image entirely).   

Anyone that has worked for any length of time with automatic image registration can attest to 

the challenging issues parallax can cause when relating features.  The limitation of utilizing a 2D 

Projective Homography to relate imagery with large elevation difference between acquisition 

stations, can be addressed through the use of the Fundamental Matrix relationship.  This 

relationship constrains the matches to an epipolar line even under extreme parallax situations 

and can be formalized in a mathematical manner as shown below (Hartley and Zisserman 

2004). 

Epipolar Relationship 
Between Images 

Matches Must Fall on Lines 

Defined by the Fundamental Matrix 

Figure 4-13  Depiction of the Fundamental Matrix constraint between images which is used for outlier removal. 
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Fundamental 
Matrix 

      
(43) 

 

 

So,  x’TF must be in the left null-space of x and Fx must be in the right null-space of x’T. 

 

Fundamental 
Null Space 

        (44) 

 

Simply stated, for a given point x, the preliminary match point must lie along the epipolar line l’ 

in order for it to be a valid match.  So, the proposed feature matches that do not fit this 

epipolar constraint are considered bad matches. 

Once the initial matched point set has been obtained using the automated SIFT technique, it is 

usually necessary to test for these bad matches or “outliers”.  The RANSAC algorithm can be 

utilized to iteratively take a random sample of the matches to create a Fundamental Matrix 

relationship between the images.  Once this is done, the veracity of that relationship can be 

tested by comparing the number of resulting inliers against a statistically relevant number of 

additional tests.  The Fundamental Matrix that produces the most match point inliers is then 

accepted as the best mathematical model and any outliers to this model are then removed.  

These procedures are detailed in Section 2.5.2 and can produce thousands of good matches, 

per image pair.  These 2D image correspondences are then processed into 3D points using the 

linear techniques described in the next section. 

4.3.2.4 Initial Estimate of Sparse Structure 

The initial estimation technique that is utilized to derive the 3D scene structure utilizes a simple 
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approach that is augmented for more general situations by compensating for the aircraft 

motion and image axes misalignment with the flight path.  This process can be visualized below 

in Figure 4-14.   

 

The following equations (DeWitt and Wolf 2000) can then be utilized to derive 3D structure 

once the necessary corrections have been accomplished.  Here Cxi and Cyi are the longitude and 

latitude of the cameras and Cz1 is the flying height of the base sensor, B is the baseline distance 

between sensor locations (the airbase), pi is the pixel distance between matching points (the 

distance here is only along the x-axis), and the pixel locations are denoted (x1i, y1i) and (x2i, y2i).  

 

Baseline Distance 
(x-axis) 

          (45) 

Focal Plane 
Distance (x-axis) 

               (46) 

Figure 4-14  Graphic showing two collection stations of an airborne sensor utilized to recover 3D Structure. 
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WCS Relative 
Longitude 

   
     

  
 

(47) 

WCS Relative 
Latitude 

   
     

  
 (48) 

WCS Relative 
Altitude 

       
   

  
 (49) 

Figure 4-15 depicts the corrections that are required for any deviation of the flight line from 

the coordinate axis of the images and the pitch, yaw, and role of the aircraft.  Unless the 

acquisition platform is capable of acquiring perfectly nadir imaging on a routine basis, it is 

necessary to rectify the image or correspondences to enable linear 3D structure estimation.   

 
 

 

A. Pitch, Roll, and Yaw Correction  B. Flight Line Correction 

C1 

C2 

Figure 4-15  Corrections are required to compensate for aircraft pitch, yaw, and roll and flight line orientation as discussed 
earlier in Section 4.2.1.3.  These are done by projecting the matches onto a virtual focal plane and then transforming them to 

a coordinate system aligning the x-axis to the flight line connecting the two image centers. 
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The approach the author has taken to accomplish this is to project the image correspondences 

onto a virtual focal plane that is located at the focal length (f), but, is situated parallel to the 

earth’s surface as depicted in Figure 4-15.  This can be accomplished by using the image 

projection versions of the collinearity equations below (DeWitt and Wolf 2000), where m is the 

rotation matrix, (XL, YL, ZL) is the camera location, (x0, y0) is the principal point, (x, y) is the 

image location and (X, Y, Z) is the object location in the WCS. 

 

Collinearity 
Eq. x-axis 

image proj. 

        
                             

                             
  (50) 

Collinearity 
Eq. y-axis 

image proj. 

        
                             

                             
  (51) 

 

The flight line corrections can be implemented by generalizing Equations (45) and (46) to 

accommodate baselines that are offset from the image axes.  It is important to note that the 

height estimate (Zi) is dependent on the ratio of the baseline (B) to the pixel distance (pi) of the 

match points projected onto the virtual focal plane.   This ratio can be corrected to one that is 

aligned with the flight line by performing a coordinate system conversion to the aircraft flight 

line or by compensating for the relative Baseline distance with respect to the pixel 

correspondence distances (Equations (52)-(53)).  Finally, the corrected image plane distance 

can be calculated by utilizing Equation (53) with the previous modifications.  Here, the offset 

from the flight line is represented by K. 
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Baseline 
Distance 

Correction 
                                   

 
 

 

(52) 

Image 
Distance 

Correction 
                          (53) 

 
Interim results can be viewed with their respective camera stations in Figure 4-16, where nearly 

20,000 individual point correspondences were automatically recovered from 5 matching images 

(4 image pairs) to produce a Sparse Point Cloud (SPC) representation of the scene.  Note that 

here the results are still in a relative (meter-based) coordinate system centered on the base 

camera location. 

 

4.3.2.5 Non-Linear Optimization of Sparse Structure 

Many of the problems presented in this research cannot be solved by linear methods alone.  In 

these cases, it is necessary to apply non-linear estimation techniques to provide accurate 

Figure 4-16  The interim estimates of the four individual SPC’s can be seen compared to the camera locations. 
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solutions.  Such real-world problems as the resectioning of images to models and the bundle 

adjustment (BA) of multiple images, to reconstruct 3D structure, both require nonlinear 

minimization solutions. In fact, for BA, these solutions often depend on calculating the 

interaction of several thousand variables simultaneously.  Due to its stability and speed of 

convergence, the Levenberg–Marquardt algorithm (LMA) is one of the most popular 

approaches routinely utilized to solve these challenging problems (Lourakis & Argyros, 2004). 

When implementing LMA, the computational challenge is to minimize a given cost function.  

For applications such as resectioning and BA, this cost function is defined as the sum of the 

squared error between image points (actual data) and projected 3D model points (predicted 

values) dictated by the current set of parameter (  ).  The minimization function takes 

advantage of the relationship between the estimated 3D structure (   ) and its 2D projection 

onto the image plane (   ) as mathematically formalized below (Hartley & Zisserman, 2004). 

 

Projection 
Function 

 

         (54) 

Projection 
Matrix 

            (55) 

 

The projection matrix (P) can then be utilized directly for minimization since it incorporates the 

cameras internal calibration parameters (K), and external orientation (R) and position (t).  This 

minimization equation then takes the following form (Equations (56) and (57)), where d is the 

Euclidean distance between the image coordinate    and the projected 3D point   . 
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Projection 
Minimization 

Function 

            
 

 

 (56) 

Expanded 
Minimization 

Function 

                     
 

 

   

 
(57) 

The sparse bundle adjustment (SBA) algorithm of Lourakis and Argyros (Lourakis & Argyros, 

2004) is optimized for speed and efficiency.  It can easily minimize against several camera 

variables and the structure of tens of thousands of 3D points simultaneously to produce a 

sparse image bundle that is mutually self-consistent.  However, as with any engineering code, it 

requires specific formatting for the input variables and special care when preparing the 

camera’s internal and external orientation parameters.  The next section addresses this topic in 

order to ensure that accurate global coordinates can be obtained after utilizing this SBA 

minimization algorithm. 

 

4.3.2.6 Relating the Results to World Coordinate System  

Since the results of the SBA process minimize against a relative coordinate system anchored on 

the base camera position, it can be difficult to determine the absolute locations of the 3D 

points even though there is good self consistency between the camera locations and the SPC.  

In order to recover the absolute location of the 3D points, the collinearity equations (Equations 

(58)-(59)) were utilized to re-project the 3D points back into the base image locations of the 

initial feature matches as seen in Figure 4-17B.   
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Collinearity Eq 
X-component 
World Coord. 

            
                           

                           
  

(58) 

Collinearity Eq 
Y-component 
World Coord. 

            
                           

                           
  

(59) 

 

In this case, only the minimized depth parameter (Zi) retained its absolute coordinate value and 

so could be utilized with the camera locations (XL, YL, ZL) to determine the world coordinate 

latitude (Yi) and longitude (Xi) values.  The final results are display below in Figure 4-17 showing 

the UTM SPC (A), a facetized height map (B), in Google Earth as individual 3D points (C) and re-

projected back into the base image to show how a UV Texture Map can be derived (D). 

 

SPC displayed in Google Earth. 
Results Projected back onto Base Image. 

A. model. 

Figure 4-17  Example results of the Sparse Bundle Adjustment process on the Sparse Point Cloud.  Here the absolute global 
coordinates (A) can be compared to the facetized surface (B), visualized in Google Earth (C), or re-projected back into any 

of the images contained within the bundle (D). 

Final SPC in global UTM. SPC converted into a faceted mesh.  
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Below, a comparison of the final image derived SC mesh can be compared to a standard 30 [m] 

Digital Elevation Map (DEM) and to a hi-fidelity 1 [m] LIDAR Terrain Elevation Map (TEM).  

 

Relating the SBA-SPC to the WCS comes with the understanding that the final product will only 

be as accurately positioned as the accuracy of the IMU-GPS information available from the 

flight recorder.  Since the SPC is minimized against a the position of all the cameras relative to a 

base camera position, the results are only as good as the position and orientation accuracy of 

your base camera.  For a closer look at how these results can be compared and registered to a 

LIDAR dataset, see Section 5.1.3. 

 

Figure 4-18  The image derived SPC mesh fidelity can be directly compared to both hi-fidelity ~1 [m] LIDAR terrain and a lo-
fidelity ~30 [m] Digital Elevation Map. 
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4.3.3 Recovering Dense Structure from Images 

For completeness and to show the “end game” of recovering detailed scene models solely from 

imagery, this section gives a cursory introduction of some of the related work accomplished 

with PhD Student Dave Nilosek.  Some of his initial work, into the recovery of Dense Point 

Clouds from multiview imagery, is represented here. 

The key to recovering a Dense Point Cloud (DPC) from matching images lies in the ability to 

relate the images on a pixel-to-pixel level (Nilosek, et al. 2009). This is the transition point 

between the macro and micro scene reconstructions.  Here the micro process requires certain 

information derived from the macro process to optimally utilize the derived mathematical 

relationships between the images and the SPC.  At this point in the scene reconstruction, each 

image is already related to a base image of the scene through a fundamental matrix and the 

SPC is related to each image using a projection matrix. The macro process has also derived the 

regions of overlap for each image with respect to the base image. Each fundamental matrix, 

projection matrix and region of overlap is passed off to the micro process with the SPC. Ideally 

the micro process would relate every pixel in every overlapping image to the base image; 

however, due to computing power restrictions, examples in this paper focus on specific targets 

inside the regions of overlap.  

4.3.3.1 Dense Correspondence - Relating Images at the Pixel Level 

The utility of the fundamental matrix for outlier match removal has already been shown, now 

this matrix will be used to help derive a dense set of matches between overlapping regions. 

Using this matrix and Equation (41) for every pixel in the base image, an epipolar line that 
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contains the corresponding point can be found in each overlapping image.  Figure 4-19 shows 

how epipolar lines are found in different overlapping regions from a single point in one image 

for three different images.  

 

This property of the fundamental matrix reduces the correspondence search to a one-

dimensional search along epipolar lines. The images are rectified so that the epipolar lines run 

along the horizontal and then a normalized cross correlation is computed based on a small area 

selected around the target pixel in the base image. The maximum response from the 

normalized cross correlation is chosen as the match. This is done for every pixel over the entire 

area which results in a very dense correspondence between the multiple views.  

The estimate of the dense structure follows the same pipeline as estimating the sparse 

structure. First basic photogrammetry is used to extract an initial estimate of the structure. 

Then the camera parameters, initial estimate of the structure and correspondences are used in 

minimizing the reprojection error between all the images using the SBA method. The 

collinearity equations can also be used to place the dense structure in the world coordinate 

system. Additionally, the dense structure can be texture mapped with an image of the target as 

shown in Figure 4-20.   

Figure 4-19  Left: Image with single point chosen.  Middle/Right: Corresponding epipolar lines in other images. 
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The initial estimate of the structure and the final product is shown in Figure 4-20 after all the 

steps are completed.  Once the dense structure of a specific target has been acquired, it is 

combined with the sparse structure.  Figure 4-21 shows the dense structure incorporated into 

the sparse structure and overlaid on a map. Also on this map are image-derived, but, manually 

generated CAD models of similar structures in the scene (Pictometry, 2008).  The automatically 

generated dense structure can now be directly compared to the structure of the CAD model for 

verification.  One very clear issue still remains when working with only nadir imagery and that is 

the difficulty in reconstructing the sides of objects. Although oblique imagery can be used to 

view the vertical detail of the scene, the severe projective transforms that relate these images 

can provides additional correspondence challenges which are discussed below.  

Figure 4-20  Left: Initial estimate of the structure of the dense point cloud from three images. Right: Result after SBA, world 
coordinate mapping and projective image texturing. 
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4.3.3.2 Matching Oblique Images using ASIFT – Maximizing Angular Diversity 

Recently an algorithm has been developed that attempts to describe features as projectively 

invariant. This algorithm is called Affine Scale Invariant Feature Transform (Morel & Yu, 2009). 

This algorithm builds on the original SIFT algorithm by taking the initial images and simulating 

rotations along both the x and y axis. It essentially performs many SIFT operations over these 

simulated images in order to find the best matching rotation between the images in order to 

remove it. Once the initial matching is found using ASIFT, the same RANSAC process, using the 

fundamental matrix as the fitting model, can be used to eliminate the outliers. Figure 11 shows 

an example of matching points using ASIFT and then RANSAC.  

Figure 4-21  Resulting 3D structure recovered from three overlapping images using Dense Point Correspondences 
(The model provided by Pictometry is embedded within Google Earth). 
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The next step is to utilize the SPC, resulting fundamental matrices and regions of overlap to 

extract a DPC of a target area within the scene. Since a projective transformation can greatly 

impair the normalized cross-correlation method of point matching, other approaches may be 

required for dealing with images that capture significant angular diversity of a target.   

4.3.3.3 Growing a Depth Map from Sparse Correspondences 

Since an accurate sparse representation of the structure of the scene has already been derived, 

this structure can be utilized as a good starting point to ‘grow’ a dense match between images. 

(Goesele, Snavely, Curless, Hoppe, & Seitz, 2007). A dense matching is generated around each 

sparse match using an optimization method that minimizes the normalized pixel intensity 

difference between each overlapping image with respect to the base image.  Here each 

projected SPC location is utilized as an initial seed and the matched image locations are slowly 

grown from the pixels surrounding these points.  In this way a dense correspondence mapping 

can be obtained between images by constraining the epipolar line search space. 

 

Figure 4-22  Matching between a nadir and oblique images using ASIFT and then RANSAC with the Fundamental Matrix as 
the fitting model (Images courtesy Pictometry Int. (Pictometry 2010)). 



4-33 
 

 

4.3.4 AeroSynth Summary 

Due to the fast growth in the computer vision arena, regarding SfM techniques (Chapter 14), it 

is fruitful for the photogrammetry community to keep abreast and apply these techniques to 

the area of remote sensing.  The AeroSynth technique for recovering 3D structure from images 

is a blend of both photogrammetric and computer vision approaches.  It utilizes the automatic 

feature isolation/matching, epipolar relationships and SBA of the computer vision community 

and combines it with the linear 3D point estimation and collinearity relationships of 

photogrammetry.  As a result, the image bundle, SPC, and DPC that is produced can be related 

to the WCS and directly injected into GIS applications for automatic analysis and comparison to 

existing archival data. 

 

Figure 4-23  Growing 3D depth maps based on the initial SPC results and epipolar relationships.  In the upper left inset, the 
3D SPC is projected back onto the base image.  For these locations the depth information is already known (upper right) 
and can be used to constrain the matching locations in the other images (lower left) to follow a general surface function. 

SPC locations projected 
back onto 2D base image. 

Match Location now 
constrained to line 

section. 

3D SPC Mesh 
location. 

Depth estimated from closest SPC. 
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4.4 Sparse Bundle Adjustment (SBA) 

Once the initial estimates for a camera’s EOPs/IOPs and the 3D structure of the image 

correspondences have been produced, a Bundle Adjustment (BA) process is commonly used to 

bind these results into a self-consistent solution.  Since this can be geometrically visualized as a 

bundle of rays which piercing the image plane on their path from the 3D object through the 

camera lens, it has been commonly referred to as a “Bundle Adjustment”.  The “Sparse Bundle 

Adjustment” name comes from the sparse nature of the matrices involved in its solution and 

not from the Sparse Point Clouds that can be generated through the BA process. 

“As an indication of its efficiency, it is noted here that one of the test problems 

to which SBA has been applied involved 54 cameras and 5207 3D points that 

gave rise to 24609 image projections. The corresponding minimization problem 

depended on 15999 variables … without a sparse implementation of BA, a 

problem of this size would simply be intractable.” -(Lourakis and Argyros 2009) 

The task presented in the last section, regarding minimization of the unknown parameters, can 

become very challenging.  This is due to the fact that the          total parameters 

must now be factored in a Jacobian matrix that has                        

variables, which becomes impractical without implementing sparse matrix techniques for a 

solution.  The figures below (Figure 4-24, Figure 4-25, & Figure 4-26), should give the reader an 

appreciation of the sparse structure of the solutions space, which is due to the general lack of 

interdependence of the variables which are being solved.  Please reference Chapter 13, for a 

more detailed review of how the SBA is solved using the Levenberg-Marquardt Algorithm 

(LMA). 
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For these problems the following equations hold ((Hartley and Zisserman 2004) and are 

graphically represented in Figure 4-25. 
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Figure 4-25  The structure and composition of the normal equations (~Hessian matrix). 

Figure 4-24  The structure and composition of a Bundle Adjustment Jacobian matrix. 
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The sparse form of the Hessian becomes very apparent in Figure 4-26, for large numbers of 3D 

points and camera parameters. 

 

Figure 4-26  A sparse matrix obtained when solving a modestly sized bundle adjustment problem. This sparsity pattern is of a 
992x992 normal equation (i.e. approx. Hessian) matrix, where black regions are nonzero blocks. (Lourakis and Argyros 2009) 
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It should be noted that minimizing the linear estimate of our camera projection models (   ) by 

utilizing the matching 2D image point correspondences is exactly the same process involved in 

the camera resectioning task of Section 3.2.  This is convenient, because some of the 

mathematical infrastructure necessary to accomplish our task for BA has already been 

developed.  Only the 3D estimate for the point cloud (Section 4.2.1.4) and inclusion of the 

minimization parameters against those points are required to implement the BA process. 

As mentioned earlier in this chapter, the SBA code of Lourakis and Argyros (Lourakis & Argyros 

2010) was utilized to accomplish the minimization due to its speedy C++ implementation and 

proven performance.  This is a good alternative for implementation of potentially large datasets 

that could be derived from numerous flights over the same target area.  Additionally, a MATLAB 

interface is available which was incorporated and modified to be used with the WASP sensor 

EOP and IOP flight information.  The main drawback is that like any engineering C++ code, it 

represents a “black box” solution that can only be partially modified for research.  Additionally, 

the documentation about how the orientation angles were implemented was noticeably 

lacking, although this appears to have been addressed in the most recent version now available.  

In hindsight, a purely MATLAB implementation would have been a more flexible tool for 

academic use. 

In the next chapter, we will again add dimensionality to the data relationship challenge by 

relating 3D rigid bodies.  Many of the previous concepts will be utilized and expanded to 

address the additional requirements of deriving a purely 3D solution for these problems. 
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5 Relating Rigid 3D Bodies 

To register 3D data, such as a Sparse Point Cloud (SPC) to a Dense Point Cloud (DPC) or Faceted 

Model (FM) will require slightly different techniques compared to the previous chapters.  Of 

primary difference is the process by which we can extract common invariant features and relate 

them via 3-D matching techniques.  Additionally, the final transform, that will be utilized to 

relate the datasets, is no longer constrained to a 2D projection of the 3D model.  It is now a 

fully 3D transformation that may be constrained to rigid-body solutions. 

The potential payoff, for developing sound SPC to DPC/FM registration techniques, is that we 

will be able to utilize the global coordinate system of our LIDAR or Model data, to orient our 

locally related bundle of images, cameras, and SPC.  This is potentially the area of highest 

customer interest, since there is currently much growth in both the online FM generation 

(Google Sketchup 2009) and local sparse structure development using tools like PhotoSynth 

(Microsoft Corporation 2010) and no current way to easily relate the two environments.  In 

fact, the originators of the PhotoSynth process (Snavely, Seitz and Szeliski, Photo tourism: 

Exploring photo collections in 3D 2006), utilized primarily manual processes to relate their 

Sparse Structure Bundles (SSB) to terrain maps. 

As with the 2D-to-2D and 2D-to-3D registration, the process for 3D-to-3D registration is to: 

a. Extract similar invariant features 

b. Match these features 

c. Utilize these Correspondences to create a Mathematical Relationship 
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If this can be done robustly and accurately, the 3D data can be related.  Figure 5-1 details the 

steps for 3D registration in pictorial form. 

 

5.1 Sparse to Dense Point Clouds 

This section addresses the unique challenge of relating the SPCs developed by an SBA algorithm 

and the DPCs that are common to LIDAR data.  This challenge is unique, because there is little 

current research into the automated matching of SPCs features which is known to the author 

beyond the Iterative Closest Point algorithm used with LIDAR DPCs.  Additionally, the problem 

may be ill-posed if there are no common elements from the datasets.  In this case, estimation 

may be limited to the statistical analysis of point distributions w.r.t regional densities and their 

inter-relationships.   

Figure 5-1  The basic process for relating 3D models and structure using a 3d Conformal transform.  As in the previous 
sections, the key here is to relate similar features within the two datasets in order develop a mathematical relationship.  The 

only added complexity is in the additional dimensionality and possible feature disparity of the datasets. 
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The SPC will often be the result of an SBA process, similar to the one developed in Chapter 4 

and will range from a few hundred points to tens of thousands, depending on the number of 

images that were related.  The DPC will be the result of a LIDAR data collection or the dense 

correspondences resulting from a model reconstruction (Pollefeys, et al. 2004) and will 

normally range from hundreds of thousands of points to millions.  Examples of an SBA-SPC and 

LIDAR-DPC of the Midland, MI power plant can be viewed below in Figure 5-2. 

 

In either case, the distinction between SPCs and DPCs is rather vague and only used here to 

distinguish between the amount of data available for registration.  The key is in the 

determination of common structure elements, if any exist, between the two datasets. 

Figure 5-2  The Midland Site SPC (top) resulting from BA of tens of thousands of 3D points compared to the 
millions of 3D points embedded within a LIDAR DPC (Bottom). 
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5.1.2 Approach 

When trying to relate SPCs to other data, the features of interest may have already been 

identified; meaning that we may want to initially utilize every point in the sparse structure for 

potential correspondence.  Additionally, we hope that the DPC has a subset of points that are 

common to the SPC that can be culled for matching.  So, if 3D point correspondence matching is 

feasible, feature extraction may be relegated to an analysis of which features in a DPC (such as 

LIDAR data) will correlate to those extracted in the SPC creation process.  The following are few 

of the techniques implemented by the author.  

5.1.2.1 Using Global Coordinates 

If the both the SPC and DPC datasets are described in a real-world coordinate system, then a 

straightforward implementation of the Iterative Closest Point (ICP) algorithm(Z. Zhang 1992) 

can normally provide adequate correspondences for a mathematical description.  This entails 

minimizing the distance between every SPC point and the nearest   DPC points; where robust 

values for   can be gauged based on the volumetric point density (Figure 5-3). 

5.1.2.2 Using Relative Coordinates and User Assistance 

For every 3D pt in an SPC, a corresponding region within a DPC can be identified with a sphere 

encircling several DPC points.  Thus when relating the two datasets, it is possible to isolate the 

“best” correspondence within a DPC by minimizing the distance among the closest regional 

points.  This approach is straightforward to implement, since a user can easily identify regions 

that an SPC point may relate to in a DPC and wouldn’t have to worry about precise 

correspondence determination (Figure 5-3). 
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A close approximation to this technique is one in which both the SPC and the DPC have been 

facetized and the user selects similar locations on the models.  This may, or may not, fall in 

close proximity to an existing model vertex location.  However, the author has found that this 

technique is both easy to accomplish and provides good results for relating these very different 

types of models.  For this reason it was utilized in the case study below. 

5.1.3 Case Study 

The case study described below provides new research into an area that is sure to get much 

attention in the future.  This is in the challenging area of relating Sparse Point Cloud Models to 

other imagery derived products and especially LIDAR derived Dense Point Cloud models.   

SBA-SPC to LIDAR-DPC:  The data set used here is the SBA-SPC that was developed in Chapter 4 

and a LIDAR-DPC (Kucera International Inc. 2010) of the VanLare Water Processing Plant, 

Rochester, NY that was created using the author’s MATLAB facetization algorithm. 

Figure 5-3  Relating the SPC pts to DPC points via an iterative nearest neighbor approach. 
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In this case study, the analysis was performed against the local MegaScene Tile-4 Location and 

the initial results of a 3D RMSDE calculation resulted in an average error of ~11 [m].   

Table 1 – This table shows the initial error of the faceted SPC results when compared to their matching features in a faceted 
LIDAR model of the same location, these matches can be visualized in Figure 5-4. 

Control            LIDAR Vat CPs Local [m]:         SPC Vat CPs Local [m]:           Error Calculations [m] 

Points x y z x y z x1-x2 y1-y2 z1-z2 RMSDE 

1 853.32 435.81 103.09 837.50 431.39 111.94 15.83 4.42 -8.85 10.78 

2 873.02 463.74 103.13 857.76 459.92 110.24 15.26 3.82 -7.10 9.96 

3 905.22 425.73 99.59 888.79 421.18 108.50 16.43 4.55 -8.91 11.10 

4 920.54 447.88 99.37 902.77 444.07 106.50 17.77 3.81 -7.13 11.27 

5 936.48 470.39 99.24 919.02 465.74 105.00 17.46 4.66 -5.76 10.95 

6 912.42 387.36 99.59 894.95 384.17 108.82 17.47 3.19 -9.23 11.55 

7 927.74 410.37 99.38 912.19 406.52 107.46 15.55 3.84 -8.08 10.36 

8 943.03 432.00 99.45 925.60 428.10 106.91 17.43 3.89 -7.45 11.17 

9 958.38 454.78 99.31 943.00 450.13 105.64 15.38 4.66 -6.32 9.97 

               Ave RMSDE [m]: 16.51 4.09 -7.65 10.79 

 

It is important to remember that this is the absolute error, before a simple 3D translation is 

implemented (using the X, Y, & Z translation error in Table 1) to obtain the final positions of the 

faceted SPC within the WCS.  Once this has been accomplished the error analysis is computed 

against these new locations as seen below in Table 2. 

Table 2 – This table shows how a simple 3D Translation derived from the average error on the 3 axes can be utilized to 
correct for any residual error in the SPC WCS location. 

           LIDAR Vat CPs [m]:             SPC Vat CPs [m]:    Translated Model CPs [m]:   

Control Pt X Y Z x y z X' Y' Z' RMSDE [m] 

1 853.32 435.81 103.09 837.50 431.39 111.94 854.00 435.48 104.30 0.82 

2 873.02 463.74 103.13 857.76 459.92 110.24 874.27 464.01 102.59 0.80 

3 905.22 425.73 99.59 888.79 421.18 108.50 905.30 425.28 100.85 0.77 

4 920.54 447.88 99.37 902.77 444.07 106.50 919.27 448.16 98.85 0.81 

5 936.48 470.39 99.24 919.02 465.74 105.00 935.53 469.83 97.35 1.26 

6 912.42 387.36 99.59 894.95 384.17 108.82 911.46 388.26 101.17 1.19 

7 927.74 410.37 99.38 912.19 406.52 107.46 928.70 410.62 99.81 0.62 

8 943.03 432.00 99.45 925.60 428.10 106.91 942.11 432.20 99.26 0.56 

9 958.38 454.78 99.31 943.00 450.13 105.64 959.51 454.22 97.99 1.06 

      Transformation:  3D Translation   Total Ave RMSDE: 0.88 
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Once similar points were associated visually, a 3D translation was implemented from the 

resulting transform that moved the SPC model to its final position.   

 

This new location corresponds nicely to the LIDAR dataset as seen in Figure 5-5 below.  Here 

the linear 3D Translation (        ,        ,         ) derived from the averaged 

control point error from Table 1 was utilized in conjunction with a nonlinear refinement using 

an integrated ICP algorithm within the Meshlab program (Pisa 2010). 

Figure 5-4  The image derived SPC mesh above is compared to a LIDAR derived DPC mesh below for comparison in 
Meshlab.  The absolute coordinates of the image derived results are only as accurate as the projected location of the base 

image, so a final translation, acquired from the matched locations (right), may be necessary. 
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5.2 Point Cloud to Faceted Model (FM) 

The problem addressed in this section is the association of FMs to point clouds.  Although the 

conformal 3D transformation process used to relate the rigid body data will remain the same, 

the challenge once again is to find adequate correspondences between the often dissimilar 

datasets.  

Figure 5-5  The results of the linear 3D Translation and Meshlab (Pisa 2010) implemented ICP nonlinear refinement can be 
visualized above.  Note the general agreement between LIDAR and SPC surfaces as they fight for visibility across the scene. 



5-9 
 

5.2.1 Approach 

Although the correspondence problem is challenging, it is not insurmountable.  In fact, the 

approach implemented by the author here is quite similar to the approach utilized in the last 

section.  The first task is to facetize the Point Cloud, whether it is Sparse or Dense, and then to 

select similar features correspondences.  These features may occur on either related vertices or 

within an individual facet plane.  

5.2.2 Case Study 

This case study illustrates the process utilized to take the hi-fidelity faceted model (Pictometry 

2010) of the VanLare Water Processing plant, created via manual imagery derived techniques, 

and relate it to the WCS through a 3D conformal registration with a LIDAR model.  All that is 

required was to accomplish a robust facetization of the LIDAR Dense Point Cloud (Figure 5-6) by 

using the author’s robust facetization code developed in MATLAB.  

 

Once this is accomplished, the user must select no less than three nonplanar correspondences 

(as shown in Figure 5-7) to enable a3D Conformal Rigid body solution to be developed.   

Create a Facetized Model using a LIDAR DPC 

Figure 5-6 This illustrations shows the initial LIDAR DPC with grayscale intensity attributed points on the left.  This can be 
utilized to produce a clean facetized model utilizing the author’s MATLAB code as shown in the graphic on the right. 
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This transform is then applied to the hi-fidelity facetized model to properly position it within 

the WCS.  The following table shows how a simple selection of 4 points from both models can 

provide a sub-meter accuracy registration of the local model to the LIDAR Data.  It should be 

noted here that the coordinates were converted to the local offset of MegaScene Tile-4. 

Table 3 – This table shows the Control Points (CPs) from the LIDAR and hi-fidelity FM which were used to develop a 3D 
transform to relate the model to the WCS.  The New Model CP accuracy is gauged using the 3D RMSDE on right.  

   LIDAR CPs [m]: Model  CPs[m]: New Model CPs [m]:   

Control Pt Location X Y Z x y z X' Y' Z' RMSDE [m] 

1) SW Vat 853.6 435.8 103.1 -189.4 1537.5 93.6 853.59 435.81 102.50 0.34 

2) SE Vat 911.8 387.7 99.6 -129.7 1583.8 90.6 911.79 387.60 99.21 0.23 

3) NE Barn Corner 890.2 540.5 139.5 -155.8 1431.3 130.8 890.40 540.69 139.76 0.22 

4) Smokestack 950.1 536.1 97.0 -96.2 1434.6 87.5 949.91 535.94 97.68 0.42 

Total Ave RMSDE     Transformation:  Conformal 3D Rigid Body       0.30 

 

Figure 5-7  This graphic portrays a manual feature correspondence generation that can be used to relate a Faceted Model to 
a LIDAR DPC that has been facetized.  Once accomplished, the initial relationship is improved through nonlinear ICP analysis. 

Relating a Faceted Model to LIDAR Data 
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The transformed model location can then be placed onto terrain that was also developed from 

the “bare-earth” LIDAR returns (Figure 5-8).  In this way the LIDAR Surface Elevation Map (SEM) 

allowed for a direct relationship with the Faceted Model and then was utilized to create the 

terrain for that model. 

 

Although the error analysis was performed from the selected point in Figure 5-7 using the 

authors 3D Conformal transformation, the visualizations and implementation of the ICP 

algorithm were performed within the Meshlab Software program (Pisa 2010). 

5.3 Future Research 

Future research into relating automatically relating Sparse Point Clouds to Faceted Models can 

take advantage of the fact that the user knows the position of every 3D point w.r.t. its derived 

imagery.  This fact, combined with the ability to reorient a model to the same vantage point 

allows the projected image of that model to be registered to that same imagery (as 

Figure 5-8  The graphic above shows how the Conformally transformed site model can then be placed on the same LIDAR 
dataset that was now used to create a bare-earth terrain model. 

The Transformed Faceted Model placed on LIDAR a Derived Terrain. 
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demonstrated in the next chapter).   Figure 5-9 helps graphically display this critical concept to 

relate SPCs to FMs. 

The secondary task is then to minimize the distance from the SPC points to the nearest model 

vertices, edges and/or planes.  As a bi-product of this approach, the distance error from the 

model to the SPC can be utilized to indicate regions of the model that are inaccurate or that 

have changed since its creation.  Due to the inherently diverse datasets, many solutions in this 

area will rely on nonlinear iterative techniques that seek to minimize error metrics both locally 

and globally. 

It should be highlighted here, that feature matching via the use of facets utilizes geometric 

modeling at the facet level. That is, a facet is a geometric object that is at a higher level in the 

geometric hierarchy than points and lines. Something like a wall of a building is yet a higher 

level entity that could be a portion of a plane resolved from facets.  So the general problem is 

to address techniques to enable the emergence of higher-level geometric entities from lower 

ones by a search and model building process that is supported by point clouds and imagery 

data. Of course, one question that will always remain is how a more complex model is 

"recognized" in a scene, given lower-level data and models (H. Rhody 2010). 
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Figure 5-9  The Bundle Adjusted VanLare Site SPC (top), was projected back into the base image (Middle) and can then be 
compared directly with the FM where the base image is used as a UV texture on the terrain (Bottom). 
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5.4 Faceted Model to Faceted Model 

Here we wish to relate two similar, and in some cases the same, 3D models of a scene.  This will 

be necessary to relate models within various coordinate systems, both absolute and relative, as 

well as ones that may have been indirectly altered due to the effect of the modeling 

environment.  For example, when a complex model with various components is brought into 

Google Earth, each component may be required to “settle” individually on the terrain.  This can 

have the effect of changing the relative altitude of each component with respect to other 

elements of the modeled scene. 

5.4.3 Approach 

As with a few of the previous approaches, both automated and user assisted techniques are 

available to relate the models.  However, the model datasets should be more similar, if not 

more reliable. 

5.4.3.1 Using Distance Similarity 

If there is any internal consistency to the model dimensions and relative structure, the 3D 

distance metric (similar to the 2D version in Section 2.2.1) can be utilized to automatically 

relate model vertices within prescribed error bounds.  This could be applied in a regional sense 

to create similar feature matches in a localized area to mitigate the terrain “settling” effects 

mentioned earlier.  In this way it would be possible to detect this terrain effect by comparing 

the relative mathematical relationship of individual building vertices compared to that of the 

mathematical model relating the whole scene. 
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5.4.3.2 Using User Assisted Vertex Matching 

Although this approach is not completely automated, it could be made relatively painless by 

developing techniques such as a “stick cursor” that would automatically highlight the nearest 

vertex to the current cursor location.  Only three “good” vertex correspondences are required 

to uniquely solve for the seven 3D conformal transform parameters (Scale, Tx, Ty, Tz, ω, φ, κ).  

Of course, as with most of these techniques, additional correspondences can be used to 

minimize the effects of noise and model imprecision. 

5.4.4 Case Study 

This study describes a situation where it was necessary to relate the FM of VanLare (Pictometry 

2010) within the world coordinate system of Google Earth and the same model within the local 

coordinate system of the Advanced Analyst Exploitation Environment (AANEE).  For this study, 

user assisted selection of 12 matching vertices (Figure 5-10) were used to develop a Conformal 

3D transform (0), to relate the two models.   

In addition to the previously mentioned terrain “settling” of the building in Google Earth, there 

is a limited ability to precisely pick global vertex coordinates.  This was most notable in 

elevation, where the precision was limited to ~1m.  The measurement error in the Latitude and 

Longitude is estimated at ~0.5m.  Finally, due to the 30m terrain and unknown model 

placement accuracy, any coordinate transformation within 15m error is probably within the 

measurement accuracy and acceptable error bounds of this case study.  As seen in Table 4, 

good RMSDE results were obtained for most model correspondences, even considering the 
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measurement limitations and GE influences.  It should be noted that the author enforced a 

unity scale factor when applying his Conformal 3D Transform since both models were the same. 

 

Figure 5-10  The Control Points used to related the GE and AANEE models (top) and the resulting transformation of the 
local points into Global UTM coordinates when compared to their matching Google Earth locations (bottom). 
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     Google Earth Coords [m]   AANEE Local Coords [m]   AANEE Global Coords [m]   

Control Pt Location X Y Z x y z X' Y' Z' RMSDE [m] 

Settling Tank Cross 290861.0 4790341.6 97.0 294.7 -62.9 23.3 290863.8 4790336.8 95.6 3.3 

Smoke Stack Top 290719.7 4790434.4 142.0 146.1 -19.2 -71.0 290718.9 4790434.5 146.0 2.3 

Power Bldg 290571.7 4789639.8 92.0 23.7 -65.2 727.6 290572.8 4789639.0 82.0 5.8 

Eastman Park Bldg 290509.2 4790666.6 97.0 -70.8 -63.1 -296.7 290508.2 4790667.8 109.2 7.1 

Barn Peak 290767.6 4790414.7 104.5 194.5 -55.1 -51.4 290766.0 4790414.3 107.2 1.8 

NE Bld NE Corner 290926.7 4790354.6 98.0 355.9 -58.8 2.5 290925.5 4790355.8 99.2 1.2 

Hangar Roof N Peak 290885.1 4790195.0 103.8 319.6 -58.5 162.9 290884.7 4790196.2 96.6 4.2 

Ctr S Rotation Tank 290754.9 4790119.7 97.0 191.6 -58.8 241.7 290754.6 4790120.8 96.7 0.7 

SE Bldg SE Corner 290651.0 4790047.1 103.0 90.1 -55.6 316.3 290651.2 4790048.9 100.1 2.0 

Bldg 9 NW Corner 290595.1 4790110.5 108.5 32.1 -51.9 255.6 290595.1 4790111.3 106.4 1.3 

Bldg 8 SW Corner 290505.4 4790132.4 106.3 -57.2 -51.6 236.6 290506.5 4790132.8 108.8 1.6 

Small Center Pump 290591.7 4790249.7 103.8 24.8 -56.4 119.3 290591.6 4790248.1 105.0 1.2 

Total Ave RMSDE     Transformation:  Conformal 3D Rigid Body     2.7 

 

The following 3D Homography was created using the author’s Conformal 3D algorithm using 

the matching points.  It was then used to transform the AANEE model from its local coordinate 

system into a Global UTM coordinate system: 

H = 0.9982 -0.0288 0.0180 290571.3807 

 
-0.0283 -1.0017 -0.0243 4790366.9761 

 
-0.0179 -0.0228 1.0432 166.9905 

 
0.0000 0.0000 0.0000 1.0000 

 

5.5 Constraining the Transform – 3D Conformal and Affine 

As mentioned in Section 2.4, constraining the transform results can be a powerful tool for 

ensuring that minimal corruption occurs to the data during the relational process.  This is 

important to ensure models retain their internally consistent dimensions and so that the 

Table 4  The following table provides more explicit evidence of the actual transformation performance of Figure 5-10. 
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process intensive results of our SBA process keep their rigid body relationships.  This data 

integrity issue is very similar to retaining radiometric accuracy during the resampling of images 

during the transformation process.   

5.5.1 Conformal 3D Transform 

Although 3D ‘rigid body’ transformations traditionally only include translation and rotation 

elements (   ), it will be referenced here in conjunction with the uniform scaling parameter 

common to the Conformal Transform; where                  or     
             

 
.  This 

will still preserve the internal geometry of the relative angles and distance ratios. 

Conformal 
Transform 

        (67) 

Conformal 
Sub-Matrices 

Transform 
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3D Non- 
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Transform 
             

            

            

            

  
 
 
 
   

  
  
  

  (69) 

3D Rotation 
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3D Composite 
Homogeneous 

Transform 

     

 
 
 
 
                                   

                                   

                

     
 
 
 
 

(71) 

3D Conformal 
Parameters & 
Control Points  

       

       

       

       

   

            

            

            

    

  

       
       
       

       

  

(72) 
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The three translation parameters can be easily extracted from the 4th column of H, and the 3 

rotation and scale parameters can be obtained by utilizing the following equations ((73)-(76)).  

In (73), we utilize the property that the sum of the squares of the rows or columns of the 

rotation matrix must equal unity (DeWitt and Wolf 2000). 

Extract Scale 
       

     
     

 
 
  

  
(73) 

Extract Ry 
        

   

 
  

(74) 

Extract Rx         
   

     
  (75) 

Extract Rz 
        

   

     
  (76) 

Here,   is the 3x3 rotation matrix containing elements of the rotation about each of the axis 

(    ,     , and     ), which are often referred to as “roll”, “pitch”, and “yaw” when in 

reference to airborne platform motion.  Additionally, care must be taken to avoid division by 

zero throughout many of these solutions, however since it is possible to test for this scenario it 

can often be avoided. 

Equations (67) through (72) should clearly demonstrate the construction of the Conformal 3D 

Transform and how it can be applied to image correspondences to relate volumetric datasets.  

But, how can we derive the coefficients in such a way that constrains the results.  The following 

technique was adapted from a 3D Pose Estimation algorithm (Haralick, et al. 1989) and 

modified to extract the scaling parameters for use in the 3D Conformal and Affine 

Transformations.  The basic process is outlined below: 
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1. Determine location of both model centers 

2. Translate model centers to origin (Demean Models) 

3. Utilize point correspondences and Least Squares to derive the transform (H3x3) 

4. Extract component Rotation and Scale Matrices using SVD and/or QR Decomposition 

5. Rotate and Scale the original center coordinate of the working model 

6. Translation is the base model center subtracted from the transformed model center 

Once the models have been demeaned, the Translation parameters can be temporarily ignored 

and (67) can be simplified to the following: 

Demeaned 
Models 

Transform 

      (77) 

Scale & 
Rotation 
Matrices 

 
 
 
 
   

         

         

         

  
   
   
   

  
 
 
 
  

(78) 

Scale and 
Rotation 

Transform 
           

            

            

            

 = 

         

         

         

  (79) 

Parameters & 
Control Points  

       

       

       

   

         

         

         

  

       

       
       

  (80) 

Pseudo-Inv 
Solution 

      (81) 

Singular Value 
Decomposition 

                 
(82) 

 
  

Where D is a diagonal matrix containing the singular values and V and U are unitary matrices 

such that              .  Using the resulting decomposition of (82), allows us to retrieve the 

Rotation from the following relationship. 
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(83) 

This gives a unique solution for the rotation matrix   provided the rank of     and 

           or rank of     and the minimum singular value is a simple root.  This can be 

easily tested for to ensure the integrity of the rotation matrix. 

Since the initial pose estimation technique did not require utilizing the singular values 

embedded within the   matrix for anything other than   solution validation, it wasn’t utilized 

further.  However, the author noticed the embedded scaling parameters when utilizing 

synthetic data and recalled decomposing the camera projection matrix into the IOPs and EOPs 

using QR Decomposition.  Recall that the main diagonal of the IOP matrix ( ), is related to the 

pixel pitch and focal length which provides scaling/magnification.  In this way it is possible to 

utilize QR Decomposition directly to extract the Scale and Rotation parameters if care is taken 

concerning the sign of the retrieved values (negative scale parameters must be injected back 

into the rotation elements). 

Although it is possible to utilize SVD to extract the Scale parameters, since they are related to 

the singular values through the geometric interpretation of the SVD.  These axes are orthogonal 

eigenvalues and ranked from largest to smallest as in principle component analysis, which is 

probably not the diagonal scale component (Sx, Sy, Sz) ordering required for direct scale use.  

However, the proper scale components (Sx, Sy, Sz) can be determined using the following 

equations (84)-(86) or by using QR Decomposition as noted above. 
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Scale X-axis 
        

     
     

 
 
  

  
(84) 

Scale Y-axis 
        

     
     

 
 
  

 
(85) 

Scale Z-axis         
     

     
 

 
  

 (86) 

For use with the 3D Conformal Transformation the x, y and z scaling parameters can be 

averaged for uniform scaling application as an initial linear estimate.  In Case Study 5.4.4, since 

both models were from the same source they had the same scale (   ) and so the identity 

matrix could be utilized directly in place of the derived scale parameters. 

Finally, the Translation is derived by subtracting the base model center from the transformed 

model center using (87), 

Translation    

  

  

  

          (87) 

where    is the base model centroid and    is the transformed model centroid. 

By using this process, it is possible to overcome much of the difficulties normally associated 

with developing a good linear estimate of the 3D relationship, even with the nonlinear 

interaction of the parameters associated with these types of problems in photogrammetry, 

geodesy, and remote sensing. 

5.5.2 Affine 3D Transform 

As with the 2D Affine Transformation, the 3D Affine Transformation includes translation (T), 

rotation (R), scale (S), and shear (W).   
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3D Affine 
Transform 

               (88) 

 

However, each of these now contain more parameters due to the additional dimensionality of 

volumetric space.  Here the uniform scale will be replaced with three independent scale 

components (Sx, Sy, and Sz), which take the following matrix form. 

NonUniform 
Scale 

Matrix 
   

    
    

    

  
(89) 

Although the full 3D Affine does not preserve internal angles due to the possible effects of 

shear (Eqs. (90) to (96)); it does preserve the parallelism of lines and planes.  

X Shear                 (90) 

Shx Matrix     

    
       

       
    

  
(91) 

Y Shear                 (92) 

Shy Matrix 
   

 
 
 
 
       

    
       

     
 
 
 
 (93) 

Z Shear 
                

(94) 

Shz Matrix 
    

       
       

    
    

  
(95) 

3D Shear 
Transform 

           (96) 
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3D Shear 
with 

Control 
Points 

 

       

       

       

       

  

 
 
 
 
 

          

          

          

     
 
 
 
 

 

       
       
       

       

  (97) 

The same approach utilized for the Conformal 3D Transform will be utilized for the Affine since 

it supports the three independent scale parameters and since the shear component will often 

be assumed as negligible for our applications. 

5.5.3 Homogeneous 15 Parameter Linear Estimate 

Of course the simplest way to get a 3D estimate is to utilize the unconstrained 15 parameter 

homogenous approach and then utilize the nonlinear minimization and weighting technique of 

the next section (5.5.4) to narrow in on the correct solution.  The equations below are the 3D 

incarnation of the 2D approach covered in Section 2.3. 

  

       

       

       

       

  

 
 
 
 
            

            

            

           
 
 
 
 

       
       
       

       

  
(98) 

       (99) 

 

It is important to note that this linear approach solves for 15 DOF and requires 5 non-collinear 

3D point correspondences.  This is obviously many more than just the 7 parameters required 

for a conformal 3D relationship and so may induce undesired, higher order effects like 

projection and skew.  However, the linear solution must only obtain an estimate within the 

capture region of the global minimum through the use of a nonlinear solver such as LMA and 

provide a reasonable starting point to minimize against the desired parameters. 
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5.5.4  Nonlinear Minimization and Weighting 

Since the 3D Conformal transform is nonlinear in its solution for the scale and rotation 

parameters, it is necessary to implement a nonlinear optimization method such as LMA to 

accurately solve.  Once the initial estimate for the rotation angles, translation, and scale have 

been accomplished, those same parameters can be prepared to provide a nonlinear 

minimization.  This process is very similar to Section 13.1, except that the cost function 

minimization is compared against the total squared 3D distance error, as opposed to the 

projected 2D distance error.   

                    

 

   

 
(100) 

Similar to the technique utilized in 5.5.1, the      matrix can be decomposed into the 

Translation (T), Scale (S) and Rotation (R) matrices to obtain the parameter estimates from the 

coefficients.   

So, how do we optimize for a solution that is only dependant on the desired 7 Conformal 

Transform parameters?  A useful technique to accomplish this is to start with the results of the 

4x4 Homography; it is then possible to induce a weighting function   on the undesired terms 

and increase it at every iteration of the cost function computation. 

                    

 

   

            
      

      
      

  
(101) 

This has the effect of slowly pulling the solution toward the desired constraints, where  

               and                     .  Once they are within a certain 

threshold of these constraints, they can be clamped to their desired values for a final 
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estimation (Hartley and Zisserman 2004).  The LMA implementation is otherwise very similar to 

that utilized in Chapter 13.  Although this approach was not implemented by the author, it has 

been retained in this document for completeness and due to its general application in reducing 

the solution space of results, which is often a key aspect of registration accuracy. 

In the next chapter, most of the techniques developed in the preceding chapters will be utilized 

to enable the challenging area of multimodal registration.  Here physical modeling of scene 

materials will be implemented to augment the 3D site model.  This will allow for simulations in 

various modalities of interest while maintaining the proper scene appearance, which is critical 

for automated registration. 
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6 Multimodal 3D Registration 

In the previous sections, essential techniques have been developed to relate images within a 3D 

construct, allowing for robust mathematical relationships between the datasets of interest 

even in the presence of parallax and occlusion.  In this section, we will utilize a 3D “model-

centric” environment to compensate for the viewing parameters of the sensors at the time of 

image acquisition.  This will allow us to model and mitigate the effects of terrain/building relief, 

shadowing effects and occlusion.  At the same time, we will utilize the ability of a physics based 

simulator, the Digital Imaging and Remote Sensing Image Generator (DIRSIG) program, to 

estimate the appearance of various modalities under different lighting/atmospheric conditions 

and sensor parameters (Section 6.3), to produce representative simulated imagery (Figure 6-1).  

 

If modeled properly, this has the potential to relate even the most diverse datasets, such as 

polarimetric, thermal and Synthetic Aperture RADAR (SAR) imagery.  By using an inherently 3D 

VNIR (RGB) SAR Polarimetric (S0) 

Figure 6-1  Multimodal image synthesis using DIRSIG’s physics based modeling [courtesy Dr. Mike Gartley  
(Gartley, et al. 2010)]. 
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approach to address the viewing geometry effects, coupled with DIRSIG to address the physical 

appearance of the scene, robust Multimodal 3D Registration is possible.   

The images shown below in Figure 6-2, displayed within Google Earth, visibly show the inverted 

contrast of both water (circled) and vegetation when imaging the same site in the visible and 

infrared regions of the spectrum.  This can frustrate correlation and feature based registration 

techniques.  However, the edge detail can often still be utilized for common feature generation.  

Also, techniques like Maximum Mutual Information have been demonstrated to successfully 

relate multimodal imagery (Fan, Rhody and Saber 2008) once the 3D influences are removed. 

 

VNIR SWIR 

MWIR LWIR 

Figure 6-2  Multimodal imagery registered to GE textured terrain using user assisted GCP selection and overlaid upon the 
initial sensor derived (IMU/GPS) global coordinate predictions.  The inverted contrast of water in VNIR and Infrared is circled. 
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6.1 The ‘Model Centric’ Approach 

By orienting a site model to the pose of the sensor it is possible to mitigate the 3D projective 

effects of the scene view compared to the image (Walli and Rhody, Automated Image 

Registration to 3-D Scene Models 2008).  Once this is accomplished, a physics based simulation 

of the scene is rendered in order to estimate its modality specific appearance.  This ‘model 

centric’ approach has the potential to mitigate even the most challenging issues of parallax, 

occlusions, shadowing, and diverse multimodal appearance (Van Nevel 2001), which currently 

plague automated registration of diverse views imaged from across the electro-magnetic 

spectrum (Figure 1-2).   

However, once the image and model projection are accurately registered, the process is not 

complete until the real image is then mapped back to the site model in order to regain the 

depth information that was lost when the image was acquired.  The entire modeling, 

simulation, mathematical relationship and archival (MSRA) process can be visualized in Figure 

6-3.  A key thrust here, is an understanding that 3D multimodal registration involves image to 

model registration and archival.  Once the model and image have been properly related, it is 

possible to archive the image as a texture onto the mode as a database of “layers”.   
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6.2 Model - Geometrically 

Here, the geometric modeling step will be broken down into 3 separate flavors:  Existing/User 

Defined, LIDAR Derived, and Multiview Image Derived.  These modeling paths have been 

further defined into levels of fidelity which relate to increasing degrees of realism/complexity 

within the models (Figure 6-4). 

 

MSRA Approach 

 

A) Model 

 

 

 

B) Simulate 

 

 

 

C) Relate 

 

 

 

D) Archive 

Figure 6-3  This figure illustrates the MSRA Approach to 3D Multimodal Registration, where A) is the modeling phase, B) is 
the physics based simulation phase, C) is the 2D image registration phase, and D) is the Image archival phase onto a model. 
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6.2.1 Existing/User Created Model 

Some of the more realistic geometric models that already exist for a site will be textured with 

imagery or photographs, such as the model shown below (Figure 6-5), courtesy Pictometry 

International (Pictometry 2010).   

Figure 6-4  This flowchart illustrates three different paths for generating geometric models for DIRSIG simulation.  From left-
to-right they are Existing/User Created, LIDAR Derived, and Multiview Image Derived models with varying degrees of fidelity. 
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Additionally, Figure 6-6 shows the basic modeling approach for utilizing an existing 3D model as 

the underlying geometry for a DIRSIG simulation.  Here, specific facets of the model are 

attributed with real material spectra using field data collected by an Advanced Spectral Devise 

(ASD), but, alternatively one could use Hyper Spectral (HS) data collected from an airborne 

sensor.  This spectral information is used to physically estimate how a simulated target material 

should look when viewed from sensors imaging in various spectral ranges and modalities. 

Figure 6-5  This Hi-Fidelity model of the VanLare Waste Water Processing plant is representative of an existing geometric 
model placed in Google Earth that utilizes UV mapped image textures for added realism (courtesy Pictometry Int.) 
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Alternatively to the traditional technique of mapping specific facets with material spectra 

within DIRSIG, it is possible to utilize a texture mapped in the          (UV Texture Map) to 

the unwrapped model (Figure 6-7).  This process flattens (unwraps) the model into a 2D 

representation that allows direct association of the model vertex locations with that of an 

image mapped to a normalized         .  It should be noted that this image is often a 

composite of several images pieces that relate directly to model facets such as walls and roofs. 

Not only does this type of texture add realism to the geometric model, it allows for oblique 

imagery of a scene to be related to the DIRSIG model, resulting in the sides of buildings 

displaying representative features.  To use the UV Texture approach within DIRSIG, it is 

necessary to associate the   -mapped texture image with a grayscale lookup table (LUT) to 

relate the image textures to specific material spectra.  This was accomplished by first 

DIRSIG Model 

 

Pictometry Model 

 

ASD Spectra 

 

Texture Image 

 

Attributed Facets 

 

Figure 6-6  This illustration depicts the process of adding spectral reflectance curves to  a realistic scene model in DIRSIG 
using Hyperspectral or Advanced Spectrometer Data (ASD) to properly simulate material appearance in various spectra. 
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generating a K-Means segmentation of the texture image within the ENVI Software program, 

under the ‘Unsupervised Classification’ algorithms (ITT Visual Information Solutions 2008).  

Depending on the results of the automated K-Means clustering technique, some user-assisted 

segmentation may be required to clearly define visible material boundaries (Figure 6-8).   

 

The resulting material class-map image can then be associated with the texture-map image 

within DIRSIG to add both material identification and spatial texture characteristics to regions 

within a given model or model facet.  For additional details on incorporating UV textured 

models into DIRSIG, reference Appendix E in Section 15.2 and Appendix F. 

Unless additional information is available to augment the model creation (as in the following 

sections), the terrain will most likely be relegated to DTED Elevation Map (DEM) quality; this 

Figure 6-7  Illustrates the UV Texturing process:  A) The wireframe model, B) The faceted model, C) The UV textured Model, 
D) The flattened (unwrapped) model with overlaying image texture, and E) The textured wireframe model. 
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equates to ~30m posting for most areas on the globe.  While this fidelity of terrain is good 

enough to perceive major topological influences, such as mountains, valleys, and bodies of 

water; it is normally not detailed enough to detect building placements, roads, and minor 

terrain features.  Additionally, modeling the 3D influences of trees will probably be constrained 

Figure 6-8  This graphic illustrates the process used to turn a UV Texture map (A), into a material class map LUT (C) by first 
segmenting the image with a K-Means classifier (B). 

A. Texture Map 

 

 

 

 

 

B. Class Map 
(K-Means)  

 

 

 

 

 

 

C. Material Map 



6-10 
 

to the synthetic generation of generic tree models placed using the help of overhead imagery.  

While this may be acceptable for many simulation activities, it will generally not be good 

enough for image registration, since it is necessary to have accurate bio-mass placement to 

accurately remove the 3D effects of viewing geometry on the scene.  The utility of have some 

3D information available, will be examined in the following two subsections (6.2.2 & 6.2.3). 

6.2.2 Hybrid Models - Developing LIDAR Augmented models in DIRSIG 

In this section, we will utilize various types of remotely sensed data to create a hi-fidelity 

geometric and physical model of a site for use within DIRSIG.  The building models are imagery-

derived, but, hand-made (Pictometry 2010); while the terrain and trees were derived from 

LIDAR data, and the terrain texture is from CITIPIX imagery (Kodak Global Imaging 2008).  The 

general process utilized to create a hi-fidelity hybrid simulation in DIRSIG is flowcharted in 

Figure 6-9. 
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The first step in developing a 3D model of a real site of interest should entail the use of LIDAR 

data, if it is available.  The 3D positional information (Latitude, Longitude, & Altitude) that is 

available in the LIDAR range information is critical in developing accurate terrain, building 

placement, and elevation characteristics of the scene.  In fact, even if a site has been accurately 

modeled by hand, using real imagery as a template (Section 5.2), the LIDAR data can be used as 

an anchor to ensure the model has accurate dimensions and geographic placement.  

If the 3D model can be registered to the LIDAR data (using techniques such as in Section 5.2), its 

accuracy can be assessed through visual inspection or 3D change detection techniques.  In this 

way, it is possible to utilize the inherent 3D nature of the LIDAR data synergistically with the 

detail rich edge information of the image derived building models.  Figure 6-10 shows how this 

Figure 6-9  This flowchart depicts the process utilized for DIRSIG model creation using hybrid models and imagery. 
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process can be utilized to create an accurate hybrid site model that has hi-fidelity LIDAR derived 

terrain (~1 [m] postings), registered to the multiview image models from the previous section. 

At this point, the hybrid model will contain the modeled buildings and terrain, but, none of the 

surrounding foliage.  For accurate scene simulations, this may be important to simulate site 

obscuration and 3D canopy influences for accurate registration.  Although significant research is 

being done in the area of tree identification using LIDAR data (Kim, Hinckley and Briggs 2009), 

which could be used to grow representative tree types at the correct locations, this often 

requires two LIDAR collections utilizing the leaf-on and leaf-off structural characterization.  

Additionally, the tree models would need to prescribe to the bio-mass restrictions defined by 

the LIDAR collection and although feasible, falls beyond the current scope of this research.   
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To approximate the biomass influences of a scene’s foliage, a more straightforward approach 

was developed and implemented by the author.  This approach utilizes the LIDAR information 

directly by placing a model facet at the location of each return that is 3m above the terrain, 

after removing the building returns.  While many possible geometries could be utilized to 

represent the foliage 3D character (i.e. boxes, pyramids, or draped wings - Figure 6-11), each 

shape has potential benefits and detractors depending on the imaging scenario that is being 

simulated.  Of primary concern is whether a downward-looking NADIR view or a more side-

looking Oblique view is desired.  For near-NADIR imaging situations, the flat square panel would 

represent the simplest basic shape, while still approximating the basic view acquired by most 

A. B. 

D. C. 

Figure 6-10  This figure illustrates the process utilized to register a site model (A), to a faceted LIDAR dataset (B), to assess 
model fidelity and to ensure proper building placement and dimensions (C).  Finally the model is placed on the bare earth 

LIDAR terrain (D) to create a hybrid scene using both the LIDAR terrain and Image derived building models. 
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sensors.  Additionally, it still allows for the 3D influence of parallax to be modeled properly 

(Figure 6-11a), while allowing for foliage ‘poke through’ imaging of the scene.  This would of 

course break down as the angular view to the scene approaches more oblique angles and 

would necessitate the examination/use of one of the other geometries.  It should be noted that 

code was generated to automatically convert LIDAR returns into the basic shapes defined in 

Figure 6-11a (courtesy Niek Sanders) and Figure 6-11b due to their low facet count (each has 2 

facets with 3 vertices/facet due to the triangulation requirements of most model entities). 

 

For the reasons stated above, the basic square model facet was chosen and placed at the 

location of each return, with the normal of these facets pointing straight up.  This basic shape 

allows for a ‘terrain-like’ draped texture over every facet within DIRSIG; which, for near-NADIR 

imaging simulations is adequate for registration.   

 

 

 

A)                              B)                                       C)                                    D) 

Figure 6-11  Example geometric shapes that could be used to represent tree foliage when paired with LIDAR point returns. 
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An example of how LIDAR point returns can been converted into tree facets using this process is 

shown in Figure 6-12; while the results, when viewed with the building and terrain data in 

Blender (Blender Foundation 2010), are shown below in Figure 6-13. 

A) Facetized & 
Textured Points 

B) Trees around VanLare as viewed in Meshlab 

Figure 6-12  The process by which a LIDAR Return Point Cloud (A), can be transformed into model facets textured with real 
imagery of the forested terrain (B).  The results of this process can be viewed above in MATLAB (C) or Meshlab (D). 

LIDAR Return 
Point Cloud 

Tree Region Viewed 
in MATLAB 

Textured Points 

Facetized & 
Textured Points 

D 

A
. 

B
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C
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6.2.3 LIDAR Direct – Developing LIDAR models in DIRSIG 

In the previous section, a faceted LIDAR point cloud (Figure 6-10b) was utilized to relate an 

existing image derived model to the collected data.  In many cases, a model will not exist and 

an analyst will be forced to utilize only the data on hand for model creation.   

Figure 6-13  The final model of the VanLare site, as viewed in Blender, using manually derived multiview imagery building 
models (courtesy Pictometry Int.) and LIDAR derived terrain and tree models. 
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With a decent quality LIDAR dataset (~1m posting), a good representation of the site is still 

possible if the point cloud can be robustly facetized into a model utilizing techniques such as 

Delaunay Triangulation (Delaunay 1934).  The author created MATLAB routine (Appendix G, 

Chapter 17) can read in a LIDAR point clouds directly and convert them into exportable ALIAS 

Wavefront ‘OBJ’ files (Bourke 2010), for use by most commercial 3D software packages.  This 

code can be utilized to bring a coarsely modeled site directly into DIRSIG and has been thus 

dubbed ‘LIDAR Direct’ by the author. 

Figure 6-14  This flowchart depicts the process utilized for DIRSIG model creation using LIDAR data and imagery. 
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6.2.3.1 Draping Textures and Material Maps over the LIDAR Terrain 

 

Once the facetized model is generated, an associated texture and material map is still required 

for realism and material identification in DIRSIG.  Since the same region of Rochester’s 

MegaScene (Tile-4) was utilized for analysis, LIDAR data (from a collection over VanLare) was 

extracted for only that region.  Thus, it was possible to directly associate the CITIPIX (Kodak 

Global Imaging 2008) imagery utilized as a texture and material map for that DIRSIG reference 

tile.   

Now however, it is necessary to attribute the regions of the site that included buildings with the 

relevant, albeit potentially surrogate, material spectra.  This process was relatively 

A) LIDAR Point Cloud B) LIDAR Faceted Model C) LIDAR Model w/SWIR 
Texture 

Figure 6-15  This graphics shows the 3 stages in transforming LIDAR data from a Point Cloud (A), to a faceted model (B), and 
finally texturing that model with the intensity return of the LIDAR itself (C). 
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straightforward due to the similar construction of many of the site buildings.  At VanLare, the 

office buildings have crushed gravel roofs, the storage vats are covered with vinyl caps, and the 

pump buildings have white metal roofing.  Thus it was a straightforward activity to generate 

regular shapes within a graphic arts package and “paint” them with an associated value for 

correlations within a LUT to the surrogate material of choice within DIRSIG.  This process is 

highlighted below in Figure 6-16. 

 

A relevant point is that the material identification process is only necessary for activities that 

require DIRSIG simulations.  By knowing the dominant materials in a scene it is possible to 

physically simulate representative atmospheric and illumination effects as well as various 

sensor collection modalities of interest.  In Section 6.3.4, we will examine the DIRSIG 

simulations results using the LIDAR Direct approach to modeling a site of interest. 

A) Site Imagery (Citipix)        B) Terrain Segmentation      C) Building Segmentation 

Figure 6-16  The LIDAR Direct process involves utilizing Imagery (A), to create a material map in order to physically describe 
the site.  Here, automated segmentation of the terrain (B) is used in concert with user assisted ID of site materials (C). 
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6.2.3.2 Automatic Scene Object Identification Using LIDAR - Future Research 

Although not extensively tested by this author, it should be possible to automatically identify 

some of the scene’s basic elements by utilizing the 3D spatial information of the LIDAR in 

concert with the SWIR return information.  Segmentation of the scene into foliage (Kim, 

Hinckley and Briggs 2009), buildings (Gurram, et al. 2007), water, asphalt, and grass would 

allow a LIDAR developed site model to be directly ingested into DIRSIG with surrogate materials 

assigned to those structures. 

 
Figure 6-17  By using the spatial, brightness, and facetized characteristics of the LIDAR returns, aggregate material 

identification for DIRSIG should be possible. 
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A general approach to accomplish this activity is provided above in Figure 6-17.  Once the 

aggregate classification of site materials is accomplished it can be assigned to the designated 

DIRSIG emissivity file, or a specific curve in that file, after an analysis of the histograms for each 

material characteristic.  For instance, a facet designated as grass could be linked to a specific 

curve in the grass emissivity file (~400 curves available).  This could be done by analyzing and 

relating the normalized brightness of all assigned grass facets w.r.t. the normalized distribution 

of emissivity curves.  One could then assign the closest emissivity curve to the closest bin of 

brightness values.  

6.2.3.3 Material ID using Hyperspectral Sensing 

Finally, if Hyper-Spectral (HS) data from the site is available, it is possible to associate the 

resulting spectra directly to LIDAR facets or scene objects for material identification and 

physical modeling.  This process would be very similar to the last section, where an individual 

HS data pixel curve could be associated to a specific LIDAR facet.  Additionally, average spectra 

taken a region of interest (ROI), such as a rooftop, could be utilized as the material for a facet or 

grouping of facets.  Of course, initial registration of the spectral data to the LIDAR data or 

geometric model would be necessary.  By incorporating material identification from the HS data 

in concert with object identification from the LIDAR data (Figure 6-17) it would be possible to 

automatically perform some of these associations. 

6.2.4 Imagery Direct - Developing Multiview Imagery models in DIRSIG 

In Section 4.3.2, we examined techniques to recover 3D information solely from multiview 

imagery of a site.  These techniques are essential for our ‘model centric’ approach to relating 

data, when an analyst only has access to 2D imagery.  Since LIDAR data collections are still fairly 
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uncommon, due in no small part to the cost of current collection systems, the multiview 

imagery approach to geometric modeling may be the only avenue for deriving 3D 

characteristics of a site. 

Although the techniques for depth recovery developed here can provide a relatively sparse 

reconstruction of a site compared to the dense reconstruction of LIDAR data, there is great 

promise in the ability of multiview imagery to provide high quality models using advanced 

reconstruction techniques (Pollefeys, et al. 2004).  In order to accomplish this feat, a pixel-to-

pixel mapping of the image overlap areas are required (Section 4.3.3.1).  Although this is 

challenging to accomplish, due to the effects of occlusion and noise, a ‘model-centric’ archival 

of the bundled images may be necessary.  In this scenario, an iterative model generation 

process could be utilized to self-rectify the images in order to help mitigate the effects of 

parallax and to help relate the images properly within a 3D construct.   

An example of the relative quality of 3D site models that can be delivered via LIDAR DPCs, 

Multiview SPCs, and traditional Digital Elevation Maps (DEMs) is provided in Figure 6-18. 

 
Figure 6-18  The relative quality of terrain information as derived from LIDAR, Multiview Imagery, and RADAR respectively. 

Comparison of  Modeled Terrain Quality 
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Even the casual observer can see that Multiview Imagery can be utilized to provide terrain 

surface models that are much better than commonly available DEMs (~30m postings) and not 

much worse than LIDAR derived terrain, even with the ‘first generation’ sparse point clouds 

generated automatically using the techniques of Chapter 4.  Additionally, even though the 

building structures may appear crude when compared to the Hybrid or LIDAR models of the 

previous sections, they are geospatially accurate enough to help place handmade models 

correctly.  Finally, there is also great potential in the ability to use these Surface Elevation Maps 

(SEMs) to orthorectify imagery to a much higher accuracy than is now possible with DEMs.  

Although not covered here, the registration benefit of post rectified SEM imagery, in-order to 

mitigate 3D scene-to-sensor effects and estimate shadows, is an area the author recommends 

for high value future research. 

 
Figure 6-19  The ability to use Multiview Imagery derived Surface Elevation Maps to orthorectify an image is shown above. 

Multiview SEM Orthorectification of Imagery 
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6.3 Simulate – Physically (DIRSIG) 

As mentioned earlier in this chapter, DIRSIG is the physics based simulator that will be utilized 

for capturing the 3D influences of the scene-to-sensor viewing geometry as well as estimating 

the multimodal appearance of the remotely sensed imagery.  This software program has been 

developed over the last 20+ years by the dedicated staff of the Digital Imagery and Remote 

Sensing (DIRS) group, within the Center for Imaging Science, at the Rochester Institute of 

Technology.   

Due to this groups steadfast research into understanding the physical underpinnings of Imaging 

Science and hard work by staff and students, DIRSIG’s capabilities have steadily improved over 

the years and it is now considered a national asset by many in the field, including both the 

commercial and government sponsors.  This is due in no small part to its unique ability to 

simulate physically accurate images from a variety of imagery sensors.   

The following is an extract from the DIRSIG user’s manual (Digital Imaging and Remote Sensing 

Laboratory 2006): 

“The DIRSIG model is a complex synthetic image generation application which 

produces simulated imagery in the visible through thermal infrared regions. The 

model is designed to produce broad-band, multi-spectral and hyper-spectral 

imagery through the integration of a suite of first principles based radiation 

propagation models including the Air Force’s MODerate resolution atmospheric 

TRANsmission (MODTRAN) program. 

First principles based approaches imply that fundamental physics, chemistry and 

mathematical theories are used to predict higher level phenomenologies. For 

example, the interaction between light and matter can be described using the 

work of Fresnel and others. These theories can be used to predict whether a 

photon with a certain wavelength will be absorbed or reflected by a material 
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with a specific chemical composition. At a much higher level, the same 

interaction might be summarized as the "color" of the material. 

Another example of a first principles approach would include the prediction of a 

surface temperature using fundamental properties including thermal 

conductivity, density, radiational absorption factors, radiational and convective 

loadings, etc. These parameters can be used with a set of fundamental governing 

equations that describe the flow of energy in and out of the surface to predict the 

steady-state temperature.”  

As mentioned earlier the DIRSIG model produces imagery using a predictive engine that is built 

around this collection of first principles based models and when properly implemented, can 

accurately predict physical imagery phenomena.  This is the rationale for using DIRSIG as a 

multi-modal Rosetta Stone for image registration.   A top-level flow chart of DIRSIG’s simulation 

process is shown below (Figure 6-20).  Additional information on DIRSIG, including the digital 

version of the user’s manual is available at:  http://dirsig.cis.rit.edu/ . 

http://dirsig.cis.rit.edu/
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6.3.1 Simulating WASP Imagery with DIRSIG 

In order to compare multimodal imagery from the Wildfire Advanced Sensing Program (WASP) 

to simulated DIRSIG imagery, it is essential to model the environment, the imaging system, and 

the acquisition conditions properly.  This is accomplished in DIRSIG through the use of a 

hierarchical file structure that that links different modules of the physical simulation to account 

for various elements of the Image Chain Approach (Schott 2007) analysis.  A detailed example 

of how the DIRSIG files were arranged for the following simulations is captured in Appendix F 

(Chapter 16).  

Figure 6-20  The physics based simulation process that DIRSIG utilizes for synthetic image generation (Digital Imaging and 
Remote Sensing Laboratory 2006). 
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6.3.2 Simulating Materials and their associated Emissivity Curves in DIRSIG 

An important consideration when simulating a scene within DIRSIG is in the application of 

material emissivity curves for proper physical simulation across multiple modalities.  Often, it 

will be necessary to pull material emissivity curves from existing spectral libraries when field 

data from a spectrometer or hyperspectral data from an imaging sensor is not available.  When 

a model facet/texture is known to be composed of a specific material, such as a gravel-covered 

rooftop, a surrogate spectra from an existing library can often be utilized to physically describe 

that object.   

However, depending on the number of curves available in the emissivity file the associated 

scene texture may or may not be visually noticeable.  This is because within a given material, 

the variability in texture digital count value (0-255) will be associated to specific curves in the 

emissivity file based on the Z-Score of the texture (Scanlan 2003).  This concept is illustrated 

below in Figure 6-21. 
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So, if only one emissivity curve existed within an emissivity file to describe a material for use 

within DIRSIG, that material would appear to be a solid color with no texture variation 

appearing in that region of the scene.  For the gravel rooftop example, a single “dark” emissivity 

curve would appear in the DIRSIG simulation as a solid dark gray color with no texture as seen 

below (Figure 6-22). 

Figure 6-21  The general process involved when associating emissivity curves to intensity values from an image texture map.  
Here a region of interest was extract from the image and compared to the 44 curve emissivity plot (bottom) and the DC 

Histogram (right).  Ideally, a simulation could link every DC value to a specific emissivity curve (i.e. 256 curves needed here). 
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 Since the number of curves utilized to represent a given material can have dramatic results in 

how well a DIRSIG simulation represent reality, it will often be necessary to take an existing 

material file and expand the number of emissivity curves.  In essence, this takes the collected 

material spectra, taken under various viewing conditions, and increases the intensity diversity 

while maintaining the existing spectral character.  In this way, it is possible to correlate an 

Figure 6-22  When only one emissivity curve exists in the material file, all of the image texture intensity values will be 
associated with only the singular curve.  This will result in no texture information “coming through” in the DIRSIG simulation. 
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individual DC intensity value to a specific emissivity curve, if at least 256 curves are generated. 

For additional information on the emissivity expansion utility provided with DIRSIG, please 

reference the associated documentation (Digital Imaging and Remote Sensing Laboratory 

2006).  A comparison of the results from an emissivity file (gray gravel) that was expanded from 

44 curves to 400 curves is provided below in Figure 6-23. 

 

Finally, a comparison of the DIRSIG results when running the same simulation, but using a 

singular emissivity curve versus one with 400 curves for the gravel roof material is shown in 

Figure 6-24. 

Figure 6-23  The resulting emissivity expansion of the original gravel roof material from 44 curves to 400. 
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6.3.3 Example DIRSIG Simulations of the Hybrid Model 

The following figures show the resulting DIRSIG simulations from the hybrid modeling process.  

Recall that this process included a hi-fidelity image derived model (Pictometry 2010), LIDAR 

Derived terrain and trees, and airborne film based CITIPIX texture maps.  First, in Figure 6-25, an 

oblique view of the hybrid model shows the detail on the sides of buildings at the VanLare 

Water Processing plant and although the tree creation process described earlier works well 

from near-NADIR view angles their horizontal facets reduce in size due to the cosine viewing 

effect. 

Figure 6-24  The simulated DIRSIG images above illustrate the need for material files with numerous emissivity curves to 
allow proper reconstruction of image texture within a scene. 
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In Figure 6-26, the Southern and Northern sections are “zoomed in” for a closer look at the 

detail of the piping, building textures, and surrounding foliage.  

In the figure below (Figure 6-27), the near-NADIR DIRSIG simulation is meant to replicate the 

image collected by the WASP imaging system to mitigate the 3D influence of the terrain.   

Figure 6-26  In the figure above, the Southern (left) and Northern (right) sections of the VanLare plant are again visible at an 
oblique angle, but, now in slightly greater detail.   

Oblique View of the Southern and Northern sections of the VanLare plant.  

Figure 6-25  The Hybrid DIRSIG model of the VanLare Water Processing Plant shown at an oblique view.  From this vantage it 
is possible to see the detail on the sides of buildings, but, the tree facets are reduced in size due to the cosine viewing effect. 

Oblique View of the VanLare using the Hybrid DIRSIG model 
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By mimicking the same sensor-to-scene viewing geometries, it is possible to remove most of 

the 3D parallax effects that normally hinder automated image registration.  The Northern 

region of the plant can be seen in greater detail in Figure 6-28 below. 

 

The Northern VanLare plant imaged from WASP and simulated by DIRSIG. 

Figure 6-28  The Northern portion of the VanLare Plant around the Smokestack and storage vats, imaged by WASP (left) and 
simulated by DIRSIG (right). 

Figure 6-27  On the left is a contrast enhanced image of the VanLare plant taken by the WASP imaging system, while on the 
right, is similarly enhanced DIRSIG simulation of the same site using the WASP view and the Hybrid model of the site. 

Near-NADIR View of the VanLare plant taken from WASP and simulated by DIRSIG. 
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Similarly, the Southern section of the plant is shown in greater detail below in Figure 6-29. 

 

Finally, an example of a SWIR image as taken by the WASP sensor and then compared to the 

simulated DIRSIG view in the appropriate spectral wavelength (Figure 6-30).  Once the model is 

accurately generated, both geometrically and physically, it is a straightforward activity to 

change the sensor view or imaging characteristics to simulate the site from any angle across a 

diverse range of the imaging spectrum.   

The Southern VanLare plant imaged from WASP and simulated by DIRSIG. 

Figure 6-29  The Southern portion of the VanLare Plant around the administration buildings, imaged by WASP (left) and 
simulated by DIRSIG (right). 



6-35 
 

 

Note how the surrogate vinyl material used to represent the round storage tanks (upper center 

of each image) did not capture the inherent transition of the real material into the SWIR region 

of the spectrum.  Since the standard vinyl material in the DIRSIG emissivity file database only 

has one curve, the author attempted to merge this data with an actual collection ASD 

spectrometer collection and then perform an emissivity expansion with only limited results.  To 

capture the real physical essence of this material (for a better SWIR representation), several 

additional field collects would be required without blending in the “stock” database emissivity 

curve. 

6.3.4 Example DIRSIG Simulations of the LIDAR Direct Model 

The following image illustrates the resulting product of the LIDAR Direct approach to scene 

modeling and simulation using DIRSIG. 

The VanLare Plant:  Imaged from WASP in the SWIR and simulated by DIRSIG. 

Figure 6-30  On the left is an image of the VanLare plant taken by the WASP SWIR sensor, while on the right, is a DIRSIG 
simulation of the site, in the same spectral region, using the WASP view and the Hybrid model of the site. 
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A grayscale version of a visible spectrum LIDAR Direct DIRSIG simulation compared to a 

grayscale WASP VNIR image is shown below in Figure 6-32.  Since automated image registration 

still occurs predominantly in the grayscale regime, it is instructive to view the similarities 

between the simulated and real images as shown. 

 

A) DIRSIG LIDAR Direct Simulation   B) WASP VNIR Image of VanLare 

Figure 6-32  The LIDAR Direct DIRSIG simulation’s similarity to real imagery is readily apparent.  The ability to relate LIDAR 
derived models, textured with archival imagery, to newly acquired images is key to the model centric approach. 

Figure 6-31 The LIDAR Direct process involves utilizing Imagery Textures and Materials Maps (A), with user assisted 
identification of dominant site materials (B) for ingestions into DIRSIG to physically simulate the site (C). 

A) DIRSIG Terrain Map B) Site Material Association C) DIRSIG Simulation 
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When this same LIDAR Direct model is utilized in a DIRSIG simulation of the SWIR region, the 

similarity to real sensed data is evident when compared to an adjacent WASP SWIR image 

(Figure 6-33).  Of additional interest is a visual comparison of the VNIR simulations (Figure 6-32) 

to the SWIR simulations (Figure 6-33), where the contrast reversal of the open water at the 

VanLare site is again evident.  

 

6.4 Relate - Mathematically 

Once a model has been accurately generated, attributed, and physically simulated, it can be 

utilized as a “Rosetta Stone” to mathematically relate disparate multimodal datasets at 

arbitrary viewing geometries.  It is hoped that the modeled scene is similar enough in both 

structural and spectral character to automatically relate via correspondence generation and 

matching techniques similar to the ones covered in Chapters 2 & 3.  Since the DIRSIG modeled 

scene can be referenced to the world coordinate system, any datasets that are related in this 

manner can then be related to the global grid.  The figure below (Figure 6-34) depicts how 

Figure 6-33  DIRSIG simulated image in the SWIR region (A) compared to an actual image from the WASP sensor acquired in 
the same  SWIR region and from a similar camera position and orientation. 

A) DIRSIG SWIR Simulation   B) WASP SWIR Image of VanLare 
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image bundles created from “in-band” or “near-band” data, utilizing the techniques covered in 

Chapter 4, could then be related together utilizing this DIRSIG enabled technique, even if they 

are derived from disparate modalities. 

 

It is important to note that only a relatively small portion of the scene may require DIRSIG 

modeling, since only one image needs to be related to the synthetic scene to enable 

(potentially large) bundles of images to be related.  Also, once accomplished, these images 

could form an “in-band” baseline texture for future registration, since the modeled scene can 

be used as the archive for registered images.  This would allow for registration utilizing any 

Figure 6-34  The basic process for relating multimodal image bundles utilizing DIRSIG.  Here the model show various 
“colored” cubes that represent the 3D physical model which can be projected into an image of various modalities. 
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number of 3D modeling software or GIS systems (i.e. AANEE, MATLAB, Blender, GE, etc.), since 

they would only be utilized to account for the 3D sensor-to-scene viewing of effects and not the 

more challenging multi-modal appearance issues.  

In the following example cases, the utility of physics based modeling to relate imagery datasets 

from the VNIR and SWIR modalities will be explored.  First the hi-fidelity Hybrid DIRSIG model 

(Section 6.2.2) will be used to accomplish this feat and then the lower-fidelity LIDAR Direct 

DIRSIG model (Section 6.2.3) will be shown to have similar capabilities, albeit for the more 

restrictive NADIR imaging situations. 

6.4.1 Error Analysis 

As with most mathematical relationships, it is often of great interest to analyze the resulting 

model and understand how well the model fits the data.  This is especially true in the area of 

image registration where error must often fall within a prescribed value for consideration as a 

“good result”.  In this field, subpixel registration accuracy is a common “gold standard” for 

results even though this criterion is often misunderstood and misapplied.  The reason for this is 

that when a 2D mathematical model is used to relate images that are projections of 3D scenes, 

the best results can only approximate the true relationship.  However, since this metric is in 

such prevalent use, it is necessary to understand how it is calculated and how it should be 

applied to the mathematical registration model of interest.  Here we will be primarily 

concerned with conformal relationships, since most of the shear and projection effects have 

been removed through sensor modeling.  Generally speaking, transformations should be 
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accomplished with the simplest mathematical relationship possible that is supported by the 

data. 

6.4.1.1 RMS Distance Error Calculation – Quantitative Error Analysis 

The Root Mean Square Distance Error (RMSDE) metric, as discussed briefly in Section 2.5.1, 

describes the deviation of selected correspondence feature locations from a 2D mathematical 

model, as measured in pixel distance.  The matching correspondences are used to develop this 

2D mathematical relationship and then each matched feature is tested for consistency with the 

model.  In this metric (Eq. (102)), accuracy is judged based on the RMS Distance of the match 

location in the working image versus the location predicted by the model (which is derived from 

the total set of matched points).  The average RMSDE of all the matches is used as the singular 

metric to define “goodness” of registration accuracy and is defined in Equation (103).  

RMSDE Metric 
For 1 

Matched Pair 
          

                     
 
                     

 

 
 (102) 

 

RMSDE Metric 
For the Total 

Image 

            
         

 

 

 

 
(103) 

 

Although 2D mathematical solutions are only approximations to the 3D registration problem, 

there is one important exception to this rule that will be exploited for our analysis.  This 

exception is for situations when both images have been acquired from precisely the same 

position and orientation.  In this case, the 3D projections of the scene onto the 2D focal plane 
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are the same and now the 3D problem can be solved accurately with a 2D solution.  Although in 

many “real-world” situations this is an unattainable requirement, the author’s model-centric 

approach to registration can take unique advantage of this principle.  In other words, it is 

perfectly acceptable and probably advisable, to utilize a 2D mathematical model to relate the 

simulated image (of a projected model) to a real image since the 3D influences can been 

properly accounted for and recreated. 

Normally the RMSDE metric can be used as an approximate measure of registration accuracy, 

but, it is only truly accurate for image registration in the following three situations:  

A) Planar relationship exists in correspondence area (i.e. parking lots, floors, or sides of 

buildings), here the mathematical model may only provide a good localized relationship 

B) Similar acquisition parameters due to small sensor movement or repeated views from a 

stable platform (i.e. video frames or satellite images from same location/orientation) 

C) Simulated acquisition similarity using a modeled scene (i.e. DIRSIG Model-Centric approach) 

6.4.1.2 The Flicker Test – Qualitative Error Analysis 

The “Flicker Test”, where the base image and registered working image are repeatedly overlaid 

visually can often give the user a better understanding of how well a registration has 

performed, but, this approach is often unquantifiable except through extensive human testing.  

However, when done properly (under proper Human Visual System (HVS) testing conditions), 

minute changes can be perceived.  When using the National Imagery Interpretability Rating 

Scale (NIIRS), as little as 1/10 of a NIIRS can be a detected using the Flicker Test (Fiete and 

Tantalo 2001).   Unfortunately, although these small visual errors in registration can be 
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perceived by most people, it is primarily qualitative and therefore of less value under 

automated situations except as a visual “quality control” measure. 

6.4.2 Image Registration to the Hybrid DIRSIG Model 

In Section 6.2.2 we developed a hi-fidelity DIRSIG model of the VanLare site in order to allow 

multimodal registration of imagery to that physical model from any vantage point.  Below is an 

example using this DIRSIG model, which was textured using CITIPIX imagery in the visible 

region, to automatically register WASP SWIR imagery (Figure 6-35). 

The registration and error analysis process begins with utilizing the SIFT algorithm to isolate 

scale invariant features within both images and correlating them as initial matches.  In the 

figures below, SIFT identified 16 possible matches (Figure 6-35a).  It is important to remember 

that this initial match list only represents similarity in image gradient features, not 

mathematical model consistency.   

Next we utilize RANSAC in conjunction the Fundamental Matrix to ensure that epipolar 

constraints are maintained between the image pair; this results in the culling of 4 initial 

matches and we are left with 12 matches (Figure 6-35b).  At this point the registration results 

already show a subpixel relationship, with the RMSDE = 0.87 [pix] as shown in Table 5. 

Occasionally, it is possible to get an errant match that just happens to fall along its related 

epipolar line.  For this reason, the author often finalizes the outlier removal process by filtering 

with RANSAC in conjunctions with the 2D Homography (Figure 6-35c).  This can be robustly 

implemented in this situation since the 3D scene influences have been removed through 

simulation.  
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Although subpixel registration accuracy was accomplished after these outlier removal steps, it 

may be desirable to remove a few extra matches to improve the accuracy even further.  The 

refinement process used to accomplish this task is handled via RMSDE error analysis (Walli, 

Multisensor Image Registration utilizing the LoG Filter and FWT 2003).  This process is 

accomplished by iteratively culling the match that has the largest RMSDE and then re-

computing the new model and related match errors.  This process terminates when a desired 

total RMSDE is achieved for the remaining matches or when there are too few matches to 

compute the chosen mathematical model.  In Figure 6-35d, only one additional match was 

culled to improve the accuracy of the model (Table 6) and to a limited degree, the shape of the 

cumulative RMSDE distribution curve (Figure 6-36).  The resulting Homography (Conformal 2D 

Transformation) can be viewed below. 

    
                 

                    
       

  

Although the trained eye can see that this result demonstrates little influences of rotation and 

scale, it is possible to compute these values precisely by using Eqns. (27)-(30) as seen below: 

                            

                           

                                     [pix] 

These results are compelling, because they imply that only the effects of translation need to be 

removed to adequately relate the two images.  This is important because it provides evidence 
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that the 3D influences have been accurately mitigated through the 3D modeling approach to 

registration, by properly modeling the sensor’s viewing pose.  Also, of great practical 

importance, is the fact that a simple 2D translation can now be performed to properly archive 

the image as a projected texture onto the 3D scene.  This is important, because in 3D site 

modeling and archival scenarios (such as the AANEE model, Section 1.3) the projected image 

corrections can be easily incorporated as a simple Latitude and Longitude shift, instead of a full 

3D model pose correction (Section 3.2.3). 

Finally, these results can be utilized to infer that the number of matching correspondences is 

sufficient for the transformation that is required.  With traditional image registration tasks, 

where the 3D influences have not been mitigated, dozens of matches would normally be 

desired to increase the chances of resolving the most common 2D planar relationship.  This is 

not required here since we have clearly addressed the 3D effects and are now only concerned 

with (at most) a 2D Conformal Transformation Homography.  This requires a solution for only 5 

parameters (        ,       ,       ,             , and             ), which can be 

obtain with only three good match correspondences, since we know the       locations from 

each control point.  In fact, our results show that only the translation parameters are of great 

consequence and so only one good correspondence is necessary to correct the registered 

image for final archival.  This means that the dozen good correspondences that were 

automatically recovered are more than sufficient to solve for this required correction. 
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WASP SWIR Image  DIRSIG SWIR Simulation 

 

RMSDE =  
40.30 [pix] 

RMSDE =  
0.87 [pix] 

RMSDE =  
0.64 [pix] 

RMSDE =  
58.00 [pix] 

Figure 6-35  The images above show the initial WASP SWIR image paired with its DIRSIG simulation and the initial features 
matched using SIFT (A), the outliers removed using RANSAC with the F-Matrix (B), which were supported by using RANSAC 

with the M-Matrix (C),  and finally where the largest contributing error match was removed using RMSDE analysis.  
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Sub-Pixel Accuracy achieved after removal of Match Outliers 

Match # X-Base Y-Base X-Work Y-Work X-Pred Y-Pred X-Error Y-Error RMSDE 

1 565.70 104.29 560.45 141.10 559.21 140.25 -1.24 -0.85 1.06 

2 254.59 403.65 246.40 439.66 247.38 439.76 0.98 0.10 0.69 

3 391.71 297.45 384.12 333.45 384.79 333.53 0.67 0.08 0.48 

4 266.00 399.29 257.07 437.29 258.81 435.40 1.74 -1.89 1.81 

5 335.02 341.04 327.12 376.66 327.98 377.13 0.86 0.47 0.69 

6 371.85 323.97 366.32 359.45 364.88 360.07 -1.44 0.62 1.11 

7 538.25 275.90 531.55 311.60 531.57 312.08 0.02 0.48 0.34 

8 209.28 228.13 204.59 265.58 202.16 263.94 -2.43 -1.64 2.07 

9 614.94 186.07 608.12 221.94 608.45 222.19 0.33 0.25 0.29 

10 416.04 367.33 408.42 402.84 409.09 403.53 0.67 0.69 0.68 

11 603.39 198.47 597.04 233.89 596.87 234.60 -0.17 0.71 0.52 

12 478.95 310.96 472.14 346.17 472.15 347.14 0.01 0.97 0.69 

Mathematical Model = 2D Conformal     Total RMSDE [pix]  =  0.87 
Table 5 - The table above provides a breakdown of how the RMSDE Metric is computed for the previous example.  Here the 

largest RMSDE contributor can be easily isolated and is highlighted in yellow. 

 

Refined Accuracy after removal of Largest Error Contributor 

Match # X-Base Y-Base X-Work Y-Work X-Pred Y-Pred X-Error Y-Error RMSDE 

1 565.70 104.29 560.45 141.10 559.48 139.72 -0.97 -1.38 1.19 

2 254.59 403.65 246.40 439.66 246.58 439.74 0.18 0.08 0.14 

3 391.71 297.45 384.12 333.45 384.44 333.35 0.32 -0.10 0.24 

4 266.00 399.29 257.07 437.29 258.04 435.38 0.97 -1.91 1.51 

5 335.02 341.04 327.12 376.66 327.45 377.02 0.33 0.36 0.34 

6 371.85 323.97 366.32 359.45 364.46 359.95 -1.86 0.50 1.36 

7 538.25 275.90 531.55 311.60 531.61 311.98 0.06 0.38 0.27 

8 614.94 186.07 608.12 221.94 608.78 221.92 0.66 -0.02 0.46 

9 416.04 367.33 408.42 402.84 408.75 403.56 0.33 0.72 0.56 

10 603.39 198.47 597.04 233.89 597.16 234.35 0.12 0.46 0.34 

11 478.95 310.96 472.14 346.17 472.01 347.07 -0.13 0.90 0.65 

Mathematical Model = 2D Conformal     Total RMSDE [pix]  =  0.64 
Table 6 - By analyzing which matches contribute most to the RMSDE calculation it is often possible to iteratively cull the 

greatest error contributor; then recomputed the mathematical relationship and error to provide better registration results. 
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In this example, the 12 good matches (with total RMSDE below 1 [pix]) were automatically 

derived and then utilized to transform the DIRSIG simulated image into the same coordinate 

system as the WASP image.  The results of this operation are visible below (Figure 6-37).  In 

order to accurately archive these results, it would be necessary to reorient the DIRSIG model 

and then projectively texture the model with the WASP image (Section 6.4.4).   

 

WASP SWIR Image   Transformed DIRSIG SWIR Simulation 

 

Figure 6-37  The results of the transformed DIRSIG simulated image (right), when compared to the WASP SWIR image (left). 

Figure 6-36  In the left plot, the initial RMSDE is plotted  w.r.t. the number of good matches.  After the largest error 
contributor was removed, the data was used to create a new model with error distributed slightly more linearly. 
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This example demonstrates the power of physics based modeling, using DIRSIG, to account for 

the multimodal appearance differences between visible and infrared images of the same scene.  

Specifically, this approach was able to account for the multimodal, pose, temporal, and 

platform differences in the WASP and the CITIPIX imagery (used within DIRSIG for scene 

texture). 

6.4.3 Image Registration to the LIDAR Direct DIRSIG Model 

Similar to the process used above, we will now explore the utility of using the LIDAR Direct 

DIRSIG Model of the VanLare site (Section 6.2.3) to relate real multimodal imagery.  As 

previously mentioned, this method allows an efficient modeling and attribution process within 

DIRSIG (hours vs. weeks) for users that have access to LIDAR or DPC multi-view data of a site of 

interest.  The tradeoff for the inherent ease of modeling is in its more restrictive application to 

near-NADIR imaging scenarios.  This is due to the lack of detail (texture and material 

attribution) on the sides of building models.  However, with accurate sensor IMU/GPS 

knowledge this limitation could be addressed via projective texturing of a base image set onto 

the LIDAR data from various vantage points (i.e. using the Pictometry collection CONOPS). 
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An example of the LIDAR Direct DIRSIG model of the VanLare site compared to a WASP SWIR 

image of the same is shown in Figure 6-38.  The utility for near-NADIR multimodal registration 

using the LIDAR Direct DIRSIG model as a multimodal “Rosetta Stone” is shown below (Figure 

6-39).  Here the registration process is visualized in steps that exemplify the process of 

extracting invariant features, relating these features, removing match outliers, and finally 

transforming the working image using the derived mathematical model from the good matches.  

WASP SWIR Image   LIDAR Direct DIRSIG SWIR Simulation 

 

Figure 6-38  Here a WASP SWIR image of VanLare can be compared to the LIDAR Direct DIRSIG Simulation of the site. 
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WASP SWIR Image   DIRSIG LIDAR Direct SWIR Image 

 

Figure 6-39  The Sequence above illustrates the features extracted using SIFT (A), outlier removal using RANSAC (B), and the 
final transformation using the resulting good matches (C), which resulted in sub-pixel registration accuracy. 
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The spreadsheet below (Table 7), illustrates how the RMSDE Metric is computed for a SWIR 

WASP Image which was registered to the LIDAR Direct DIRSIG Simulation of the same scene.  

These results were from the registration viewed in Figure 6-39. 

Match # X-Base Y-Base X-Work Y-Work X-Pred Y-Pred X-Error Y-Error RMSDE 

1 262.13 381.27 253.35 418.3 255.6502 416.8895 2.3002 -1.4105 1.9079 

2 363.47 299.24 356.12 335.14 357.3235 335.0507 1.2035 -0.0893 0.8534 

3 565.7 104.29 559.52 140.62 560.3047 140.4491 0.7847 -0.1709 0.5678 

4 254.59 403.65 246.46 439.46 248.0406 439.2725 1.5806 -0.1875 1.1255 

5 383.16 329.46 376.98 364.81 376.9514 365.357 -0.0286 0.547 0.3873 

6 179.12 172.9 174.81 207.11 173.1246 208.0695 -1.6854 0.9595 1.3713 

7 279.9 410.55 274.37 446.09 273.3586 446.2495 -1.0114 0.1595 0.724 

8 266 399.29 258.75 436.88 259.4748 434.9393 0.7248 -1.9407 1.4649 

9 309.75 362.54 302.9 397.9 303.3723 398.2704 0.4723 0.3704 0.4245 

10 346.27 344.62 340.92 379.72 339.9805 380.4317 -0.9395 0.7117 0.8335 

11 371.85 323.97 366.15 359.47 365.6445 359.8301 -0.5055 0.3601 0.4389 

12 279.37 410.31 274.37 446.09 272.8287 446.0078 -1.5413 -0.0822 1.0914 

13 346.07 316.45 340.22 351.97 339.8577 352.2312 -0.3623 0.2612 0.3158 

14 273.32 176.38 268.16 211.65 267.4153 211.8121 -0.7447 0.1621 0.5389 

15 524.63 111.85 518.87 147.37 519.1702 147.9043 0.3002 0.5343 0.4333 

16 141.99 264.79 136.25 300.14 135.7025 299.9552 -0.5475 -0.1848 0.4086 

Mathematical Model = 2D Conformal     Total RMSDE [pix]  =  0.805438 

Table 7 – This spreadsheet provides a breakdown of how the RMSDE Metric is computed for the LIDAR Direct example. 

6.4.4 Reorient the Model to Incorporate the Registration Results  

The resulting 2d Homographies from both DIRSIG simulations (Section 6.4.2 & 6.4.3) will now 

be used as exemplars to show how the resulting 2D transformation homography (H3x3) can be 

utilized to change the pose of the model for proper image texture alignment and archival.   

The homography resulting from the 12 good match points of the Hybrid DIRSIG model and the 

SWIR WASP image (Table 5) is shown below (note the slight difference to the Homography 

presented earlier due to the desire to utilize the unrefined ‘good matches’ in both cases): 
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As mentioned earlier, this transform contains virtually no rotation and shear (upper left 2x2 

sub-matrix) and very minor scale influences (the diagonal of the upper left sub-matrix).  This is 

to be expected, since great effort was placed in accurately modeling these influences in the 

DIRSIG model.  In fact, utilizing a simulation to remove these effects provides a great deal of 

power and flexibility in the automatic registration phase and justifies the modeling process. 

The homography resulting from the LIDAR-Direct DIRSIG model and the SWIR WASP image 

(Table 7), is shown below with very similar results: 

       
                
                     

   
  

                      

Again, the only transformation required is a shift of the image simulation (by applying the 

inverse homography).  This is then converted into meters and reinserted into DIRSIG or the 

archival software of choice for proper texturing of the image onto the model.  Although the 3D 

models were constructed using very different techniques, the resulting transformation to relate 

the WASP image is quite similar.  The overall RMS Error between the two translation results is: 
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6.5 Archive – Texturally (Map the Real Image to the Model) 

The final phase in the MSRA process is archiving the acquired image to the site model.  This is 

accomplished by recovering the new 3D pose of the model with respect to the image and 

projectively texturing the image onto the model. 

6.5.1 Model Pose from Matched Features 

It is possible to recover the model pose and position with respect to an image using the 

techniques covered in Sections 3.1 & 3.2.  However, in this situation we have image-to-image 

matches as our input, not image-to-model correspondences.  Fortunately, we have the 

associated 3D model that was used to create the simulated image from which the 

correspondences were derived.  This can allow correlation of the closest 3D point once a ray is 

cast from the correspondence to the camera center of the simulated image.  This concept can 

be visualized below in Figure 6-40.  

Additionally, it is possible to implement mathematical techniques that link the camera 

orientation parameters directly to the 2D Projective Homography (Seedahmed 2006), as 

discussed in Section 3.1.2.  This technique is especially applicable in this situation due to the 

legitimacy of the 2D RMSDE assurance of a good planar model fit to the final solution space.  

Using this technique, the image correspondences to the 2D projection of the model can directly 

provide the relative camera position and pose.  So by keeping the image as the origin, the final 

model position and pose is simply the inverse transform derived from this interim solution. 
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6.5.2   Projective Texture – Image to Model 

In order to archive the newly related imagery to the 3D model, it is necessary to project the 

model onto the image and extract the model vertices as “vertex texture” locations for mapping 

into the    plane.  This is accomplished in a similar, but opposite manner to the previous 

section.  Here a projection matrix is utilized to flatten a 3D model onto an image, to simulate a 

camera’s view of the scene.  Once this accomplished, the 2D projected model vertex locations 

can be utilized to directly associate the resulting image pixels as vertex texture locations.  This 

process can be visualized below in Figure 6-41. 

 

Figure 6-40  By ray tracing from the camera to the simulated image correspondence location it is possible to isolate the 3D 
model location of interest for use in pose estimation. 
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6.5.2.1 Creating UV Texture Maps for SPC Models 

The technique for relating SPC Models to images for creating UV Textures is relatively 

straightforward.  Here the initial correspondences between the base image and the periphery 

images will be utilized to generate the Vertex Texture (VT) locations for the final UV Mapping.  

Since all the matches occur with the base image, it is only necessary to take these image 

locations and relate them to the final 3D model vertices that are derived from the image 

matches.  This will take on the following format for the “.OBJ” model description: 

Figure 6-41  To obtain “vertex texture” locations for UV mapping a model to an image starts at the camera and then projects 
the 3D model onto a 2D image.  The projected model vertex locations on the image are the    texture locations. 
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Table 8  This table contains the related 3D model vertex and related image UV texture locations in the “.obj” format. 

OBJ ID Model X [m] Model Y [m] Model Z [m] 

V 290610.83 4790142.40 108.86 

V 290626.79 4790245.10 109.23 

V 290629.49 4790247.50 108.99 

V 290652.95 4790279.40 107.50 

V 290645.96 4790306.80 105.19 

  
  

  

OBJ ID Image x [pix] Image y [pix]   

VT 1209.39 2755.81   

VT 1560.34 2045.48   

VT 1585.40 2035.36   

VT 1827.59 1858.82   

VT 1839.19 1650.06   

 

In the “.OBJ” UV Texture format, the order is important; here the first vertex that is described 

with the letter “V” will be associated with the first vertex texture location described with the 

letter “VT”.  An extracted subset of five of the SPC model vertices (V), with their associated 

WASP image vertex texture locations (VT),  is provided above in Table 8. 

An example of how this works is shown in Figure 6-42, where the entire set of ~17 thousand 

correspondences, generated from the 5 images of the VanLare Processing Plant, were utilized in 

Chapter 4 to create a SPC Model of the terrain.  These model and image location points were 

then related to generate a precise UV Texture Map for the model using the base WASP image.  

A closer look at these results is also available for reference in Section 4.3.3.3 (Figure 4-23). 
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6.5.2.2 Creating UV Texture Maps for LIDAR and existing Models 

Unlike with the previous section, the scene model cannot normally be automatically associated 

with known image locations without having to first register the texture image with the 

projected model.  However, if the model was generated from LIDAR data then a few options for 

automated process are available.  First the model can utilize the inherent IR intensity return 

information to attribute the model.  Once this is accomplished this attributed model can be 

automatically registered to SWIR imagery and then UV Texture Mapped. 

Figure 6-42  This series of snapshots show how the matches from the base image can be directly related to the 3D SPC model 
and then used as the vertex texture locations with the base image to create the model’s UV Texture map.  
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In order to attribute a LIDAR derived scene model with the SWIR Intensity information from the 

pulsed return, the author has developed the following recipe which has been implemented in 

MATLAB: 
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This process will result in a 3D model that can be utilized within almost any modeling package 

due to the enduring popularity of the common “.OBJ” model standard.  An example of a SWIR 

attributed LIDAR model can be seen below in Figure 6-43. 

 

In Section 3.3, the ability to directly register a projected image of this model to an actual SWIR 

image (taken by the WASP sensor) was demonstrated.  After the image has been registered to 

the model, the linear and nonlinear techniques represented in Section 3.2 can be utilized to 

reorient the model to align properly with the viewing geometry captured by the image.  Once 

the accurate EOP have been recovered, they can be utilized with the Projection Matrix (P) to 

project the LIDAR model onto the SWIR image.  Once this is accomplished the process for UV 

texturing is very similar to the one presented in the last section for assigning model vertices to 

the image locations.   

 

Figure 6-43  This figure shows the IR Attributed LIDAR model from a NADIR (right) and an oblique (left) view. 

Direct Attribution of LIDAR Model facets using the IR Return 
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6.6 Results Summary – DIRSIG as a Multimodal Rosetta Stone 

In this chapter we have addressed the challenging area of multimodal 3D image registration 

through the use of physics based modeling.  In order to provide nimble access to a variety of 

different modalities (VNIR, Infrared, SAR, Polarimetric, and LIDAR) the author has utilized the 

CIS Digital Imagery and Remote Sensing Image Generation (DIRSIG) software to physically 

model the VanLare site (Digital Imaging and Remote Sensing Laboratory 2006).   

Automated multimodal registration of near-NADIR scenes has been demonstrated and oblique 

views should be possible when DIRSIG is used in concert with an accurate and properly oriented 

3D scene model.  The previous examples should provide sufficient evidence that using DIRSIG as 

a physical modeling based “Rosetta Stone” to relate multimodal imagery is not only feasible, 

but, advantageous due to its extensibility into various regions of the EMS.  The following is a 

quick breakdown of these accomplishments into an explicit form. 
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Figure 6-44  A summary of the DIRSIG Rosetta Stone strengths regarding multimodal image registration.  



 
 



7-1 
 

7 Relating Results in the World Coordinate System 

The fundamental research into relating and combining sparse and faceted structure has just 

begun.  With the recent commercial interest into SfM and LIDAR products, the ability to relate 

the resulting structural products with additional imagery modalities is ripe for research 

investment.  Additionally, the ability to associate remotely sensed images within a GIS 

environment, similar to Section 3.1.2, provides the ability to mathematically relate the entire 

multi-view ensembles of camera locations, images and sparse structure (Chapter 4) to a global 

scene.  The synergy of relating these multimodal image bundles and models, while having the 

ability to seamlessly interacting with them in a mathematical manner, will provide a venue for 

additional data fusion and derived product research. 

Mathematically relating the resulting image bundles to the World Coordinate System (WCS) is 

depicted in Figure 7-1, where the 3D structure of the bundle is designated   and the same 

structure located within the WCS is   .  Although the initial structure can be easily related w.r.t. 

the WCS once the proper transform parameters are recovered (Chapter 5) via a 3D 

Homography (    ), automatically correlating this structure to features within a GIS is 

nontrivial and is central to the basic research of this overall effort. 
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In order to relate localized image bundles, site models, and collected imagery to the real world, 

it is first necessary to introduce a few additional mathematical techniques that will help relate 

these products within the WCS.  Of key interest is incorporating the local 2D and 3D 

mathematical relationships within a more global 3D construct.  To enable this, the epipolar 

geometry techniques introduces in Chapters 2-4, such as the Fundamental Matrix and  2D 

Homography will be extended to the WCS, while new concepts such as an epipolar plane   

(Figure 7-1) will be introduced (Hartley and Zisserman 2004). It should be kept in mind that 

while   is inherently different than the homography   , which can be utilized to directly relate 

  and    via an epipolar plane  , 

Figure 7-1  Relating the cameras, images, and structure to a World Coordinate System augments the mathematical 
relationships developed in Chapter 4, by combining it with the 3D Conformal techniques of Chapter 0 within a GIS construct. 
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        (104) 

we can still relate   and    via the following relationship. 

           
(105) 

This allows both the homography and the epipolar line or the fundamental matrix to constrain 

correspondences as noted below. 

                (106) 

To help clarify the relationship between a planar homography    and the homography  , that 

we’ve been employing thus far, it is essential to realize that there is a perspectivity between the 

world plane point    , the first image plane          and the second image plane    

      .  The composition of these two perspectivities is a homography (Hartley and Zisserman 

2004) 

          
                 (107) 

Now we can relate,   to    via     ,   to   using     , and   to    with     , by using the 

following additional equations (Hartley and Zisserman 2004) 

Camera 
Projection 

Matrix 

     (108) 

3D 
Homography 

         
(109) 

Transformed 
Projection 

Matrix 

        
   (110) 

Local & 
Global Image 

Projection 

          
             (111) 
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It is interesting that the rather simple idea, of relating images to their corresponding world 

coordinates systems as expressed in Section 3.1.2, also offers the key to relating all of our 

desired modality and dimensionalities.  If we can relate these bundles to a GIS environment via 

a 2D Homography H3x3, then relating the GIS viewport image (as in Section 3.1.2) and the base 

image of the bundle has profound implications, because it will allow us to directly relate all of 

the datasets and have them globally referenced.  This framework will allow the combination of 

Sparse/Dense Point Clouds, image bundles, multimodal images, and LIDAR datasets to be 

referenced and registered in the world coordinate system for truly integrated analysis and 

exploitation. 

 
Figure 7-2  The relationships between the 2D/3D Homographies (H), Projection Matrix (P), and Colinearity Equations. 
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The graphic above depicts the various mathematical methods that can be utilized to relate 

various aspects of an image bundle.  The reader should note the inclusion of the Colinearity 

equations, which have been a cornerstone of Photogrammetric analysis for decades. 

Colinearity Eq 
x-component 
image proj. 

        
                             

                             
  (112) 

Colinearity Eq 
y-component 
image proj. 

        
                             

                             
  (113) 

Colinearity Eq 
X-component 
World proj. 

            
                           

                           
  (114) 

Colinearity Eq 
Y-component 
World proj. 

            
                           

                           
  (115) 

 

By careful inspection, the similarities can be seen between the Colinearity equations of 

Equations (112) and (113) and the Camera Projection Matrix (122); here the simplified form of 

the IOP matrix ( ) is utilized where      and         as in Chapter 11. 

Camera 
Projection 

Matrix 

            (116) 

Proj Matrix 
Sub-

Matrices 

   

      

     

   

  

         

         

         

  

      

      

      

  (117) 

    

    

    

   

  

         

         

         

  

      

      

      

  
(118) 

Projection 
Transform 

             

 
 
 
 

  (119) 
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(120) 

Collect 
Terms 

   

 
 
 
 
                                                                   

                                                                  

                              
 
 
 
 

 (121) 

Simplify to 
Collinearity 

Form 

      

 
 
 
   

  

  

 
  

 
 
 
 
                                 

                                

                              
 
 
 
 

 
(122) 

Except for the sign convention (induced by the camera’s distance,    from the focal plane), 

Equation (122) is equivalent to the Colinearity Equations (112) and (113) after division of the x/y 

components (rows 1 & 2) by the scaling component (row 3). 

 Although the Camera Projection Matrix has a compact form and is frequently utilized in 

computer vision to provide the 2D projected view of a 3D scene onto the focal plane, the “back-

projection” matrix has the ability to relate the image location to an X-Y position in 3D space, a 

given distance (Z) from the camera and is equivalent to the remaining two Colinearity 

Equations.  The proof of the matrix form of the back projection has been developed by the 

author as part of this dissertation proposal in Equations (123) through (132). 

Projection 
Matrix 

                     

 
 
 
 

     
 
 
 
   

  

  

  

  
(123) 

Rearrange 
 
 
 
 
   

  

  

  

      
  

     (124) 

RT=R-1  
 
 
 
   

  

  

  

     
  

 

 
 
 
  

(125) 
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Expand  
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Invert K  
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Multiply  
 
 
 
   

  

  

  

  

 
 
 
 
 
 
 
      

 
 

     

 
 

      

 
 

      

 
    

      

 
 

     

 
 

      

 
 

      

 
    

      

 
 

     

 
 

      

 
 

      

 
     

 
 
 
 
 
 

 (128) 

Divide 
Row1 by 

Row3 

            

                               
  

                               
  

  (129) 
 

Collinearity Eq 
X-component 
World proj. 

            
                           

                           
  (130) 

Divide Row2 
by Row3 

            

                               
  

                               
  

  (131) 

Collinearity Eq 
Y-component 
World proj. 

            
                           

                           
  (132) 

 

Thus, from Equation (124) it is easy to see that the following equation (133) represents the Back-

Projection Transform and Equation (134) is the Back-Projection Matrix ( ), where    is the non-

homogeneous form of the 3D location. 

Back 
Projection 
Transform 

       
  

       (133) 
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Back 
Projection 

Matrix 

      
  

       (134) 

 

This mathematical proof should illuminate the connection between the Colinearity Equations 

traditionally utilized by the photogrammetrist and the Projection Matrix now commonly 

implemented by the computer vision community to relate 2D to 3D structure.   

It should be of great concern to the modern Photogrammetry community to mathematically 

link their proven concepts and techniques to the growing field of computer vision, due to the 

incredible leveraging of ideas and techniques that can be accomplished.  The author has great 

appreciation for the tremendous work done in both these fields to enable much of what was 

accomplished in this research.
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8 Research Contributions 

The following sections are designed to identify the specific contributions made by the author 

with the research included in this thesis. 

8.1 Photogrammetric and Epipolar Geometry based Terrain Recovery 

The technique developed by the author for 3D terrain recovery from imagery combines modern 

methods for 2D image registration, utilizing epipolar geometry constraints and outlier removal, 

and combines them with traditional photogrammetric approaches for 3D structure recovery.  

This has the added benefit of providing results where the recovered structure is represented in 

a global UTM coordinate system as opposed to a locally derived, relative structure.  By utilizing 

the IOP and EOP of the camera, in this case WASP, the recovered image bundle and 3D point 

cloud can be utilized directly with modern GIS applications such as Google Earth to visualize the 

related imagery and 3D structure in the scene.  The bullets below highlight some of the main 

contributions in this area of research: 

 Indigenous CIS ability to derive structure from multiple images of a scene 

 Improvements for GIS Applications (i.e. Planar outlier removal) 

 Recovered structure and image bundle linked to WCS (global UTM) 

 Allows direct comparison of SBA-SPC results with LIDAR and GIS Models 

 Results can be used as a 3D Seed Model for DIRSIG Simulations similar to LIDAR 
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8.2 Constrained Conformal and Affine 3D Transformation 

The author has developed innovative techniques to recover both the 3D Conformal and Affine 

Transformation parameters.  Not only are these techniques essential for relating 3D rigid 

bodies, but, they help establish similar techniques for the recovery of constrained 

multidimensional transformation parameters through the use of SVD and QR decomposition.  

Although some of these techniques were borrowed from Multiple View Geometry (Hartley and 

Zisserman 2004), they have been reapplied here to address the purely 3D transformation 

problem (3D to 3D) that is not addressed in that text.  The bullets below highlight some of the 

main contributions in this area of research: 

 Development of a Constrained 3D Conformal and 3D Affine Transformation 

 Application of 2D Multi-View Geometry Techniques to 3D 
o SVD Decomposition to recover embedded matrices 
o QR Decomposition to recover embedded matrices 
o Nonlinear Weighting to diminish unwanted terms 

 

8.3 DIRSIG 3D Multimodal Registration  

Although DIRSIG has been utilized for several pieces of fundamental research in the areas of 

multimodal analysis (spectral, polarimetric, LIDAR, and SAR), the author does not know of any 

attempts to use it to relate these modalities for registration.  The key here is to accurately 

model the modalities, within a physics based environment, so that the synthetic results are 

similar enough to be utilized to automatically register with real data.  Not only does this provide 

a “Rosetta Stone” to relate the datasets, it is also a testament to the ability of DIRSIG to 

replicate realistic results in these modalities and catalyzes the possibility of parallel growth and 
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research development.  The bullets below highlight some of the main contributions in this area 

of research: 

 Development of Techniques to use DIRSIG as a multimodal ‘Rosetta Stone’ 

 Test the basic influences of a modeled scene for precise registration 
o Influences of the 3D structural model  
o Influences of the spectral attribution of model facets 

 Development of both Hybrid and LIDAR-Direct modeling approaches within DIRSIG 
 

8.4 Comprehensive Breadth – Multi-Dimensional/Modal Research 

The author has not seen the comprehensive breadth of research into 3D multimodal 

registration covered in any one source, especially as it is applied to the area of remote sensing 

from aerospace platforms.  Although several pieces of literature cover specific aspects of 3D 

multimodal registration, none of them cover the breadth of techniques and datasets that are 

covered here. 

 2D Image Registration in a 3D environment (H3x3) 

 2D Image Relationship to 3D Model (P3x4 and Colinearity Eqs.) 

 3D Structure to 3D Model Registration (H4x4) 

 Combined structural and physical models accurate enough to register with real imagery 

8.5 Suite of MATLAB Software Tools 

A comprehensive table and flowchart of the various tools and applications that were developed 

in the process of completing this research will be delivered with the code shortly after the 

dissertation defense.  However a few of the more important deliverables are highlighted below. 

 AeroSynth Sparse Point Cloud Software Toolkit 
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 2D Image Registration Toolkit that incorporates Epipolar Constraints 

 LIDAR Processing Toolkit for Reading, Extracting, and Facetizing a Dense Point Cloud 

 3D Pose Estimation from Imagery code 

 3D Rigid Body Registration code 
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9 Summary 

The research covered in this dissertation has focused on developing the essential mathematical 

foundation and techniques required to relate multimodal imagery data in 3D.  This research has 

resulted in new tools/algorithm development and has improved techniques to accurately and 

efficiently relate datasets of interest to the remote sensing community.   

By developing a ‘model centric’ approach to registration, it is possible to address both the 

influences of the 3D scene and the multimodal appearance of an image, which are currently the 

most challenging problems in the image registration arena.   Geometric modeling of a scene 

allows mitigation of parallax, occlusion, and shadowing effects, while physical modeling (via 

DIRSIG), makes it possible to account for changes in appearance due to multimodal sensing 

effects.  Utilized together, both the geometric and physical modeling of a scene allow automatic 

registration of images collected in different regions of the EMS, taken from various sensor-to-

scene geometries and lighting conditions.  This ‘model centric’ approach is a higher level of 

extrapolation than traditional ‘image content’ based approaches, in that it tries to maximize 

similarity of the image to the geometric/physical model, register the image to the projection of 

the model, and then use that mathematical relationship to correctly archive the image onto the 

model as a texture layer. 

It is the hope of the author, that by providing several case studies exemplifying various aspects 

of data registration, that this research will provide utility in several areas of interest to the 

Center for Imaging Science at RIT and the remote sensing community in general.  To augment 

this goal, the mathematical techniques researched here have being developed using MATLAB 
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code (The Mathworks, Inc. 2010) as modular functions for ease of application to a broad range 

of remote sensing registration problems and is included as a library of functions. 

Finally, it is the hope of the author that this research has adequately addressed the broad goal 

of relating various types of multimodal imagery data in 3D and has provided the committee 

with credible results for accomplishing this task.   
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Appendices 

11 APPENDIX A - Camera Calibration 

In order to fully understand the capabilities and limitations in relating multimodal datasets, it is 

important to mathematically model the sensor’s interaction with the world.  For most sensors, 

this involves some type of camera calibration to determine its external 3D location/orientation 

and internal characteristics.  Some of the basic techniques to accomplish this task are covered 

below. 

11.1  The Camera External Orientation Parameters (EOPs) 

This section provides the mathematical representation of a camera’s external orientation 

parameters and their application to a homogeneous coordinate system.  These parameters are 

characterized by the local or global location and orientation of the camera during the image 

acquisition.  The position vector is contained in a 3-vector such in Equation (135) below. 

3D Translation 
Vector       

  

  

  

  

 

(135) 

The 3D Rotation Matrix can be applied individually (136) as roll ( ), pitch ( ), and yaw/heading 

( ) or as a composite transform as shown below (137); the order of axes rotation is important.  

If we assign       and      , then the rotation matrices obtain the following form. 
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3D Rotation 
Matrix         

  
      
     
   

  

     
   

      
  

   
      
     

  

(136) 

3D Composite 
Rotation 

Transform 
   

                              
                              
           

 

  

         

         

         

  

(137) 

These vectors and matrices can then be placed into a homogeneous 3D Camera matrix for 

manipulation in graphical environments as seen in Equation (138). 

3D Camera 
Description 

      

           

           

           

    

  

(138) 

11.2 The Camera Interior Orientation Parameters (IOPs) 

This section provides a brief summary of the general internal calibration parameters for a basic 

pinhole camera, where  is the used to represent the internal calibration matrix. 

Internal 
Calibration 

Matrix 
   

      

     

   

  

(139) 

In this description,    and    represent the focal length of the camera in terms of pixel 

dimensions (  and   pixel pitch) and when combined as a ratio, give the sensor aspect ratio.  

Here,    is the skew and    and    represent the focal plane’s principle point.  When      

and the image principal points are located at the origin              , then 
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Internal 
Calibration 

Matrix 
   

    
    

   

  

(140) 

Since          and          where   is the number of pixels per unit length [m] 

(                 ) and   is the focal length [m] along the x and y axis, then this can be 

simplified to the following form when the pixels are square. 

Internal 
Calibration 

Matrix 
   

   
   
   

  
(141) 

Often, our linear estimate will have very small variations from a perfectly square pixel.  In this 

case, the overall scale factor can be constrained to square pixels by averaging the results of    

and     (Snavely, Seitz and Szeliski, Photo tourism: Exploring photo collections in 3D 2006), so 

that 

Internal 
Calibration 

Matrix   

 
 
 
 
 
     

 
  

 
     

 
 

    
 
 
 
 

 

(142) 

11.3 Radial Lens Distortion Parameters 

Often camera calibration discussions will be completely devoid of discussing the important 

topic of radial lens distortion.  While many of today’s low end cameras are affected by this 

aberration, it is many times not readily visible in the resulting images.  However, when trying to 

recover 3D structure from imagery by utilizing techniques like SBA (as in Chapter 4), correcting 

for radial lens distortion becomes fundamentally important.   

This is especially true when imaging in the longer wavelengths of the infrared spectrum, where 

calibration becomes critical to relate multimodal imagery, since the index of refraction of these 
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camera lenses are often more dense than traditional “visible” light cameras.  This is because the 

light rays are bent disproportionately from the image center and a radially increasing effect off 

the optical axis is manifested within the imagery as “barrel distortion”.   Once properly 

corrected, the image will have a noticeable concave exterior shape that is referred to as the 

“pin-cushioning” effect.   

Zhang notes that most camera distortion is dominated by radial effects and that the first radial 

distortion term is of most significance (Z. Zhang 2000).  Here we will utilize the first two radial 

distortion terms, where we solve for those terms using point correspondences.  Zhang’s concise 

treatment of radial distortion correction follows.  Let         represent the radially distorted 

(normalized) image coordinates and (x,y) represent the corrected locations.  Then the radial 

distortion can be expressed as 

Radial 
Distortion  

x-component 
 

           
          

     
 
  (143) 

Radial 
Distortion  

y-component 
 

           
          

     
 
  (144) 

where,    and    represent the two radial distortion coefficients that were previously 

mentioned.  Since the image principal point          is the origin of the radial distortion, the 

above equations can be modified to more accurately index the pixels from an undistorted 

      location.  The radially distorted coordinates        , can then be derived from the         

locations through the following relationships. 

Radial 
Distortion  

  -component 
 

                (145) 
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Radial 
Distortion  

  -component 
 

           (146) 

If we assume skew is insignificant         we can represent this new, centered coordinate 

system, in the        plane as 

Radial 
Distortion  

  -component 
 

                   
    

        
    

  
 
  (147) 

Radial 
Distortion  

  -component 
 

                   
    

        
    

  
 
  (148) 

Where          are the undistorted pixel locations of our known model points Xi, projected 

through a pinhole camera model.  In order to arrive at a linear estimate for the radial distortion 

coefficients, we can use the following DLT technique, which is explained in greater detail in the 

following Appendix (12). 

Linear  
Estimate 

 

 
 
 
 
 
      

      

 
      

       
 
 
 
 

 

 
 
 
 
 
 
 
           

    
            

    
  

 

          
    

            
    

  
 

  

          
    

            
    

  
 

          
    

            
    

  
 
 
 
 
 
 
 
 
 

 
  

  
  

(149) 

where the image correspondences can either be the related points in another corrected image, 

projected model points, or straight line estimated locations within the same image.  Here, we 

can again utilize the Pseudo-Inverse to provide a solution to our linear least squares estimate. 

Simplified 
Matrix 

Notation 
 

     (150) 



11-6 
 

Pseudo Inverse 
Solution to LLS 

 

       
  

    
(151) 

Finally, our Maximum Likelihood Estimate, utilizing a nonlinear optimization technique like LMA 

(Chapter 13-Appendix C), will be minimized against the following cost function that directly 

incorporates the two radial distortion coefficients. 

Nonlinear 
Minimization 

Equation 
 

                          
 

 

   

 
(152) 

where     is the radially distorted  and transformed model location   , and      is the 

corresponding location within the distorted image. 
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12 APPENDIX B - Linear Estimation  

Most of the techniques shown here, for relating imagery and models, require nonlinear 

methods to obtain an accurate solution.  However, it is often useful to seed these methods with 

a linear estimate that gets them within the capture range of the global minimum to help avoid 

getting “trapped” within local valleys of the solution space.   

12.1 The Projection Matrix Revisited 

Although the Pseudo-Inverse can be utilized to provide a Linear Least Squares solution for 

square matrices (25), it is not suitable for some applications.  In particular, the solutions for 

resectioning and SBA (Chapters 3 & 4), require a 3x4 matrix of coefficients.  Utilizing 

homogeneous coordinate systems to represent both the 2D image coordinates and the 3D 

model points result in the following equations (Hartley and Zisserman 2004). 

Projection 
Matrix 

Simplified 

       
(153) 

Projection 
Matrix 

Expanded 

 

       

       

       
   

            

            

            

  

       

       

       

       

  
(154) 

One alternative to solve this equation is to utilize the vector cross product, where   
  is the 

transposed 1st row of the projection matrix. 

Cross Product 
Solution 

         
(155) 
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Expanded 
       

 

 
 

    
      

   

  
        

   

    
        

   
 

 
 

   
(156) 

 

12.2 The Direct Linear Transform (DLT) 

The cross product can then be expressed in the following form (157); which has linearly 

dependent equations and can then be reduced due to (158).  This cross product approach has 

made the equations linear in the unknowns ( ) and for this reason is commonly called the 

Direct Linear Transform (DLT). 

DLT Derived 
from 

Cross Product  
 
 
 
     

     
 

  
       

 

     

     
   

 
 
 
 

 
   

   

   

    
(157) 

Reduced DLT 
 
    

     
 

  
       

 
  

   

   

   

    
(158) 

 

In expanded form (for clarity) this equation takes on the following form (Heikkila and Silven 

1997), 
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Expanded  
DLT 

 
 
 
 
 
 
 
 
                             

                             

            
                             

                             

            
                             

                              
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
   

   

   

   

   

   

   

   

   

   

   

    
 
 
 
 
 
 
 
 
 
 
 
 

   
(159) 

A popular and proven way to solve this equation and obtain the P coefficients is to use a robust 

technique like Singular Value Decomposition (SVD).  A solution of       , subject to 

      , is obtained from the singular vector of   corresponding to the smallest singular 

value (Hartley and Zisserman 2004).  This equates to the last column of V if the diagonal values 

of D are in descending order.  Below is a representation of the factorized form of A, where U 

and V are orthogonal matrices and D is a non-negative diagonal matrix. 

Once the   vector is solved for in this form, it should be reshaped back into a 3x4 matrix (as in 

Eq. (154)) for implementation as a camera projection matrix.  This will then allow projection of 

the model points onto the 2D space as viewed from a camera with the location and orientation 

embedded within the camera matrix P.  At this point the linear estimate, provided by the DLT 

algorithm, can be fed into a nonlinear solver (such as Levenberg-Marquardt) as the initial 

starting point for a more precise iterative solution (covered in the next Appendix, Chapter 13).   
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13 APPENDIX C - Nonlinear Estimation 

The Many of the problems presented in this research cannot be solved by linear methods alone.  

In these cases, it is necessary to apply non-linear estimation techniques to provide accurate 

solutions.  Such real world problems as the resectioning of images to models and the Bundle 

Adjustment (BA) of multiple images, to reconstruct 3D structure, both require nonlinear 

minimization solutions. In fact, for BA, these solutions often depend on calculating the 

interaction of several thousand variables simultaneously.  Due to its stability and speed of 

convergence, the Levenberg –Marquardt Algorithm (LMA) is currently the most popular 

approach to solve these challenging problems. 

When utilizing LMA, the computational challenge is to minimize a given cost function.  For 

applications such as resectioning and BA, this cost function is defined as the sum of the squared 

error between image points (actual data) and projected 3D model points (predicted values) 

dictated by the current set of parameter.  The mathematical construct and implementation of 

the LMA are covered below. 

13.1 The Levenberg-Marquardt Algorithm 

The LMA is a hybrid approach to nonlinear estimation that interpolates between the Gauss-

Newton algorithm (inverse Hessian) and the method of steepest (gradient) descent. When the 

current solution is far from the correct one, the algorithm behaves like a steepest descent 

method:  slow, but guaranteed to converge.  When the current solution is close to the correct 

solution, it becomes a Gauss-Newton method (Lourakis & Argyros 2004).  Additionally, the 
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practical reliability of the method—the ability to converge promptly from a wider range of 

initial guesses than other typical methods—is a factor in its continued popularity (Davis 1993). 

The following mathematical summary of the LMA is drafted primarily from Lourakis and Argyros 

(Lourakis & Argyros 2004) and Rhody (H. Rhody 2009).  Let   be a function that maps a vector 

of parameters   to an estimated measurement vector   . 

Parameter 
Vector 

             
(160) 

Functional 
Parameter 
Mapping 

        
(161) 

 

Now, we can define the difference between the actual measurement   and the estimate    as 

the residual,  . 

Residual Error          (162) 

Expanded                                  (163) 

Where, the Mean Squared Error (MSE) is, 

Mean Square 
Error      

 

 
          
 

   

 
 

 
     

 

 
    

(164) 

The basis of the LMA is a linear approximation to   in the neighborhood of  .  For a small 

change in parameter space      , a Taylor series expansion leads to the following 

approximation. 
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Taylor Series 
Approx. 

                 (165) 

where   is the Jacobian matrix of the function; which is the partial derivative of the function’s 

predictions with respect to each of its parameters. 

Jacobian  
  

  
 
   

   

 
(166) 

Jacobian 
Matrix 

  

 
 
 
 
 
 
 
 
 
      

   

      

   

      

   

      

   

 

      

   

      

   

   
      

   

      

   

 
  

 
   

    
 
 
 
 
 
 
 
 

 
(167) 

So that LMA can iterate toward a minimum, we must find a    that minimizes the distance 

between our data measurement   and the new estimate   , which is now        , where 

Minimize 
Distance 

                                      (168) 

Our desired   , is the solution to a linear least-squares problem, since, the minimum is attained 

when         is orthogonal to the column space of  .   

LLS Solution             (169) 

It follows that    can now be considered a solution to an augmented form of the “normal 

equations” since, 

LLS Solution           (170) 

One solution for    is through the use of the pseudo-inverse (Section 2.3), 



13-4 
 

Pseudo-Inverse 
Solution 

        
  

        
(171) 

In the case of BA, the    solution is incorporated into the current iteration of the Camera 

Projection Matrix ( ) and the residuals are recalculated and analyzed to determine if the total 

projected error has increased or decreased w.r.t. the following minimization function.   

Projection 
Minimization 

Function 

          
 

 

 (172) 

Expanded 
Minimization 

Function 
                   

 
 

   

 
(173) 

The LMA incorporates a unique damping scheme to minimize this error.  If we analyze the 

normal equation representation and replace     with  : 

Normal 
Equation 

Substitution 

        (174) 

Where the off diagonal elements of   are the same as the corresponding elements of    , 

except that the diagonal elements have an added damping term  , which explains the 

“augmentation” of the normal equations.  Levenberg’s contribution was to add this damping 

term. 

Normal 
Equation 

Augmentation 

          (175) 

Unfortunately, when the damping factor is large, then     is not used at all, since    

approaches zero.  Marquardt independently realized that if the identity matrix was replaced 

with the diagonal of the Hessian matrix, this could be avoided (Ranganathan 2004).  Since the 

Hessian can be approximated by     , as described below. 
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Hessian 
Diagonal 

Replacement 

                (176) 

Hessian 
Notation 

               (177) 

Here, it is important to discuss some important properties of the Hessian matrix  , since it can 

be utilized to help determine the curvature of the nonlinear surface (the curvature matrix of a 

function is defined as 
 

 
). 

Hessian Surface 
Curvature                 

 

   

     
(178) 

The last term can be ignored if the curvature of the surface is flat, or the residual error is 

approximately a linear function of  , or if the residual error is small. 

Hessian Surface 
Curvature 

Approximation 

             (179) 

When using LMA, the damping term is adjusted at each iteration, to ensure a reduction in the 

residual error  .  One of Marquardt’s insights was that the components of the Hessian matrix, 

even if they are not usable in any precise fashion, give some information about the order-of-

magnitude scale of the nonlinear problem (Press, et al. 1992).  This can help us understand the 

curvature of the parameter function at the current location. 

When damping is set to a large value, the   matrix is diagonally dominant and the LMA update 

step    is near the steepest descent direction and the magnitude of    is reduced.  Damping 

also handles situations where the Jacobian is rank deficient and      is therefore singular.  In 

this way, LMA can defensively navigate a region of parameter space in which the model is 
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highly nonlinear (Lourakis & Argyros 2004).  If the damping is small, LMA approximates the 

exact quadratic step appropriate for a fully linear problem, since the damping function 

disappears, thus becoming the Gauss-Newton method. 

LM is adaptive because it controls its own damping:  it raises the damping if a step fails to 

reduce  ; otherwise it reduces the damping.  In this way LMA is able to alternate between a 

slow descent approach when far from the minimum and a fast convergence when it’s in the 

neighborhood of the minimum.  The LMA can be made to terminate when the magnitude of the 

gradient drops below a certain threshold (bottom of a valley), the relative change in the 

magnitude of the residual drops below a threshold, or a given number of iterations is complete. 

It is important to note that one of Marquardt’s improvements ensures that the detection of a 

local minimum of the cost function is not forced at each step.  His subtle adjustment in the 

angle at which the method moves downhill provides quicker convergence because it avoids the 

steepest decent propensity to zigzag along a narrow valley, crossing and re-crossing the 

minimum before it reaches the bottom (Davis 1993). 
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14 APPENDIX D - Epipolar Techniques for Recovering Sparse Models 

Unlike Section 4.2, in this appendix we will assume that we do not know the camera EOP/IOP or 

the real world coordinates of the image point correspondences.  In fact, the final results of this 

process will only provide a relative SPC that is self-consistent with the image matches and 

derived camera parameters, not an absolute world coordinate solution.  However, the power of 

this generalized solution is evident by the current popularity of applications such as PhotoSynth 

(Microsoft Corporation 2010) that provide this localized and sparse representation of the 

imaged scene without ever knowing many of the initial camera IOPs and EOPs. 

14.1 Approach 

The basic approach inherent to this technique is to relate images using invariant features and 

then utilize these correspondences and epipolar relationships to derive the relative 

relationships between the images and the imaged scene.  Since the derived relationships and 

sparse structure are all relative to each other, in a localized coordinate system, this can be 

accomplished with little to no knowledge of the cameras and their positions. 

Because of these initial conditions, there are two critical tasks that must be addressed in this 

appendix.  First we must develop an estimate of the internal and external parameters for each 

camera. Second, we must provide estimates of the 3D locations for each of our point 

correspondences.  This is a somewhat challenging task, due to the fact that there are normally 

11 parameters for each of   cameras and 3 parameters for each of   3D points, thus requiring 

         total parameter estimates.   
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14.2 Develop a Linear Estimate of the Camera Parameters 

Of course, the number of camera parameters is often dependent on the number of 

assumptions that are being considered and can be as few as 5 or as many as 15 when solving 

for the radial distortion coefficients (152).  Often the 12 parameters included in the projection 

matrix are solved for, due to the ease of minimization against this function within the LMA.   

As noted by Wolf and Dewitt (DeWitt and Wolf 2000), for some near-nadir imaging cases, both 

the pitch (φ) and roll (ω) of the aircraft can be assumed as negligible for initial estimating 

purposes.  Additionally, both of the skew parameters (    &    ) and the principle point 

locations (   &   ) can be assumed equivalent to zero for most current framing sensors 

(Snavely, Seitz and Szeliski, Photo tourism: Exploring photo collections in 3D 2006).  Additionally 

for framing sensors, the average of the two scaling parameters can be assumed as equivalent to 

the focal length (f) as indicated below. 

 
  

       

 
 

(180) 

 

So, for the near-nadir imaging case, a minimal set of 5 parameters, 4 EOPs and 1 IOP           

     require initial linear estimates, where            represent the camera lens global 

location, kappa     represents the heading angle, and     is the camera’s focal length.  

However, the 7 parameter set (that includes Omega and Phi) should be utilized for 

minimization when solving the nonlinear case.  For more information on the internal camera 

calibration parameters please reference Chapter 11. 
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14.3 Develop a Linear Estimate of the 3D Points 

The following three steps are utilized to estimate the initial guess at the 3D point location 

isolated from the correspondences in each image: 

1. Derive the Fundamental Matrix   

2. Derive the camera matrix   from   

3. Estimate the 3D coordinates   from   & the 2D points   

Much of this section is covered in various parts of Hartley and Zisserman’s “Multi-View 

Geometry” text (Hartley and Zisserman 2004) and can be referenced for additional information. 

1.  Derive   - The first step is to estimate the Fundamental Matrix  , from the point 

correspondences.  From a set of   point matches                   we can use Equation (42) to 

develop linear equations of the following form,  

                                                  

       

(181) 

                          (182) 

     

                               

         
                               

     (183) 

where the solution is the generator of the right null-space of   and   is a 3x3 matrix composed 

of the 9-element vector  .  Specifics of the DLT implementation to solve for   are available in 

Chapter 12. 
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2. Deriving   from   - For a given 3-vector               
  it is possible to define a skew 

symmetric matrix as follows (Hartley and Zisserman 2004) : 

     
 
  

        
        
        

  

 

(184) 

 

Proof - The condition that       is skew symmetric requires            for all  .  Since 

       and     , then        , which defines the fundamental matrix.  Now the 

following can be expressed, 

        
 
     

      (185) 

 

       
 
    

 (186) 

 

         
 (187) 

 

 

Additionally, since the fundamental matrix corresponds to a pair of camera matrices and due to 

the projection ambiguity,   can be chosen as, 

          
    
    
    

  
(188) 

 

 

and its complement    is, 
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      (189) 

 

 

3. Derive   through   &   - Now, to develop an estimate of the 3D scene structure, we can 

utilize the camera matrix and linear triangulation methods.  Since,      and       , then 

we can combine them into the form     , which is linear in  . 

          (190) 

     
       

      (191) 

     
       

      (192) 

     
        

      (193) 

where   
 are the rows of   and   which can be represented by, 

   

 
 
 
 
 
 
   

    
 

   
    

 

     
 

    
 

     
 

    
 
 
 
 
 
 
 

 
(194) 

A similar approach is utilized when additional views are available; often with more robust 

results, since true triangulation can be utilized to improve the estimate.  The solution for the 3-

view projection matrix P, from the Trifocal Tensor T, utilizing the trifocal tensor notation, 

follows (Hartley and Zisserman 2004), 

    
 
                   (195) 
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               (196) 

   
 
      

 

       (197) 

                (198) 

             
    (199) 

Again, due to projective ambiguity, the first camera can be chosen as 

         
(200) 

And, since F21 and F31 are known, the second and third cameras are 

               (201) 

                  
 

 

        (202) 

Although it will not be addressed here (see Section 11.3), it should be noted that the radial 

distortion coefficients can be incorporated into this solution space.  A good example of this is 

addressed by Zhang (Z. Zhang 2000) and incorporates a linear estimation solution. 

14.4 The Essential Matrix 

Since we have knowledge of the WASP IOP, the Essential Matrix can also be utilized to estimate 

the 3D structure of a scene.  The Essential matrix is defined below (Hartley and Zisserman 

2004), where   embodies the relative rotation ( ) and skew symmetric translation      

between any two images of the same scene. 

Essential 
Matrix 

        
(203) 
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This is because the IOPs ( ) Equation (139), can be applied to the camera projection matrix as, 

Projection 
Matrix 

         
(204) 

 
 

 

to obtain the normalized camera matrix . 

Projection 
Matrix 

           (205) 

 
 

 

Here, the Fundamental Matrix corresponding to two normalized cameras is commonly referred 

to as the Essential Matrix.   Using the Camera Projection Equation,     , and (205) 

Normalized 
Coordinates  

        (206) 

 
 

 

then we arrive at the defining equations for the essential matrix . 

Defining 
Equation 

         (207) 

 
 

 

Additionally, it can be related to the Fundamental Matrix and IOPs via the following 

relationship, 

Essential 
Matrix 

   

         

         
         

    
     

(208) 

 
 

 

where    and    are the intrinsic calibration matrices of the two images.  This relationship can 

be visualized in Figure 14-1 below. 
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Now we can implement the 3D structure recovery via a technique explained well by Yi Ma (Ma, 
et al. 2006).  The Essential Matrix can be placed in vector form as follows, 

 

Essential 
Matrix 

                                   (209) 

 
 

 

The Kronecker product ( ) of two homogeneous coordinate vectors          and 

            , where        is commonly utilized, 

Kronecker 
Product 

         
(210) 

 
 

 

CoordH 
KronP 

                                 
(211) 

 
 

 

Since the epipolar constraint of (207) is linear in the parameters of  , we can rewrite it as the 

inner product of   and    as follows, 

(R,T) 
E 

 
Figure 14-1  The Essential Matrix relates the two images using a simple 3D translation and rotation of the cameras. 
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E 
KronProd 

       (212) 

 

Now, we can define a matrix      of Kronecker Products, such that, 

Matrix of  
KronProds 

                (213) 

 
 

 

E & X      
    (214) 

 
 

 

This linear equation can now be solved for the vector    using an eight-point algorithm (Ma, 

Soatto, Kosecka, & Sastry, 2006) and the Eigenvector associated with smallest eigenvalue of 

    generating the values of  ; which in turn can be “unstacked” into the 3x3 Essential Matrix.  

Now the relative pose (Rotation and Translation), embedded within   can be recovered and 

utilized with the image correspondences to retrieve the position of the point in 3D, by 

recovering their depths relative to each camera frame.  Care must be taken to ensure structure 

results with a positive depth constraint and nonzero translation, since up to four possible 

results occur with calibrated reconstruction from   (Hartley and Zisserman 2004).   

Now, the set of matching coordinates        can be utilized with the camera pose results to 

estimate structure  , to within a uniform translation scale  , using the following, 

Rigid Body 
Pose Eq. 

            (215) 

 
 

 

Multiply by 
crossproduct 

                        (216) 
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Rearrange                  (217) 

 
 

 

Rearrange 
    

     
       

      
  

 
    

  (218) 

 
 

 

Now we can solve the linear equation to estimate the depth component      of each point 

correspondence. 

14.5 Case Study – Creating Sparse Structure using Epipolar Geometry 

In this case study, 12 images from RIT’s WASP sensor were related into an image bundle to 

estimate the 3D terrain surrounding the VanLare Water Processing Plant.  These images were 

processed through a SfM process developed primarily by Dr. Noah Snavely (Snavely, Bundler 

2010), from the University of Washington, to produce a Sparse Point Cloud (SPC) of 3D points 

and relative orientation of the cameras (Snavely, Seitz and Szeliski, Photo tourism: Exploring 

photo collections in 3D 2006).  This process was then commercialized by Microsoft into an 

online application called PhotoSynth (Microsoft Corporation 2010), which allows a user to 

upload imagery and view the resulting bundle of images and sparse structure (Figure 14-2).  
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These preliminary results show great promise in the ability to extract 3D information from 2D 

images, in a completely automated fashion, to produce relative relationships within a localized 

coordinate system.  While these results are promising, there is currently no built in capability to 

export 3D structure or camera pose results in the freely available version.  For this reason, the 

SBA software of Lourakis and Argyros (Lourakis & Argyros 2004), embedded within the Bundler 

code of Snavely (Snavely, Bundler 2010) was utilized to perform a similar recovery of structure 

and camera locations.  Figure 14-3, shows the resulting point cloud and point cloud mesh 

overlaid onto GE terrain and models of the VanLare site. 

Figure 14-2  The graphics above show the results of Microsoft’s PhotoSynth BA process. 
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Figure 14-3  The SPC (top) and resulting mesh (bottom) from the Bundler SBA  process (Snavely, Bundler 2010) using VNIR 

images from the WASP sensor. 
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15 APPENDIX E - Model Texture 

In order to truly recover the 3rd Dimension from images registered to models, it is necessary to 

reapply the images onto the modeled environment.  This can be done in a layered fashion, 

where the user has the ability to transfer between texture modalities as required or fused into 

three band images and viewed as entirely new products.  Additionally, scrolling through a time-

based series of images can have great advantage for temporal change analysis.  Finally, 

products can often have unique characteristics, where the sum of the individual images is more 

useful than the individual components considered separately.  This is evident in Figure 15-1, 

where the registered IR images of VanLare were stacked into a pseudo-color composite image, 

which highlights a newly constructed building composed of different building material than the 

rest of the plant. 

 

Figure 15-1  An illustrative example of IR image fusion in the form of a pseudo-color image stack.  Circled in red is a new 
building that was constructed from different material (green metal) than the surrounding brick buildings with gravel roofs. 



15-2 
 

The following four techniques for texturing models with images offer distinct advantages and 

disadvantages and are largely dependent on the chosen application of interest. 

15.1 Image Draping 

Image draping is a useful technique to easily provide a rudimentary level of 3D texturing.  Its 

application to near-nadir imaging was demonstrated in Figure 3-2, where it was utilized for 

comparison with similar overhead imagery.  Below is an additional example of this technique 

from an IDL demo package (ITT Visual Information Solutions 2008). 

 

Here, an image is projected straight down, from nadir, onto the model surface.  If done 

accurately, this draping/blanketing approach can provide a realistic model in non-urban areas.  

Unfortunately, modeled areas with near vertical features will display a stretched/smeared pixel 

appearance due to the way in which the texture is sampled and associated with the model.  

However facet surface normals could be used to test for this situation and texture exceptions 

could be incorporated to avoid undue smearing on the vertical edges of the model. 

Figure 15-2  By using a model (left) and related image (middle) it is possible to produce a realistic scene (right), as visualized 
using one of the demonstration tutorials within the IDL programming environment (ITT Visual Information Solutions 2008). 
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15.2 Facet Texturing and Model Unwrapping 

This technique is a very efficient and realistic way to model an environment, thus owing to its 

longstanding popularity in the computer graphics industry.  Unfortunately it is often a time 

consuming endeavor in the initial stages of “unwrapping” the texture and associating it 

properly to a model.  Since we would like to automatically texture our models with numerous 

modalities and temporal updates, this can become an overly onerous option.  Figure 15-3 

shows the CIS building with multimodal textured facets. 

 

In addition to the CIS model above, the VanLare site also utilizes this    texture mapping 

approach to create visually realistic representations of the site.  This model is embedded in a 

Collada format and placed in a Google Earth Keyhole Markup Language (KML) wrapper to 

associate the model with the world coordinate system as seen in Figure 15-4 below. 

Figure 15-3  These multimodal models have been textured with image segments on each facet (visible-left & thermal-right). 
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Finally, this    texture mapping technique was utilized within the DIRSIG environment to build 

an accurate geometric and physical description of this same site for the purpose of 3D 

Multimodal registration.  The basic process to accomplish this is again shown in Figure 15-5 for 

easy reference and was covered in detail earlier in Section 6.2.1. 

 

Figure 15-5 Illustrates the UV Texturing process:  A) The wireframe model, B) The faceted model, C) The UV textured Model, 
D) The flattened (uwrapped) model with overlaying image texture, and E) The textured wireframe model. 

Figure 15-4  This realistic Pictometry model (Pictometry 2010) utilizes UV mapped oblique imagery to texture its facets and 
was then inserted into Google Earth (Google Earth 2010) using a KML description. 
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15.3 Projective Texturing 

The projective texture approach is one that the author highly recommends, since it can use the 

camera pose to project each pixel onto the scene accurately (Figure 15-6).  Here the Google 

Earth’s SketchUp (Google Earth 2010) application was utilized to perform the projective 

texturing.  This technique could be implemented in such a way that the projected texture is 

only applied to surface facets if their normals are within a prescribed angular offset from the 

camera viewing direction (i.e.     ).  This would ensure that only minimal smearing would 

occur on the model facets that are parallel to the camera optical axis. 

 

 

15.4 Volumetric Pixel (Voxel) Texturing 

Since voxel techniques allow models to be developed as true volumetric datasets, they offer 

substantial benefits for atomic characterization of a scene.  Additionally, this representation 

may allow the most accurate 3D reconstruction of a scene based off of SPCs and DPCs.  The 

Figure 15-6  Here the same model has been textured using a projection tool in Sketchup (Google Sketchup 2009) and then 
imported into Google Earth (Google Earth 2010). 
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ability to attribute each voxel with multimodal data, as seen in Figure 15-7, could also provide 

substantial advantages when trying to fuse these datasets.  Unfortunately, the graphics industry 

has rallied around the faceted model approach, so few synergies of investment and research 

can be leveraged at this time. 

 
Figure 15-7  Volumetric Pixel (Voxel) approach to save data in volumetric space, but attribute as 2D facet. 
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16 APPENDIX F – DIRSIG Simulation Setup Primer 

Any given simulation in DIRSIG will be encapsulated with a “.sim” description file.  This file 

wraps various components of the simulation into a manageable whole and provides the 

essential links to various working directories.  Embedded within the SIM file are calls to various 

DIRSIG modules describing the scene, atmospheric, sensor, platform, and data acquisition 

parameters (Figure 16-1). 

 

16.1 DIRSIG’s Scene File Setup 

Pushing the Scene Icon in the Simulation Editor window will bring up another GUI which allows 

access into several other components within DIRSIG for defining the modeled scene 

characteristics.  Pressing the “Geometry Tab” (Figure 16-2a) brings up another interface that 

allows definition of the Geographic Location, the Geometry List File (“.odb”) and linkages to the 

directory where the scene models are stored (Geometry Entity Directory). 

Figure 16-1  The DIRSIG Simulator Editor provides access to various components of the program. 
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The “Materials Tab” (Figure 16-2b), similarly allows definition of a Materials File (“.mat”) and 

linkages to the appropriate emissivity, extinction, and absorption folders.  The Material File 

describes the physical material characteristics used by DIRSIG to simulate scene content and is 

a critical component for multimodal registration (Section 6.4). 

The “Property Maps Tab” shown below in Figure 16-3, is the workhorse for scene simulations. 

DIRSIG’s Scene Editor 

Figure 16-2  The Geometry tab (A), in the DIRSIG Scene editor,  references the model geospatial and directory location, while 
the Material tab (B) links to the scene materials description file and emissivity file directory. 
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Figure 16-3  Within the Scene “Property Map” tab there are links (left panel) to the Material Map descriptions for the site (C) 
and Texture Maps (D).  These “Property Maps” are tightly coupled within DIRSIG for physical scene description. 

DIRSIG’s Property Map Editor 
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The window on the left pane allows the user to open additional interfaces into the “Material 

Maps” and associated “Texture Maps” sections of the application, which allow a user to define 

characteristics for the scene. The “Map Projection” section of both these interfaces allows for 

designation of localized offsets and the Geographic Sampling Distance (GSD) of both the 

Material and Texture Maps.  In both graphics within Figure 16-3, the offset is referenced from 

the origin of MegaScene Tile-1 via the Insert Point text field in the Map Projection area. 

Additionally, the “Material Map” interface (Figure 16-3c) allows the user to designate a specific 

model element in the “Assigned to” field.  In the example above, ID = 100 is used to identify a 

terrain “Material ID” within DIRISIG.  It is important to remember that for every 

“Material/Texture Map” pair used in the simulation, a unique identifier must be generated to 

insure DIRSIG properly associates the maps and materials.  The “Pixel DC to Material ID 

Assignments” section allows the user to assign a Look-Up-Table (LUT) that associates a discrete 

grayscale values to specific scene material characteristics via the DIRSIG Material File (“.mat”).  

These grayscale values are the Digital Count (DC) values of an image (“.pgm”) that has been 

segmented w.r.t. different scene materials and is designated in the “PGM Filename” field. 

The associated “Texture Map” information is similarly accessed in the left window of the 

“Property Maps” tab by highlighting the appropriate Texture Map link (Figure 16-3d).  The main 

difference between this and the previous interface is that the “Assigned to” field now contains 

the materials identified earlier in the “Material Map” assignments LUT and the user can 

designate the spectral bandpass  and file linkage for the associated “Texture Map”.   
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16.2 DIRSIG’s Sensor File Setup 

By selecting the Imaging Platform icon from the DIRSIG simulation menu (top of Figure 16-4, 

highlight in red), the user can access several function that control the imaging sensor 

characteristics, as well as the platform and mount location and orientation.  The mount 

interface can be accessed by selecting the mount link from the left pane of the System 

Components menu.  This allows access to a handy tool for viewing the relative pointing of the 

platform and so it is possible to utilize the mount interface to insert the Pitch, Yaw, and Roll of 

the aircraft if the actual mount orientation is negligible or is incorporated into these values. 

 

Figure 16-4  The Sensor Editor has links to a Mount Editor (A) and the Imaging Camera in the Left Panel.  As seen here, the 
Mount interface was utilized to capture the sensor viewing angles which were retrieved from an Inertial Measurement Unit. 

DIRSIG’s Mount Editor 
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So, the sensor viewing angles can be injected into DIRSIG using either the sensor mount 

interface or the platform interface.  In the figure above (Figure 16-4), the reader can see how 

the WASP Inertial Measurement Unit (IMU) data was converted to radians and inserted into the 

DIRSIG “Mount interface”. 

In order to access the “Instrument Editor”, the user must highlight the last link on the left 

window pane in the “System Components” section (Figure 16-5). Here the user can insert 

additional mount offsets and orientations for multiple camera systems like WASP if desired.  

Additionally, the focal length of the camera can be edited within this interface and the user can 

access the camera’s focal plane editor by highlighting the desired sensor in the “Focal Plane” 

section and then pressing the “Edit” button (Figure 16-5b).  The “Focal Plane Editor” will 

describe the sensor’s “Array Dimensions”, “Pixel Pitch” and the “Spectral Response/Range”. 

 
Figure 16-5  Within the Camera Instrument editor, there is an “edit” button for the Focal Plane (B).  Pressing this button will 

bring up the Focal Plan Edit menu with additional buttons for editing the Detector Array (C) and the Response Curve (D). 

DIRSIG’s Sensor Editor 
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These parameters can in-turn be accessed and changed by pressing the corresponding “Edit” 

button in the “Detector Array Geometry” and “Detector Array Response” panes Figure 16-6). 

 

DIRSIG’s Focal Plane Editor 

Figure 16-6  The Focal Plane editor buttons bring up the Detector Array editor (C) and Detector Spectral Response editor (D) 
windows, which allow a great deal of flexibility in defining the sensor specific design characteristics. 
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16.3 DIRSIG’s Platform File Setup 

The Platform File editor provides a convenient description of the vehicle (satellite, airplane or 

terrestrial) that transports the imaging sensor.  Through this interface, it is possible to define 

the coordinates and orientation of the imaging platform and even the rotation order (Figure 

16-7). 

 

There are a few things that should be noted when entering the WASP platform information into 

DIRSIG.  First, the DIRSIG MegaScene Tiles were all based off of a local coordinate system, 

where the lower left corner of Tile-1 is regarded as the origin.  Tile-4 has an origin that is 

located at UTM Coordinates Longitude = 289,826 [m] and Latitude = 4,789,892 [m] (Zone 18T), 

with local MegaScene coordinates of Longitude = 1291 [m] and Latitude = 2330 [m].  In order to 

DIRSIG’s Platform File Editor 

Figure 16-7  The Platform Editor allows for the designation of geospatial position information, such as Latitude, Longitude, 
Altitude and the orientation information of the sensors External Orientation Parameters, such as Pitch, Yaw & Roll. 
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compare the DIRSIG simulation results to real imagery, it is necessary to convert between the 

global UTM coordinates of the WASP flight data and this local coordinate system (Figure 16-8). 

 

Secondly, as mentioned earlier, the sensor’s view angles (EOPs) were captured in DIRSIG using 

the Sensor Mount Interface after a Degrees-to-Radians conversion of the flight data was 

performed.  For this reason, the orientation parameters are included as null offsets in the 

platform file editor interface.   

Finally, due to the localized error from the Geoid model height, it may be necessary to account 

for this offset within DIRSIG.  Since the WASP GPS sensor delivers flying height above the Geoid 

in its flight data, localized variation in the terrain should be incorporated if available to ensure 

Converting WASP Flight Data into DIRSIG Platform Parameters 

Figure 16-8  In order to properly inject the WASP GPS/IMU data into DIRSIG it is essential to convert for any local coordinate 
translations, sensor angles and Geoid offsets.  For the VanLare site, this offset accounts for 36 [m] higher flying altitude. 

Longitude [m] Latitude [m]

Flying Alt [m] 

(above Geoid)

Geoid 

Delta [m]

focal length 

[mm]

WASP VNIR045 UTM 290,707.26 4,790,203.71 879.42 35.85

Tile-4 Origin UTM 289,826.0 4,789,892.0

Local Offset 881.26 311.71

Tile-4 Offset 1,290.60 2,329.80

DIRSIG Input 2,171.86 2,641.51

VNIR045 Degrees Radians 879.42 915.27 55mm

Omega 4.49152 0.078391812

Phi 0.10469 0.001827185

Kappa 17.19189 0.300055085

SWIR078 Degrees Radians 879.596 915.446 25.2965

Omega 3.88848 0.067866779

Phi -0.055 -0.000959931

Kappa 16.30377 0.284554467
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the simulated imagery scale is as close to “truth” as possible.  This becomes especially 

important when deriving the 3D scene geometry from hi-resolution WASP VNIR images.  The 

local DIRSIG coordinates for the original five MegaScene Tiles is shown below in Figure 16-9. 

 

Figure 16-9  DIRSIG’s 5 MegaScene Tiles (courtesy Mike Presnar) cover a swath of Northern Rochester and include a variety 
of environmental settings, including residential, agricultural, industrial, and lake frontage.  The VanLare test site is in Tile-4. 

DIRSIG’s 5 MegaScene Tiles 
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16.4 DIRSIG’s Atmospheric Conditions Setup 

The Atmospheric Conditions editor within DIRSIG has two tabs which allow input of the 

weather conditions at the time of simulation and specifics regarding the radiation transport of 

the photons through the atmosphere.  The radiation transport tab provides links to the 

MODTRAN Tape-5 file and the atmospheric database file that is generated at the beginning of a 

DIRSIG simulation, providing essential atmospheric LUT parameters.  This user interface is 

visible below in Figure 16-10. 

 

16.5 DIRSIG’s Data Collection Setup 

The DIRSIG Data Collection GUI can be utilized to specify single frame or multi-frame (video) 

output.  Additionally, the user can specify an instantaneous image capture of the modeled 

DIRSIG’s Atmospheric Conditions Editor 

Figure 16-10  The Atmospheric Conditions Editor allow for designation of the Weather conditions at the time of the collection 
and the designation of Radiation Transport parameters via MODTRAN Tape-5 files. 
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scene or an integrated exposure over time.  Finally, the time of image capture can be specified.  

This is a very important feature for simulating real imagery collections for registration, since it 

makes it possible to estimate the scene shadowing correctly w.r.t. the solar zenith angle.  This 

DIRSIG user interface is visible below in Figure 16-11. 

 

 

 

DIRSIG’s Data Collection Editor 

Figure 16-11 The Data Collection Editor allows the user to designate the day and time of collection; this is essential for 
properly casting shadows onto the scene from the correct solar position. 
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17 APPENDIX G – MATLAB Software Flowchart and Index 

The included MATLAB (The Mathworks, Inc. 2010) programs contain many helpful tools that 

can allow the user to integrate various aspects of this research into their daily registration 

workflow.  These programs are available upon request to either the author or members of the 

dissertation committee. 

17.1 Image Registration  

The following flowchart shows the hierarchy of program execution and basic components for 

image registration using the provided MATLAB tools and case study data.  

 

  

Image Registration Programs & Files 

Figure 17-1  This flowchart provides a snapshot of the tools provided for image registration and the related file structure  
(programs highlighted in yellow were not written by the author). 
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17.2 Sparse Point Cloud Generation  

The following flowchart shows the hierarchy of program execution and basic components for 

Sparse Point Cloud generation and depth-map recovery using the provided MATLAB tools and 

case study data.  

 

  

Sparse Point Cloud Programs & Files 

Figure 17-2  This flowchart provides a snapshot of the tools provided for SPC Generation and the related file structure  
(programs highlighted in yellow were not written by the author). 
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17.3 Model Registration & Pose Estimation 

The following flowchart shows the hierarchy of program execution and basic components for a 

Pose Estimation of a 3D model as viewed from an image using the provided MATLAB tools and 

case study data.  

 

Additionally, a similar graphic is available for 3D Model Registration using the authors 3D 

Conformal Transform (rigid body) and case study data used to relate the AANEE model to the 

World Coordinate System using Google Earth (Google Earth 2010). 

  

Model Pose Estimation Programs & Files 

Figure 17-3  This flowchart provides a snapshot of the tools provided for Pose Estimation and the related file structure  
(programs highlighted in yellow were not written by the author). 

Model Registration Programs & Files 

Figure 17-4  This flowchart provides a snapshot of the tools provided for Model Registration and the related file structure. 
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17.4 LIDAR Data Processing 

The following flowchart shows the hierarchy of program execution and basic components for 

processing of LIDAR data to extract Regions of Interest (ROI) from a “.las” formatted file.  Once 

accomplished, this 3D Dense Point Cloud ROI can be used as the basis for a facetized model 

using the provided MATLAB tools and case study data.  

 

LIDAR Data Processing Programs & Files 

Figure 17-5  This flowchart provides a snapshot of the tools provided for LIDAR Processing and the related file structure  
(programs highlighted in yellow were not written by the author). 

 


