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Abstract

A set of methods to address computer vision problems has been developed. Video un-

derstanding is an activate area of research in recent years. If one can accurately identify

salient objects in a video sequence, these components can be used in information retrieval

and scene analysis. This research started with the development of a course-to-fine frame-

work to extract salient objects in video sequences. Previous work on image and video

frame background modeling involved methods that ranged from simple and efficient to

accurate but computationally complex. It will be shown in this research that the novel

approach to implement object extraction is efficient and effective that outperforms the

existing state-of-the-art methods. However, the drawback to this method is the inability

to deal with non-rigid motion.

With the rapid development of artificial neural networks, deep learning approaches

are explored as a solution to computer vision problems in general. Focusing on image

and text, the image (or video frame) understanding can be achieved using CVS. With

this concept, modality generation and other relevant applications such as automatic im-

age description, text paraphrasing, can be explored. Specifically, video sequences can

be modeled by Recurrent Neural Networks (RNN), the greater depth of the RNN leads

to smaller error, but that makes the gradient in the network unstable during training.

14
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To overcome this problem, a Batch-Normalized Recurrent Highway Network (BNRHN)

was developed and tested on the image captioning (image-to-text) task. In BNRHN, the

highway layers are incorporated with batch normalization which diminish the gradient

vanishing and exploding problem. In addition, a sentence to vector encoding framework

that is suitable for advanced natural language processing is developed. This semantic

text embedding makes use of the encoder-decoder model which is trained on sentence

paraphrase pairs (text-to-text). With this scheme, the latent representation of the text

is shown to encode sentences with common semantic information with similar vector rep-

resentations. In addition to image-to-text and text-to-text, an image generation model

is developed to generate image from text (text-to-image) or another image (image-to-

image) based on the semantics of the content. The developed model, which refers to the

Multi-Modal Vector Representation (MMVR), builds and encodes different modalities

into a common vector space that achieve the goal of keeping semantics and conversion

between text and image bidirectional. The concept of CVS is introduced in this research

to deal with multi-modal conversion problems. In theory, this method works not only

on text and image, but also can be generalized to other modalities, such as video and

audio. The characteristics and performance are supported by both theoretical analysis

and experimental results. Interestingly, the MMVR model is one of the many possible

ways to build CVS. In the final stages of this research, a simple and straightforward

framework to build CVS, which is considered as an alternative to the MMVR model, is

presented.
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Chapter 1

Introduction

This research will start from the general area of multimedia analysis, especially on video

background modeling, object extraction and video text summarization. With the rapid

development and lower cost of smartphones and new digital capture devices, consumer

videos are becoming ever popular as is evident by the large volume of YouTube video

uploads, as well as video viewing on the Facebook social network. These large amount

of videos pose a great challenge for users to organize, access, and retrieve their content.

Hence, the ability to efficiently analyze, index, and summarize consumer videos will en-

able fast retrieval and intelligent re-purposing of video content for advanced and novel

consumer imaging applications. This research will develop and validate a unified video

analysis framework for automatically processing, analyzing, segmenting, and summa-

rizing unstructured and unrestricted user-generated videos in the wild. In addition to

multimedia analysis, this research is also concerned with the interaction between them,

especially on text and image (video frame), using learning approaches. In recent years,

deep learning has improved performance on many vision and language tasks individ-

ually. However, general vision or language models cannot emerge within a paradigm

that focuses on the particularities of a single metric, dataset, and task. Deep learning

has enabled dramatic advancement in image, video and text understanding. For exam-

ple, image classification, object detection, image captioning, localized image description,

19



CHAPTER 1. INTRODUCTION 20

image and sentence retrieval and visual question answering tasks have witnessed tremen-

dous progress in the past few years. A unified Common Vector Space (CVS) for vision

and language will be introduced in this research, which encodes different sources (not

limited to image and text) by a latent vector space, where similar inputs from different

modalities cluster together and dissimilar ones separate. It is expected that the combi-

nation of these resources will facilitate research in multitask learning, transfer learning,

general embeddings and encoders, architecture search, zero-shot learning, general pur-

pose question answering, meta-learning, and other related areas of vision and language.

Object level video segments are semantically meaningful spatio-temporal units such

as moving people, moving vehicles, a flowing river, etc. Segmentation of a video sequence

into a number of component regions would benefit many higher level vision based appli-

cations such as scene analysis, object localization and content understanding. However,

single target object extraction would be a more demanding task considering consumers’

needs. In many cases, a consumer video sequence simply targets capturing a single

object’s movement in a specific environment such as dancing, skiing, running, etc. In

general, motion object detection and extraction for a static video camera is relatively

straightforward since the background barely changes and a simple frame differencing

would be able to extract a moving foreground object. However, it is still challenging for

the object moving on a cluttered and/or dynamic background.

The goal of background modeling and foreground object extraction is to build a

model of the background/foreground in an offline manner and extract the object of in-

terest by comparing the estimated model with the frames. The model must be robust

enough to cope with background changes in different ways. In recent years, a trend

towards modeling spatio-temporal uniform (in terms of either appearance or motion)

regions instead of single pixels has been observed [1]. These works rely on superpix-

els/supervoxels for object segmentation in videos. However, these methods are compu-

tationally expensive and group superpixels together according to pure spatio-temporal

similarity without exploiting real-world object features. As an improvement, Giordano
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et al. [2] proposed an approach without making any specific assumptions about the

videos that relies on how objects are perceived by humans according to Gestalt laws.

Khoreva et al. [3] proposed an empirical approach to learn both the edge topology and

weights of the graph. The most confident edges are selected by the graph structure while

the classifiers are learned to combine features and seamlessly integrated by its accuracy.

In [4] and [5], Fast Point Feature Histograms (FPFH) and Histogram of Oriented Gra-

dients (HoG) have been used as features to represent superpixels. The high dimension

feature space slows down the computation, although some improvements (e.g., [6]) were

proposed to provide a better balance of trade off between segmentation quality and run

time.

Much research has been devoted to graph models for segmentation, such as [3] and

[7]. Fan and Loui [8] proposed a graph-based approach that models the data in a

feature space, which emphasizes the correlation between similar pixels while reducing

the inter-class connectivity between different objects. In [9], a reduced superpixel graph

was re-weighted such that the resulting segmentation was equivalent to the full graph

under certain assumptions. However, these approaches still suffer from the expense of

computation and low accuracy.

Chapter 2 will investigate inter-relationship between statistical learning, segment or

pixel-level classification and fine segmentation on salient objects in the video sequence.

The research can be used for other applications based on the developed framework, such

as video content retrieval, visual effects generation, video highlight or summarization,

and video content understanding, etc. Chapter 2 first develops a novel coarse-to-fine

framework and prototype system for automatically segmenting a video sequence and

extracting a salient moving object from it. The developed framework is comprised of

point tracking and motion clustering of pixels into groups. In parallel, a pixel group-

ing method is used to generate supervoxels for the corresponding frames of the video

sequence. Coarse segmentation is achieved by combining the results of previous steps.

Subsequently, a graph-based technique is used to perform fine segmentation and extrac-
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tion of the salient object.

In addition, recent progress in deep learning using Convolutional Neural Networks

(CNNs) has achieved remarkable performance on various computer vision and pattern

recognition tasks, including video analysis. A video can be considered as a sequence

of frames and the adjacent frames are related by consistent motion and pixel similarity

in terms of pixel color and location. Therefore, video sequences can be modeled by

Recurrent Neural Networks (RNNs). Typically, increasing the depth of the networks

significantly reduces the error on competitive benchmarks [10]. However, training very

deep networks is challenging due to the fact that the distribution of each layer’s inputs

changes during training. When training RNNs, gradients are unstable, and can vanish

or explode over time. In some cases the gradients can vanish, the forward flow often

diminishes, and the training time can be unbearably slow by requiring lower learning

rates and careful parameter initialization. Sometimes the gradient gets much larger in

earlier layers, which causes an exploding gradient problem. More generally, it turns

out that the gradient in deep neural networks is unstable, tending to either explode or

vanish in earlier layers. In such deep architectures the vanishing or exploding gradient

problem becomes a key issue.

Several techniques [11, 12, 13] have been proposed to circumvent the vanishing and

exploding gradient problem. Batch normalization [14] addresses the internal covariate

shift problem by normalizing the layer inputs per mini-batch statistics. This speeds up

training by allowing the usage of more aggressive learning rates, creates more stable

models which are not as susceptible to parameter initialization, and has been shown to

minimize vanishing and exploding gradients. While batch normalization has been found

to be very effective for feedforward CNNs, the technique has not been as prevalent on

RNNs. Laurent et al. [15] reported that applying batch normalization to the input-to-

hidden transitions of RNNs leads to faster convergence but does not seem to improve

the generalization performance on sequence modeling tasks. Cooijmans et al. [16] found

that it is both possible and beneficial to batch normalize both the input-to-hidden
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and hidden-to-hidden transition, thereby reducing internal covariate shift between time

steps.

In addition to batch normalization, much attention has been paid to controlling gra-

dient behavior by changing the network structure. For instance, networks with stochas-

tic depth [17] enable the seemingly contradictory setup to train short networks and use

deep networks at test time. This approach complements the recent success of residual

networks. It reduces training time substantially and improves the test error significantly

on almost all data sets. Recent evidence also indicates that CNNs could benefit from

an interface to explicitly construct memory mechanisms interacting with a CNN feature

processing hierarchy. Correspondingly, the convolutional residual memory network [18]

was proposed as a memory mechanism which enhances CNN architecture based on aug-

menting convolutional residual networks with a Long Short-Term Memory (LSTM) [11]

mechanism. Weight normalization [19] was reported to be better suited for recurrent

models such as LSTMs compared to batch normalization. It improves the conditioning

of the optimization problem and speeds up convergence of stochastic gradient descent

without introducing any dependencies between the examples in a mini-batch. Simi-

larly, layer normalization [20] normalizes across the inputs on a layer-by-layer basis at

each time step. This stabilizes the dynamics of the hidden layers in the network and

accelerates training, without the limitation of being tied to a batched implementation.

Chapter 3 develops a novel recurrent framework based on Recurrent Highway Net-

works (RHNs) for sequence modeling using batch normalization. This chapter explores

the differences of several state-of-the-art techniques in terms of gradient control in data

propagation within recurrent networks and compares the performance between them.

The developed technique relaxes the constraint in RHNs such that they have a better

chance to avoid the gradient from vanishing or exploding by normalizing the recurrent

transition units in highway layers. Since this work is able to deal with applications

with RNN structure, such as captioning, it turns out that this technique can be used in

Multi-Modal Vector Representation (MMVR) as illustrated in Chapter 5.
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Exploring the new RNN framework brings about benefits for multimedia conversion,

for example, captioning, which is also known as image-to-text conversion. Text-to-

text conversion also needs to be paid attention by using a sequence-to-sequence model.

Modeling temporal sequences of patterns requires the embedding of each pattern into a

vector space. For example, by passing each frame of a video through a CNN, a sequence

of vectors can be obtained. These vectors are fed into a RNN to form a powerful

descriptor for video annotation [21, 22, 23]. Similar, techniques such as word2vec [24]

and GloVe [25] have been used to form vector representations of words. Using such

embeddings, sentences become a sequence of word vectors. When these vector sequences

are fed into an RNN, it generates a powerful descriptor of a sentence [26].

Given vector representations of a sentence and video, the mapping between these

vector spaces can be solved, forming a connection between visual and textual spaces.

This enables tasks such as captioning, summarizing, and searching of images and video

to become more intuitive for humans. By vectorizing paragraphs [27], similar methods

can be used for richer textual descriptions.

Recent advances at vectorizing sentences represent exact sentences faithfully [28, 27,

29], or pair a current sentence with prior and next sentence [30]. Similar to word2vec

and GloVe map words of similar meaning close to one another, the desired method is to

map sentences of similar meaning close to one another. For example, the sentences “A

man jumped over the stream” and “A person hurdled the creek” have similar meaning

to humans, but are not close in traditional sentence vector representations. Just like the

words flower, rose, and tulip are close in good sentence to vector representations, the

example sentences must lie close in the introduced embedded vector space.

Inspired by the METEOR [31] captioning benchmark which allows substitution of

similar words, it is desired to map similar sentences as close as possible. Both paraphrase

datasets and ground truth captions from multi-human captioning data sets are utilized.

For example, the MS-COCO data set [32] has over 120K images, each with five captions

from five different evaluators. On average, each of these five captions from each image
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should convey the same semantic meaning. Chapter 4 presents an encoder-decoder

framework for sentence paraphrases, and generate the vector representation of sentences

from this framework which maps sentences of similar semantic meaning nearby in the

vector encoding space.

The main contributions of this semantic sentence embedding method are 1) the usage

of sentences from widely available image and video captioning data sets to form sentence

paraphrase pairs, whereby these pairs are used to train the encoder-decoder model; 2)

the demonstration of the application of the sentence embeddings for paragraph summa-

rization and sentence paraphrasing, whereby evaluations are performed using metrics,

vector visualizations and qualitative human evaluation; and 3) the extention of the

vectorized sentence approach to a hierarchical architecture, enabling the encoding of

more complex structures such as paragraphs for applications such as text summariza-

tion. Chapter 4 presents the developed encoder-decoder framework for sentence and

paragraph paraphrasing.

Looking at the exploration of the relationship between multimedia and vectors,

it is reasonable to extend the goal of this dissertation to find the common vector

representation for different types of sources. In other words, given a(n) video se-

quence/image/audio/sentence/paragraph, the goal is to extract an embedded vector

containing the semantics of the source, and decode it to any type of the multimedia.

The embedded vectors from different types of sources lie in a common space so that

there is no need to align the vectors in the generative models. As an example, image

captioning converts an image into a vector, and then the vector is used to generate text.

In the other direction, the vector representation should be able to generate an image

with related content. The common vectors form a space referred to as common vector

space (CVS).

For simplicity, the study is focusing on images and text. Specifically, the common

vector space deals with four source-target conversion: text-text (text2text, which can be

described as a sentence paraphrasing model detailed in Chapter 4), image-text (im2text,
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as known as image captioning model as illustrated in Chapter 3), text-image (text2im,

as illustrated in Chapter 5), and image-image (im2im, as illustrated in Chapter 5).

Recent success in image captioning [33, 34, 35, 36] has shown that deep networks

are capable of providing apt textual descriptions of visual data. In parallel, advances in

conditioned image generation [37, 38, 39, 40] provide diverse images from a text based

prior. An ambitious goal for machine learning in the vision and language domain is

to be able to represent different modalities of data that have the same meaning with

a common latent representation. For example, words like “baseball” and “batter”, a

sentence describing a baseball game, or image representations of a baseball game all

refer to similar concepts. Generally, concepts that are semantically similar would lie

close together in the descriptor’s space while dissimilar concepts would lie farther apart.

A sufficiently powerful model should be able to store similar concepts in a similar repre-

sentation or produce any of these realizations from the same latent space. Successfully

mapping visual and textual modalities in and out of this latent space would significantly

impact the broad task of information retrieval.

Chapter 5 develops a cross-domain model, based on Plug & Play Generative Net-

works (PPGN) [37] architecture, capable of converting between text and image. The

networks used in these domains are combined by merging the latent representations

obtained during transition. The goal of the latent vector representation is to encourage

similar patches to have descriptors that are closer to each other in the descriptors’ space

than dissimilar ones. The contributions of this model are as follows: 1) The formulation

of a latent representation based model that merges inputs across multiple modalities; 2)

Development of an n-gram based cost function that generalizes better to a text prior;

3) Improvements on image quality while using multiple semantically similar sentences

for conditioning image generation on generalized text; and 4) To advance qualitative

measurement of text-to-visual models, an object detector based metric is introduced,

and the human evaluations are conducted which compare the metric to the standard

inception score [41].
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In addition to the PPGN based model, the concept of a unified Common Vector Space

(CVS) for vision and language is introduceed, that spans across five broad tasks: classi-

fication, captioning, object detection, retrieval and visual question answering. Chapter

6 first summarizes the work we have done, then introduces the idea of learning a Com-

mon Vector Space (CVS) where similar inputs from different modalities cluster together.

It is expected that the combination of these resources will facilitate research in multi-

task learning, transfer learning, general embeddings and encoders, architecture search,

zero-shot learning, general purpose question answering, meta-learning, and other related

areas of vision and language. The contribution of the CVS model would be: 1) For-

mulating an efficient vector space based model using neural embeddings that act as a

bridge between vision and language modalities and is easily expandable to new modali-

ties; 2) Introducing a multi-modal loss function that includes metric loss, category loss

and adversarial loss terms. The adversarial framework includes within-modality and

across modality discriminators; and 3) It is capable to applying this model to new tasks,

such as sentence/image retrieval, object localization and captioning, etc.



Chapter 2

Spatio-Temporal Video

Segmentation

Object level segmentation of the video sequence would benefit many higher level vision

based applications such as scene analysis, object localization and content understanding.

However, single target object extraction would be a more demanding task considering

consumers’ needs. In many cases, a consumer video sequence simply targets captur-

ing a single object’s movement in a specific environment. In general, it is challenging

for the object moving on a cluttered and/or dynamic background, since simple frame

differencing would not be able to extract a moving foreground object.

The goal of background modeling and foreground object extraction is to build a

model of the background/foreground in an offline manner and extract the object of

interest by comparing the estimated model with the frames. Recently, modeling on

spatio-temporal uniform regions [1] becomes popular approaches. Moreover, researchers

have focused on graph models for segmentation, such as [3] and [7]. However, these

approaches still suffer from the expense of computation and low accuracy.

In this chapter, a discussion that focuses on the coarse-to-fine framework and pro-

totype for automatic video sequence segmentation and salient moving object extraction

28



CHAPTER 2. SPATIO-TEMPORAL VIDEO SEGMENTATION 29

are presented. Effectively, voxel grouping techniques are often used to generate super-

voxels for video sequences and describe how similar the adjacent voxels are in terms

of appearance and motion. At a top-level, segmentation of video sequences becomes a

problem of classification of supervoxels into foreground or background. With the seg-

mentation results, some interesting and pleasing visual effects can be created easily for

consumers. This is known as video object recomposition.

The developed framework is comprised of point tracking algorithms and motion

clustering of pixels into groups. In parallel, a pixel grouping method is used to generate

supervoxels for the corresponding frames of the video sequence. Coarse segmentation

is achieved by combining the results of previous steps. Subsequently, a graph-based

segmentation technique is used to perform fine segmentation and extraction of the salient

object. Section 2.1 outlines some related work and approaches on video modeling and

moving object segmentation. Section 2.2 first gives an overview of the developed coarse-

to-fine video segmentation framework and the system workflow, and then describes the

details of the key algorithms and components of the developed framework. Section

2.3 discusses the performance evaluations and experimental results of the developed

framework and algorithms. Finally, some discussions and future work are presented in

Section 2.4.

2.1 Related Work

The goal of background modeling and foreground object extraction is to build a model

of the background/foreground in an off-line manner and extract the object of inter-

est by comparing the estimated model with the frames. The model must be robust

enough to cope with background changes in different ways. This section reviews some

of the relevant state-of-the-art methods on video segmentation in terms of the following

aspects:

Superpixel/Supervoxel Based Approaches. In recent years, a trend towards
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modeling spatio-temporal uniform (in terms of either appearance or motion) regions

instead of single pixels has been observed. These works rely on superpixels/supervoxels

for object segmentation in videos. The core idea is that in superpixels appearance and

motion are more or less uniform, thus estimated density functions are likely to be quite

accurate. However, these methods 1) need to compute the motion field through optical

flow, which is computationally expensive; 2) group superpixels together according to

pure spatio-temporal similarity (in terms of appearance) without exploiting real-world

object features; and 3) produce segmentation through global minimization of an energy

function, thus considering video object segmentation as a single objective optimization

problem, while, in fact, it is intrinsically multi-objective. As an improvement, Giordano

et al. [2] proposed an approach without making any specific assumptions about the

videos and it relies on how objects are perceived by humans according to Gestalt laws.

This methods is able to segment objects in crowded scenes and accurately segments com-

plex articulated objects. From another point of view, meaningful features are necessary

in frame partitions for good video segmentation. Much literature [42, 43] has proposed

features for appearance, motion or shape similarities among the graph nodes. Most

works are currently limited in the number of features they can leverage, as often the

researchers hand-design the feature combination to measure similarity between pixels or

superpixels. Khoreva et al. [3] proposed an empirical approach to learn both the edge

topology and weights of the graph. The most confident edges are selected by the graph

structure while the classifiers are learned to combine features and seamlessly integrated

by its accuracy. In [5] and [4], HoG and FPFH have been used as features to represent

superpixels. The high dimension feature space slows down the computation, although

some improvements (for example, [6]) were proposed to provide a better balance of trade

off between segmentation quality and runtime.

Graph Based Approaches. Much research has been devoted to graph partitioning

models [44, 45]. While measurable differences have been observed, Khoreva et al. [3]

intentionally focused on the graph construction problem instead, and adopted the recent
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and successful graph partitioning model [7] based on spectral clustering. Fan and Loui [8]

proposed a graph-based approach that effectively models the data in a high-dimensional

feature space, which emphasizes the correlation between similar pixels while reducing the

inter-class connectivity between different objects. The graph model fuses appearance’

spatial and temporal information to break a volumetric video sequence into semantic

spatiotemporal key-segments. In the work of Li et al. [9], the reduced superpixel graph

was reweighted such that the resulting segmentation was equivalent to the full graph

under certain assumptions. Among this type of algorithms, constructing the graph is

a vital step for ensuring the performance of clustering methods. Although graph-based

methods have been extensively studied, there have been limited efforts for building

effective graphs. The most popular method for constructing a sparse graph is the nearest

neighbor approach, including different variants such as k-nearest neighbor and ε-nearest

neighbor methods.

Learning Based Approaches. Learning based models consist one of the major

themes in image and video segmentation. They learn the appearance of semantic cate-

gories, under various transformations, and the relations among them using parametric

models. Conditional Random Field (CRF) based image models have been quite suc-

cessful in jointly modeling the appearance and structure of an image. [46] used CRFs

to combine unary potentials obtained from the visual features of superpixels with the

neighborhood constraints. Multi-scale convolution neural networks were used in [47] to

learn visual feature extractors from raw-image/label training pairs. It achieved impres-

sive results on various datasets using gPb, purity-cover and CRF on top of the learned

features. It was extended in [48] by feeding in the per-pixel predicted labels using a

Convolutional Neural Network (CNN) classifier to the next stage of the same CNN

classifier. Long et al. [49] showed that convolutional networks by themselves, trained

end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. The

key insight is to build “fully convolutional” networks that take input of arbitrary size

and produce correspondingly-sized output with efficient inference and learning. Cimpoi
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et al. [50] conducted a study of material and describable texture attributes recogni-

tion in clutter, and proposed a texture descriptor, Fisher Vector pooling of a CNN

filter bank. FV-CNN substantially improves the state-of-the-art in texture, material

and scene recognition. Sharma et al. [51] proposed a learning-based approach to scene

parsing inspired by the deep Recursive Context Propagation Network (RCPN). RCPN

is a deep feed-forward neural network that utilizes the contextual information from the

entire image, through bottom-up followed by top-down context propagation via random

binary parse trees. This improved the feature representation of every superpixel in the

image for better classification into semantic categories.

Supervised vs. Unsupervised Approaches. Video object segmentation ap-

proaches in the current literature can be grouped into supervised or unsupervised cat-

egories. Supervised (and semi-supervised) approaches typically act through training

label classifiers [50, 51] or propagating user-annotated labels over time [52, 53]. Super-

vised learning is a way to improve the performance of segmentation for specific tasks.

Teney et al. [52] improved hierarchical video segmentation with supervised learning.

They optimized a metric between segment descriptors over labeled training data, using

a large-margin formulation suitable for hierarchical segmentation. Although being well

studied for a long period, such methods are limited to a small range of applications due

to the extreme dependence on labor-intensive pixel annotations to train suitable mod-

els. Unsupervised approaches generally focus on segmenting the most primal object in a

single video and co-segmenting the common object among a video collection [54, 55, 56].

Dong et al. [57] proposed to densely extract object segments with high objectness and

smooth evolvement based on directed acyclic graph. Papazoglou et al. [58] developed

a fast object segmentation approach that quickly estimates rough object configurations

through the use of inside-outside maps. In addition, weakly supervised approaches have

received growing attention for their convenience in gathering video-level labels and the

prospect in analyzing web-scale data. Existing algorithms employed variants on the

learning techniques to predict the confidence of each pixel belonging to a given concept.
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Zhang et al. [59] proposed a segmentation approach based on semantic objects in weakly

labeled videos via object detection. Zhang et al. [60] learned a weakly supervised se-

mantic segmentation model from social images whose labels might be noisy and are not

pixel level but image-level.

2.2 System Framework and Algorithms

The developed coarse-to-fine framework [61] is illustrated in Figure 2.1, and consists of

several stages: 1) The point tracking algorithms are applied to the consecutive frames of

the input video, and then 2) these tracking points are clustered into groups; in parallel,

3) a pixel grouping method is used to generate supervoxels for the corresponding frame

of the video sequence; 4) the coarse segmentation is achieved by combining the results

of previous steps; 5) the graph-based segmentation technique is used to perform fine

segmentation and generate a mask of the most salient object, and finally, 6) visual

effects are created based on the segmentation results.

Input Video 

Sequence

Point Tracking
Motion 

Clustering

Supervoxel Clustering

Coarse 

Segmentation

Graph-based 

Fine Segmentation

Create 

Effects

Figure 2.1: The overall coarse-to-fine framework for video segmentation and recompo-
sition.

This video segmentation scheme exhibits state-of-the-art boundary adherence, im-

proves the performance of segmentation algorithms, and produces interesting and pleas-

ing visual outputs, with reduced memory consumption. This approach is a major en-

hancement to the previous graph-based framework [8], with the following distinctions

and advantages:

• This scheme deals with the video sequence with any resolution and any length,

i.e., there is no restriction on the size of the video. For a long video sequence, it



CHAPTER 2. SPATIO-TEMPORAL VIDEO SEGMENTATION 34

is segmented into small clips that are processed by the system one by one.

• The parallel approach combines the spatial and temporal information and takes

advantages of both graph-based algorithms and pixel grouping methods. Conse-

quently it provides a remarkable improvement on accuracy and speed.

• It is an unsupervised scheme, i.e., there is no user interaction required to generate

the accurate object mask. The desired output visual effects can be easily created

by the predefined parameters.

This section contains the details of the system framework. Given the full accessibil-

ity of consumer videos, the point tracking and clustering can be processed all at once

instead of one frame at a time. In parallel, the 3D Simple Linear Iterative Clustering

(SLIC) supervoxels are generated in each segment of the entire video sequence. Af-

ter combining the results of point clustering and supervoxel grouping, the graph-based

approach, typically GrabCut, is used to provide a fine segmentation.

2.2.1 Points Tracking

There are a lot of widely-used point tracking algorithms, and each of them has its own

characteristics. Particle filtering [62] is good at seeking the global optimal solution,

but this algorithm is not fast enough. In addition, the color histogram based calculation

leads to the weakness of distinguishing the objects with similar color. Mean shift tracking

[63] overcomes the difficulty on computing speed, however, it is easy to run into local

optimum.

Another popular and well-performed video object tracking algorithm is the Kanade-

Lucas-Tomasi (KLT) point tracker. This algorithm is based on the early work of Lucas

and Kanade [64], and later was developed fully by Tomasi and Kanade [55]. The algo-

rithm basically provides the trajectories of a bundle of points. The KLT points tracker

requires some prerequisites: 1) the luminance between two adjacent frames could be

considered as constant; 2) the object moves under a continuous time slot, otherwise
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the movement should be “small” enough; 3) a point and its neighborhood have similar

motion vector, i.e., spatially consistent. In theory, if the window w in frame I is the

same as that in the adjacent frame J , we have I(x, y, t) = J(x′, y′, t+ τ). The constant-

luminance hypothesis holds the equality and gets rid of the effect of luminance changes.

The second premise ensures the existence of the tracking points. The points in the same

window that have the same offset are guaranteed by the third premise.

Mathematically, in the window w, all the points (x, y) move to (x′, y′) by the offset

(dx, dy), i.e., the point (x, y) at time t corresponds the point (x + dx, y + dy) at time

t + τ . Based on this fact, the point matching problem can be described by looking for

the minimum of the equation below

ε(d) = ε(dx, dy) =
∑
x∈w

∑
y∈w

[J(x+ dx, y + dy)− I(x, y)]2 (2.1)

In continuous representation,

ε(d) =

∫∫
W

[
J

(
x +

d

2

)
− I

(
x− d

2

)]2

w(x)dx (2.2)

implies the difference in the window with center x− d

2
in the frame I and x +

d

2
in the

frame J , and side length w/2. In order to find the minimum, let

∂ε(d)

∂d
= 0 (2.3)

where
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w(x)dx

(2.4)
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Applying a Taylor-series expansion, we have

J

(
x +

d

2

)
≈ J(x) +

dx
2

∂J

∂x
(x) +

dy
2

∂J

∂y
(x) (2.5)

I

(
x− d

2

)
≈ I(x)− dx

2

∂I

∂x
(x)− dy

2

∂I

∂y
(x) (2.6)

The problem becomes

∂ε(d)

∂d
≈
∫∫

W
[J(x)− I(x) + gT (x)d]g(x)w(x)dx (2.7)

where

g =

[
∂

∂x

(
I + J

2

)
∂

∂y

(
I + J

2

)]T
(2.8)

Rearranging the equation above yields

∫∫
W

[J(x)− I(x)]g(x)w(x)dx = −
∫∫

W
gT (x)dg(x)w(x)dx (2.9)

= −
[∫∫

W
g(x)gT (x)w(x)dx

]
d (2.10)

Now this equation has the form of

Zd = e (2.11)

where

Z =

∫∫
W

g(x)gT (x)w(x)dx (2.12)

is a 2× 2 matrix and

e =

∫∫
W

[I(x)− J(x)]g(x)w(x)dx (2.13)

is a 2 × 1 vector. The matrix ZZT has to be invertible to ensure the existence of the

solution. Generally, the corner points have such property.

In this work, the points to be tracked are selected in a grid-based manner in order

to make the initial points distributed uniformly in the entire frame, as shown by the red
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dots in Figure 2.2(a). As the point tracking algorithm progresses over time, points can

be lost due to lighting variation, out of plane rotation, or articulated motion as shown

in Figure 2.2(b) and Figure 2.2(c). To track an object over a long period of time, it is

better to reacquire points periodically.

(a) (b) (c)

Figure 2.2: KLT point tracking. (a) Selected tracking points in the 1st frame; (b) and
(c) Tracking points in the 3rd and 5th frame.

There are some algorithms proposed to improve the accuracy of KLT points tracking.

One practical includes TLD algorithm proposed by Kalal [65].

Alternatively, tasks such as object tracking can be done by making use of optical

flow methods. In the case of a continuous video sequence, the tracking points in a

frame are extracted by feature point detector, such as SIFT or Harris corner detector,

or manually selected depending on the application of the system. Optical flow methods

look for the optimal location of these tracking points in any specific frame after that.

The point tracking is achieved by running this process iteratively. However, this method

is time-consuming.

2.2.2 Motion Clustering

In the video segmentation problems, the collection of points in a video sequence is

located in the high-dimensional space. Often, high-dimensional data lie close to low-

dimensional structures corresponding to several classes or categories the data belongs

to. The Sparse Subspace Clustering (SSC) algorithm clusters tracking points that lie
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in a union of low-dimensional subspaces [66]. The key idea is that, among infinitely

many possible representations of a data in terms of other points, a sparse representation

corresponds to selecting a few points from the same subspace. This motivates solving a

sparse optimization program whose solution is used in a spectral clustering framework to

infer the clustering of data into subspaces. Since solving the sparse optimization program

is in general NP-hard, a convex relaxation is considered, and it is shown that under

appropriate conditions, on the arrangement of subspaces and the distribution of data,

the minimization program succeeds in recovering the desired sparse representations. The

algorithm can be solved efficiently and can handle data points near the intersections of

subspaces. Another key advantage of this algorithm with respect to the state-of-the-art is

that it can deal with data nuisances, such as noise, sparse outlying entries, and missing

entries, directly by incorporating the model of the data into the sparse optimization

program.

The underlying idea behind the SSC algorithm is the “self-expressiveness” property,

meaning that each data point in a union of subspaces can be efficiently represented as

a linear or affine combination of other points in the dataset. Based on this fact, let

{S`}n`=1 be an arrangement of n linear subspaces of RD of dimensions {d`}n`=1. Consider

a given collection of N tracking points {yi}Ni=1 that lie in the union of the n subspaces.

Denote the matrix containing all data point as

Y , [y1,y2, · · · ,yN ] = [Y1,Y2, · · · ,Yn]Γ (2.14)

where Y` ∈ RD×N` is a rank-d` matrix of N` > d` points that lie in S`, and Γ ∈ RN×N is

an unknown permutation matrix. The subspace clustering problem refers to the problem

of finding the number of subspaces, their dimensions, a basis of each subspace, and the

segmentation of the data from Y. Each data point can be written as

yi = Yci, cii = 0 (2.15)
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where ci , [ci1, ci2, · · · , ciN ]T and the constraint cii = 0 eliminates the trivial solution

of writing a point as a linear combination of itself. In other words, the matrix of data

points Y is a self-expressive dictionary in which each point can be written as a linear

combination of other points. However, the representation of yi in the dictionary Y is

not unique in general. This comes from the fact that the number of data points in a

subspace is often greater than its dimension, i.e., N` ≤ d`. As a result, each Y`, and

consequently Y, has a non-trivial null space giving rise to infinitely many representations

of each data point.

A data point yi that lies in the d`-dimensional subspace S` can be written as a linear

combination of d` other points in general directions from S`. As a result, ideally, a sparse

representation of a data point finds points from the same subspace where the number

of the non-zero elements corresponds to the dimension of the underlying subspace.

For a system equation, such as (2.15), with infinitely many solutions, one can restrict

the set of solutions by minimizing an objective function such as the `q-norm of the

solution as

min ‖ci‖q (2.16)

s.t. yi = Yci, cii = 0 (2.17)

where the `q-norm is defined as

‖ci‖q ,

 N∑
j=1

|cij |q
 1

q

(2.18)

Typically, by decreasing the value of q from infinity toward zero, the sparsity of the solu-

tion increases. The extreme case of q → 0 corresponds to the general NP-hard problem

of finding the sparsest representation of the given point, as the `0-norm counts the num-

ber of non-zero elements of the solution. Since this research is interested in efficiently

finding a non-trivial sparse representation of yi in the dictionary Y, minimizing the
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tightest convex relaxation of the `0-norm is considered, which can be solved efficiently

using convex programming tools and is known to prefer sparse solutions. The sparse

optimization problem for all data points i = 1, · · · , N can be rewritten in matrix form

as

min ‖C‖1 (2.19)

s.t. Y = YC, diag(C) = 0 (2.20)

where C , [c1, c2, · · · , cN ] ∈ RN×N is the matrix whose i-th column corresponds to the

sparse representation of yi, ci, and diag(C) ∈ RN is the vector of the diagonal elements

of C.

The next step is to infer the segmentation of the data into different subspaces using

the sparse coefficients. To address this problem, a weighted graph G = (V, E ,W),

where V denotes the set of N nodes of the graph corresponding to N data points and

E ∈ V × V denotes the set of edges between nodes. W ∈ RN×N is a symmetric non-

negative similarity matrix representing the weights of the edges, i.e., node i is connected

to node j by an edge whose weight is equal to wij . An ideal similarity matrix W, hence

an ideal similarity graph G, is one in which nodes that correspond to points from the

same subspace are connected to each other and there are no edges between nodes that

correspond to points in different subspaces. Note that the sparse optimization problem

ideally reverts to a subspace-sparse representation of each point, i.e., a representation

whose non-zero elements correspond to points from the same subspace of the given data

point. This provides an immediate choice of the similarity matrix as W = |C| + |C|T .

In other words, each node i connects itself to a node j by an edge whose weight is equal

to |cij |+ |cji|. The reason for the symmetrization is that, in general, a data point yi ∈ S`
can write itself as a linear combination of some points including yj ∈ S`. However, yj

may not necessarily choose yi in its sparse representation. This particular choice of the

weight ensures that nodes i and j get connected to each other if either yi or yj is in the



CHAPTER 2. SPATIO-TEMPORAL VIDEO SEGMENTATION 41

sparse representation of the other.

The similarity graph built this way has, ideally, n connected components correspond-

ing to the n subspaces, i.e.,

W =


W1 · · · 0

...
. . .

...

0 · · · Wn

Γ (2.21)

where W is the similarity matrix of data points in S`. Clustering of data into subspaces

then follows by applying spectral clustering to the graph G. More specifically, the

clustering of data is obtained by applying the k-means algorithm to the normalized rows

of a matrix whose columns are the n bottom eigenvectors of the symmetric normalized

Laplacian matrix of the graph.

The point trajectories acquired by the KLT point tracker are grouped into two

clusters using SSC algorithm. Figure 2.3 shows the clustering results on two frames.

Due to the fact that the object moves in a different way than the background does, the

tracking points on the object are separated from the points on the background.

(a) (b)

Figure 2.3: Demonstrations of point trajectory clustering using SSC algorithm on two
frames. The yellow and red markers represent two clusters, foreground and background
respectively.
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2.2.3 Supervoxel Clustering

Simple linear iterative clustering (SLIC) is an accurate, fast and memory efficient al-

gorithm proposed by Achanta et al. [67] to generate superpixels. This approach can

be extended to 3D space for dealing with 3D data clustering problem such as video

sequence segmentation.

Considering the aspect of computational efficiency, the entire video sequence is cut

into clips and each chip contains a fixed number of frames which is determined and

adjusted by the computing ability of the processor. Each clip can then be processed

individually. Since the consumer videos are usually taken by users’ portable video

cameras or even cellphones, the resolution of consumer videos is sometimes comparable

or higher than 720p HD videos. Those kinds of videos contain too much details in each

frame and cause undesired effects and redundant computations on 3D SLIC performance.

In order to solve this problem, a bilateral filter [68] can be used on each frame in the clip.

The intensity value of each pixel is replaced by the weighted average intensity values

from neighboring pixels so that the edges around the objects are preserved and the other

regions are smoothed. Also, bilateral filtering reduces the noise in each channel.

Suppose that the desired number of supervoxels on each frame is n and the depth

of each supervoxel is D along the temporal axis. Assuming that the supervoxels are

initially square in each frame and approximately equal-sized. All cluster centers are

initialized by sampling the clip on a regular grid spaced S pixel apart inside each frame

and t pixel between frames (along temporal axis). Therefore, the actual total number

of supervoxel is determined by

k = kx × ky × kz (2.22)

where kx, ky and kz are the number of supervoxels along the x, y and z (temporal)
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directions:

kx =
total number of rows

S
(2.23)

ky =
total number of columns

S
(2.24)

kz =
number of frames in each clip

S
(2.25)

Without considering the accuracy for small color differences, the video sequence is con-

verted into CIELAB space. Each cluster is then represented by the vector

C =
[
x y z L∗ a∗ b∗ u v

]
(2.26)

where x and y represent the special location and z carries the temporal information, L∗,

a∗ and b∗ represent the spectral information and u, v represent the motion information

extracted by optical flow.

In the assignment, the cluster of each pixel is determined by calculating the distance

between the pixel itself and the cluster center in the search region with size 2S × 2S ×

2D, as shown in Figure 2.4. The problem arises when the distance is measured. In

this case, the distances in each domain are calculated separately and then combined

after multiplying by the appropriate weights, i.e., the distance d is defined by the pixel

location, the CIELAB color space and motion vector in the image as follows:

d =

√
d2
l

2S2 +D2
+
d2
c

m
+
wmd

2
m

RS
(2.27)

where m is the regularity that controls the compactness of the supervoxel, wm is a weight
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S
2S

S

2S

D

2D

Initialized 
supervoxel

Figure 2.4: Initialization and the search region of the supervoxel. Red box shows the
initialized supervoxel along D consecutive frames. Blue box is the searching area for
this cluster. Each pixel is calculated eight times since it enclosed by eight cluster search
region.

on motion information, R is frame rate, and

dl =
√

∆x2 + ∆y2 + wz ·∆z2 (2.28)

dc =
√
wL∗ ·∆L∗2 + ∆a∗2 + ∆b∗2 (2.29)

dm =
√

∆u2 + ∆v2 =
√

∆ẋ2 + ∆ẏ2 (2.30)

where wz and wL∗ are the weights for temporal distance and L∗ channel. In the dis-

tance measure, the location is normalized by the maximum distance in the 3D lattice

2S2 +D2 according to Figure 2.4. The weight for the depth component wz is introduced

since the inter-frame (lateral) position distance should be treated differently as in-frame

(transverse) distance. Considering two adjacent supervoxels with depth D in the tem-

poral axis, these two supervoxels would shrink transversely and expand up to 2D in

lateral direction during the iterations if the region surrounded is relatively uniform and

the weight wz is small. This causes the increased number of clusters on a single frame,
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which is unexpected for some applications.

Similar to some graph-based algorithms [69], 3D SLIC does not explicitly enforce

connectivity. For some clusters, the pixels are merged by the adjacent supervoxels and

only a small group of pixels (sometimes only one pixel) is retained in the cluster to keep

the total number of clusters unchanged. To deal with this problem, the adjacency matrix

is generated and the clusters with number of pixels under a threshold are reassigned to

the nearest neighbor cluster using connected component analysis. Figure 2.5 shows the

results of 3D SLIC algorithm after the connected component analysis.

(a) (b) (c)

Figure 2.5: Results of 3D SLIC voxel grouping on three consecutive frames. The bound-
aries of each supervoxel are shown in yellow. The block enclosed by the yellow boundaries
in the corresponding position between frames has the same label.

Note that for some HD videos that contain too much redundant details on the

background, the SLIC pixel grouping generates some tiny clusters which are too fine and

increase the computation and processing time. To solve this problem, it is recommended

to cluster videos of this kind after the bilateral filtering. The fine edges can be removed

and the main boundaries of the object and background would be retained.

2.2.4 Coarse Segmentation

For each supervoxel, the coarse segmentation is performed by combining the SSC ap-

proach on tracking points. As shown in Figure 2.6(a), the SSC algorithm provides an

approximate region containing the object of interest. Based on that, a strategy is devel-
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oped with the following rules: for each supervoxel in the video clip as shown in Figure

2.6(b), if all the tracking points in it are marked red, this supervoxel is considered as

background (black region in Figure 2.6(c)); similarly, if all the tracking points in a su-

pervoxel are marked yellow, this supervoxel is labelled as foreground (white region in

Figure 2.6(c)); otherwise, for the supervoxels containing both colored markers, they are

considered as undetermined regions, as shown by the gray region in Figure 2.6(c).

(a) (b) (c)

Figure 2.6: Coarse segmentation by combining the results of SSC and 3D SLIC algo-
rithms. (a) Tracking points generated by KLT and SSC. The yellow and red markers
represent the foreground and background region respectively; (b) The 3D SLIC super-
voxels on the same frame; and (c) The mask generated by combining (a) and (b). The
black, gray and white regions denote determined background, undetermined region and
determined foreground respectively.

2.2.5 Graph-based Fine Segmentation

For fine segmentation, the GrabCut [70] algorithm is adopted since it requires a set of

pixels for background, i.e., it allows incomplete labeling. Also, GrabCut looks for the

minimum iteratively rather than in an one-time manner. Each iteration improves the

parameters of the Gaussian Mixture Models (GMMs) to generate a better segmentation.

For the video frames in RGB color space, the object and background are modeled

by a full-covariance Gaussian mixture with K components (typically K = 5). In order

to deal with the GMM tractably, in the optimization framework, an additional vector

k = [k1, k2, · · · , kn, · · · , kN ] is introduced, with kn ∈ 1, · · · ,K, assigning, to each pixel,
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a unique GMM component, with one component either from the background or the

foreground model. Using the mask generated by the coarse segmentation, the black,

white and gray regions are flagged with background, foreground and undetermined, or

simply marked as 0, 1 or 2 for the image. Applying k-means clustering, the pixels

belonging to either object or background are clustered into K groups (GMMs). The

mean and covariance of the GMM can be estimated by the RGB values of pixels in each

cluster, and the weight can be determined by the ratio of the number of pixels in the

cluster to the number of overall pixels. Finally, texture (color) and boundary (contrast)

information is used to improve the GMM and get a reliable segmentation result within

a few iterations, as illustrated in Figure 2.7.

(a) (b)

Figure 2.7: Result of fine segmentation using GrabCut method. (a) The algorithm
segment the undetermined region to light and dark gray regions; and (b) The light and
dark gray regions are merged to the background and foreground respectively to form
the final mask.

Admittedly, GrabCut algorithm has its drawbacks: if the background is too com-

plicated and contains too much fine detail, or there is a lack of similarity between the

background and foreground, the segmentation results would be affected. In addition,

the speed of computation cannot be guaranteed. However, compared to traditional

Graph Cut, GrabCut improves the foreground and background model as GMM of RGB

channel, instead of using gray scale histograms. Moreover, GrabCut learns the param-

eters and segments the video frames iteratively, whereas traditional Graph Cut is a

one-time segmentation. Most importantly, Graph Cut needs some user-defined “seeds”
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for both foreground and background, whereas GrabCut only requires a set of pixels for

background, i.e., it allows incomplete labeling.

2.3 Experimental Results

The experiments are conducted on a variety of video content. The developed algorithm

is applied on multiple types of data, and generate a mask of the extracted object for each

frame. The comparison of the segmentation results to those produced by other state-

of-the-art methods [19, 20, 21, 22, 23] is made in this section. Both qualitative and

quantitative results will be presented to support the effectiveness and robustness of the

developed method. Some demonstrations of interesting and pleasing effects generated

based on the developed algorithm will be shown as well.

2.3.1 Parameters Settings

The parameters used in the experiments are as follows. In the point tracking and clus-

tering process, the initial point sampling interval is set to 10 pixels and the tracking

points are reset every 5 frames. The number of clustering groups depends on the appli-

cation. Typically, it is set to 5. To group pixels, the 3D SLIC algorithm is performed

every 30 frames (clip size). For demonstration, the desired number of supervoxels in

one frame is set to 100; the desired depth of supervoxels is D = 5 frames; the regu-

larity m = 22; depth of supervoxel D = 5; the weights for temporal distance and L∗

channel are wZ = 50 and wL = 1 respectively. On average, the 3D SLIC algorithm

runs 5 iterations to get a reliable result. To construct the visual effects, the brightness,

size, transparency and location of the extracted object and the background image/video

could be adjusted and controlled by the user control.
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2.3.2 Evaluation on SegTrack Dataset

First the video sequences from the SegTrack [71] dataset are considered since a pixel-level

segmentation ground truth for each video is available. The ground truth provided with

the original data is used to quantitatively evaluate the segmentation performance. The

developed method is compared with five state-of-the-art methods as shown in Table 2.1.

The “penguin” video sequence is not available for this segmentation application since

the ground truth for the “penguin” sequence is designed for object tracking in a weakly

supervised setting, in which only one penguin is manually annotated by the original

user at the each frame. Note that this method is an unsupervised methods, whereas [72]

and [71] are supervised method which needs an initial annotation for the first frame.

One can see that this algorithm outperforms the other unsupervised methods except

for the “parachute” and “birdfall2” video where it is still comparable to the best one.

As mentioned before, for the “parachute” video sequence, this result is based on the

fact that the person under the parachute should be a part of the object and extracted.

However, the person in the ground truth of “parachute” sequence was removed in the

original dataset, which leads to a slightly inaccurate error calculation. Due to the small

size of moving object and the complex background in the scene, the predefined density of

tracking points may not be high enough to extract the foreground in “birdfall2” video

sequence, which leads to the pixel error a little higher than the best one. However,

this can be improved by making the density of the tracking points self-adjustable. The

results in Table 2.1 take the average of the difference between pixel error and the ground

truth, i.e.,

error =
xor(result, ground truth)

number of frames
(2.31)

where xor is an exclusive OR operation.

Figure 2.8 shows an example of the qualitative results of parachute video sequence in

SegTrack dataset. In this video sequence, the foreground and background regions move

in different ways. Compared to the last column of Figure 2.8(b) and (c), the person
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Table 2.1: Quantitative pixel-level errors and comparison with the state-of-the-art meth-
ods on SegTrack dataset.

Video Sequence Name [57] [72] [73] [74] [71] Ours

parachute 220 502 201 221 235 219
girl 1488 1755 1785 1698 1304 1471

monkeydog 365 683 521 472 563 345
birdfall2 155 454 288 189 252 232
cheetah 633 1217 905 806 1142 621

penguin* NA NA NA NA NA NA

* The video sequence “penguin” is not applicable to this evaluation.

under the parachute is segmented into the foreground in this results instead of merged

into background as shown in ground truth. This makes the segmentation result more

reasonable, although it leads to the error increase in Table 2.1. Figure 2.9 compares

this results with the ground truth on “girl” video sequence. In this video sequence, the

foreground is always at the center of the frame, the background keeps moving from left to

right. Also, this video suffers from low resolution and severe motion blur which increases

the difficulty. The point tracking and supervoxel generation are affected by the motion

blur (the third column of Figure 2.9). This becomes the main source of the pixel-level

error. In addition, it has been proved that the developed algorithm performs well on

rigid body motion, however, the motion in this video sequence is non-rigid. Specifically,

different parts of the body behave differently during the movement. This makes motion

clustering module fail to work properly. In order to solve this problem, each part of

the moving object, i.e., body, arms, legs, can be considered as a rigid-body, the SSC

algorithm clusters them into different classes and they are combined afterwards.

With the segmentation results, some interesting and pleasing visual affect can be

created easily for consumers, as shown in Figure 2.10 and Figure 2.11. In these demon-

strations, the extracted moving object in the video sequence can be adjusted in terms

of size, location, brightness, transparency, etc. according to user’s demand. Also, the
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(a) Original frames

(b) Ground truth

(c) Our results

Figure 2.8: Qualitative results of SegTrack “parachute” video sequence.

number of extracted objects and the attributes mentioned above can be adjusted indi-

vidually. The objects from different frames can be synthesized into a single image to

create a static effect, or a moving background to create a dynamic effect. To achieve the

results in 2.10 and Figure 2.11, the extracted objects from the original video sequences

and the background images/videos are converted into CIELAB color space, and then

histogram matching is performed on L∗ channel only to make the inserted objects look
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(a) Original frames

(b) Ground truth

(c) Our results

Figure 2.9: Qualitative results of SegTrack “girl” video sequence.

natural. This results in a good visual effects by comparing the brightness of the objects

in Figure 2.10(b) and Figure 2.10(d)(e)(f), Figure 2.11(b) and Figure 2.11(d)(e)(f). Note

that all these effects can be easily produced by the predefined user parameters.

All the experiments are performed on an Intel R© CoreTMi5-4590 CPU at 3.30GHz

with 16GB memory. Before extensive code and data structure optimization, the process-

ing time per frame is around 0.52s, 15.86s, and 7.62s for points clustering, supervoxel

generation and final segmentation, respectively.
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(a) (b)

(c)

(d) (e) (f)

Figure 2.10: Visual effects created using segmentation result of parachute video se-
quence. (a) The background used to create static effect in (b); (b) A static image
synthesized by the segmentation result and (a); (c) A panorama used to create dynamic
effects as shown in (d) to (f); and (d) to (f) The video frames generated by synthesizing
the segmentation result and (c).

2.3.3 Evaluation on Kodak Alaris Consumer Video Dataset

With the rapid development and lower cost of smartphones and new digital capture

devices, consumer videos are becoming ever popular as is evident by the large volume of

YouTube video upload, as well as video viewing in the Facebook social network. These

large amount of videos also pose a challenge for organizing and retrieving videos for

consumers. In addition to the SegTrack dataset, evaluations of the developed approach
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(a) (b) (c)

(d) (e) (f)

Figure 2.11: Visual effects created using segmentation result of girl video sequence. (a)
The background used to create static effect in (b); (b) A static image synthesized by
the segmentation result and (a); (c) The background used to create dynamic effect in
(d) to (f); and (d) to (f) The video frames generated by synthesizing the segmentation
result and (c).

are conducted on some of the videos from Kodak Alaris consumer video dataset. The

videos in the dataset are mostly captured in standard HD format with high frame

resolution. Figure 2.12 shows the qualitative results of “gymnast1” video sequence in

this dataset. Because of the high resolution of the video, bilateral filtering is applied

on the original frame to remove some fine details of the background and keep the main

edges. The bilateral filtering does not affect the performance of either SSC or 3D SLIC

algorithm, but rather saves the computation. Another example is shown in Figure 2.13.

In this video, some parts of the moving object (dog) is similar to the background trees

in color, and the other parts are as white as the background sky. It turns out that this

algorithm produces reasonably good results for this difficult task.
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(a) Original frames in the video sequence.

(b) Mask representing the extracted object in the sequence.

Figure 2.12: Object segmentation results on “gymnast1” video sequence in Kodak Alaris
consumer video dataset.

(a) Original frames in the video sequence.

(b) Mask representing the extracted object in the sequence.

Figure 2.13: Object segmentation results on “dog” video sequence in Kodak Alaris
consumer video dataset.
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2.4 Discussion

This chapter has developed a novel and accurate coarse-to-fine approach to segment the

salient object in video sequences and generate interesting and pleasing visual outputs.

This approach involves a parallel scheme which consists of KLT, SSC and 3D SLIC

algorithms to identify the approximate location of the most salient object and, as a

result, an unsupervised graph-based method can be used in subsequent steps.

Admittedly, there exists some drawbacks in the developed scheme. For example, the

SSC algorithm divides the motions into different groups according to the point tracking

results, but sometimes the object with non-rigid motion leads to inconsistent motion

on different part of the object. This results in the failure of segmentation. To solve

this problem, an easy way is to consider each part on the object as an independent

component, and then separate these components from the background. Finally these

components can be combined using image classification approaches such as described in

[75] and [76]. In addition, motion blur decreases the chance of success of object detection

and makes the created effects not looking natural. To fix this problem, Kim and Lee

[77] proposed an algorithm that deals with general blurs inherent in dynamic scenes.

Also, some consumer videos are taken by the hand-held device, Su and Heidrich [78]

developed an approach to handle rolling shutter wobble. The intra-frame deblurring

algorithm proposed by Zhang and Yang [79] is also a good choice in terms of reducing

motion blur.

However, since the coarse segmentation determines the location of the moving ob-

ject rather than the exact boundaries, the accuracy of KLT, SSC and 3D SLIC does

not affect the final segmentation result too much, i.e., the robustness of this approach

can be guaranteed. It is also worth mentioning that this algorithm can be easily ex-

tended to multiple objects segmentation by controlling the number of classes in the SSC

stage. Due to the novel approach involving motion tracking and clustering, the objects

with unconnected bodies and objects with transparent holes can be extracted as well.

Compared to the previous work [8], it has stronger ability to segment video sequences
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accurately in any resolution and any length within a shorter time. The experimental

results validate the effectiveness and performance of the developed method.



Chapter 3

Batch-Normalized Recurrent

Highway Networks

Deep artificial neural networks have been applied to various computer vision and pattern

recognition tasks, including video analysis. The adjacent frames in a video sequence are

related by consistent motion and pixel similarity in terms of pixel color and location.

Therefore, video sequences can be modeled by Recurrent Neural Networks (RNNs).

Generally, greater depth of the networks leads to the small error, but training such

a deep networks is challenging due to the fact that the distribution of each layer’s

inputs changes during training. Moreover, it turns out that the gradient in deep neural

networks is unstable, tending to either explode or vanish in earlier layers. In such deep

architectures the vanishing or exploding gradient problem becomes a key issue.

Several techniques have been proposed to circumvent the vanishing and exploding

gradient problem. For example, batch normalization [14], which addresses the internal

covariate shift problem by normalizing the layer inputs per mini-batch statistics. While

batch normalization has been found to be very effective for feedforward CNNs, the

technique has not been as prevalent on RNNs.

In this chapter, Batch-Normalized Recurrent Highway Networks (BNRHN) are de-

58
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veloped to control the gradient flow in an improved way for network convergence in

RNNs. The framework will be performed using batch normalization on recurrent high-

way layers. This architecture will reasonably control the gradient flow and effectively

strengthen the ability of processing the data as sequences by increasing the depth of the

network. The developed model is tested on an image captioning task using MSCOCO

dataset. Experimental results indicate that the batch normalized recurrent highway

networks converge faster and perform better compared with the traditional LSTM and

RHN based models.

This chapter is organized as follows: Section 3.1 reviews some related techniques on

gradient control in deep RNNs. Section 3.2 presents the developed sequence modeling

framework and the details of the key component of the framework. Section 3.3 discusses

the experimental setup, performance evaluations, and experimental results. Finally,

some concluding remarks are presented in Section 3.4.

3.1 Related Work

Much theoretical and empirical evidence indicates that the depth of neural networks

plays an important role as a powerful machine learning paradigm. Deep CNNs have

been proven successful on modern computer vision tasks, as illustrated in [10]. However,

increasing depth in RNNs which are deep in the time domain typically does not take

advantage of depth since the state update modeled by certain internal function mapping

in modern RNNs is usually represented by non-linear activations [80]. Also, increasing

depth in time tends to make RNNs suffer from vanishing or exploding gradient problems.

Recently, researchers made great efforts on gradient control. The highway layers

[12], based on the LSTM unit, relax the limitation of training deep RNNs. Specifically,

a highway network additionally defines two nonlinear transforms- the transform gate and

carry gate. These gates express how much of the output is produced by transforming the

input and carrying it, respectively. By coupling the transform gate and carrying gate, a
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highway layer can smoothly vary its behavior between that of a plain layer and that of

a layer which simply passes its inputs through. Due to this gating mechanism, a neural

network can have paths along which information can flow across several layers without

attenuation. Thus, highway networks, even with hundreds of layers, can be trained

directly using stochastic gradient descent. These networks, when used with a variety

of activation functions, have been shown to avoid the vanishing or exploding gradient

problem. Highway layers have achieved success in the fields of speech recognition [81]

and language modeling [82].

Based on the insights of highway layers, Zilly et al. [13] introduced Recurrent High-

way Networks (RHNs) that have long credit assignment paths, not just in time, but also

long in space (per time step). By replacing the LSTM cell in the recurrent loop, the

RHN layer instead stacks the highway layers inside the recurrent units. By increasing

recurrence depth, additional non-linearity strengthens the ability of the recurrent net-

work without slowing down the processing. Compared to regular RNNs, RHNs provide

more versatile ways to deal with data flow in terms of transforming and carrying infor-

mation. It has been theoretically proven that coupling a carrying and transforming gate

effectively controls the gradient. However, such a constraint may limit the power of the

network to some extent. In the next sections, the focus will be on this problem and a

new scheme is developed which relaxes the constraint in RHNs, by incorporating batch

normalization. The developed method simultaneously improves network performance

while avoiding the vanishing and exploding gradient problem.

3.2 Developed Framework

A plain RNN consists of L layers and T time states. Denoting the input sequence

as {x1, ...,xt−1,xt,xt+1, ...,xT }, in general, each node in the layer l ∈ {1, 2, ..., L} and

time state t ∈ {1, 2, ..., T} takes input xt
l and output ht

l , respectively, with a non-linear

transformation H. Omitting the bias term for simplicity, the output can be represented
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as

h = H(x,WH) (3.1)

where the non-linear activation H is typically specified by hyperbolic tangent function,

tanh, and WH is the associated weight matrix. In highway networks [12], the training

process is facilitated by using adaptive computation. The additional defined transform

gate and carry gate determine how much information is transformed and carried to the

output, i.e.,

t =T (x,WT ) (3.2)

c =C(x,WC) (3.3)

where t, c are the output of the transform and carry gate, respectively, T,C are defined

as a sigmoid function σ(x) = 1/(1+e−x), and WT ,WC are corresponding weights. The

RHN layer with recurrence depth D is defined as

std = ht
d � ttd + std−1 � ctd (3.4)

where � implies the element-wise product.

RHN uses highway layers instead of LSTM units in regular recurrent networks as

shown in the dotted box in Figure 3.1. Note that each recurrent loop takes the output

of the last recurrent unit in the previous loop (stD−1) as input, and the time-varying

data xt is only fed into the recurrent loop to the recurrence depth, d = 1. According

to Geršgorin circle theorem [83], all eigenvalues of the temporal Jacobian are preferably

set to 1 across time steps in order to keep the gradient flow steady. In this case, the

Geršgorin circle radius is reduced to 0 and each diagonal entry of temporal Jacobian

is set to 1. Zilly et al. [13] states that it can be accomplished by coupling the carry

gate to the transform gate by setting C = 1 − T , as a constraint, in order to prevent

an unbounded “blow-up” of state values which leads to more stable training. However,
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Figure 3.1: The architecture of batch normalized recurrent neural networks. T and C
denote transform and carry gates specified in (3.2) and (3.3) respectively, H is a nonlinear
transform specified by (3.1), and BN represents batch normalization operation.

this constraint may limit the ability of the gates to freely learn parameter values and

imposes a modeling bias which may be suboptimal for certain tasks [84, 85].

Figure 3.1 shows the layout of the developed recurrent network architecture. Because

of its ability to control the gradient during back propagation, batch normalization is

incorporated to the inputs of each recurrent loop. This allows us to relax the C = 1−T

constraint, while simultaneously making gradients less prone to vanishing or exploding.

Specifically, in batch normalization, the mean and variance are extracted across each

channel and spatial locations. Each individual in the batch is normalized by subtracting

the mean value and dividing by variance, and the data are recovered by shifting and

scaling the normalized value during training.
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3.3 Experimental Results

Experiments are performed on an image captioning task. The first part of this section

describes the implementation details and experimental setup. Next, the evaluation and

analysis of the developed framework are discussed from different perspectives.

3.3.1 Experimental Setup

Dataset The evaluation is carried out on the popular MSCOCO captioning dataset

[32]. This dataset contains ∼80k training images, ∼40k validation images and ∼40k test

images. Note that ground truth captions are only available for training and validation

sets. In order to efficiently use the available data, the validation set is split into three

parts: 85% of the images are merged into the training set, 10% are used for testing,

and the remaining 5% are used as a validation set for hyperparamter tuning. All the

experimental results are evaluated using the MSCOCO caption evaluation server [86].

Metrics The following metrics are employed for evaluation: 1) BLEU [87] is a metric

for precision of word n-grams between predicted and ground truth sentences; 2) ROUGE-

L [88] takes into account sentence level structure similarity naturally and identifies the

longest co-occurring sequence in n-grams automatically; 3) METEOR [31] was designed

to fix some of the problems found in the more popular BLEU metric, and also produce

good correlation with human judgment at the sentence or segment level. It has several

features not found in other metrics, such as stemming and synonymy matching, along

with the standard exact word matching; and 4) CIDEr [89] computes the average cosine

similarity between n-grams found in the generated caption and those found in reference

sentences, weighting them using TF-IDF. METEOR is more semantically preferred than

BLEU and ROUGE-L [90].

Training Details In the training phase, the <START> token is added at the

beginning of the sentence and the <END> token is attached at the end of the sentence so

that the model can generate captions of varying lengths. In inference mode, the caption
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generation is started with <START> and the word combination with highest probability

will be selected. In practice, beam search was used to prune the word combinations

with small joint probabilities to avoid the number of considered word combinations

growing exponentially. Specifically, in the first step, the fist three candidates with

highest probability were selected. Moving to the second step, three more candidates

were selected based upon each of the selected candidates in the previous step. This

process was stopped until the network output the <END> token. The combinations

with highest joint probability was considered as the final output sentence. The word

embedding size and number of RHN neurons per layer are empirically set to 512. Based

on empirical results, the recurrence depth D = 3 is adopted. Stochastic gradient descent

is employed for optimization, where the initial learning rate and decay factor are set to

0.1 and 0.5, respectively, and the learning rate decays exponentially every 8 epochs.

The initial time state vector is extracted from the Inception v3 model [91] and all the

other weight matrices are initialized with a random uniform distribution. The training

process minimizes a softmax loss function. The developed network is implemented using

TensorFlow [92] and trained on a server with dual GeForce GTX 1080 graphics cards.

Table 3.1: Evaluation metrics on MSCOCO dataset. LSTM: regular RNN model with
LSTM cell; RHN: model with original RHN cell; BN RHN: the developed model with
RHN constrain relaxed and batch normalization applied instead.

Model LSTM RHN BN RHN

BLEU-1 0.706 0.688 0.710
BLEU-2 0.533 0.512 0.541
BLEU-3 0.397 0.377 0.408
BLEU-4 0.298 0.281 0.311
ROUGE-L 0.524 0.511 0.533
METEOR 0.248 0.241 0.254
CIDEr 0.917 0.864 0.955
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3.3.2 Image Captioning Results

The developed model is evaluated on MSCOCO image captioning dataset. The results

are reported in Table 3.1. To make a fair comparison, an image feature vector is ex-

tracted as initialization of the hidden state using the same Inception v3 model [91],

and the parameters are locked in it (without fine-tuning) in all test models. Three test

models are compared: LSTM denotes the im2txt model using regular LSTM cells im-

plemented by [93]; RHN denotes the image captioning generation performed by original

RHNs [13]; and BNRHN is the developed method with batch normalization instead

of the C = 1 − T constraint in RHN cell. The results show that the BNRHN is the

best performing model. METEOR and CIDEr are generally considered the most robust

scores for captioning. The higher BLEU-4 and METEOR scores, due to fluency of lan-

guage in the image captions, can be attributed to the RHN depth, because more depth

increases the complexity that helps learn the grammatical rules and language seman-

tics. The LSTM employs a mechanism with input, output, and forget gates to generate

complex captions. The developed model shows better performance than LSTM, which

may indicate that simplifying the gate mechanism and increasing depth do not affect

performance for image captioning. The test model with RHN cells benefits from hav-

ing less parameters during training, and good gradient control, in a simple way. The

BNRHN achieves better result than original RHN, because the gate value model biases

are more flexible, and batch normalization guarantees the steady gradient flow in back

propagation.

Additionally the developed model is compared based on the speed of convergence.

Figure 3.2 shows the loss change during training. The BNRHN model achieves the

steady loss fastest among all three models. It turns out that adding batch normalization

allows a more aggressive learning rate and achieves faster convergence. It is worth

mentioning that during back propagation in the original LSTM and RHN models, a

gradient norm clipping strategy is adopted to deal with exploding gradients and a soft

constraint for the vanishing gradients problem to generate reasonable captions. For
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BNRHN, this restriction can be relaxed. This confirms that the developed model is

effective on gradient control, as presupposed in Section 3.2.

Figure 3.2: The total loss change vs. training steps. All dark curves are smoothed by a
factor of 0.8. The light curves are not smoothed.

Figure 3.3 lists a few examples of the descriptions generated by the developed model,

compared with the captions obtained by the original LSTM and RHN model. The sample

images are picked randomly. It is clear that the overall quality of the captions generated

by the developed model have improved significantly compared to RHN model. Notice

that the BNRHN model describes the object in the image accurately and can generate

better descriptions of the image, even for very complex images, such as middle left and

middle right in Figure 3.4. Additionally, the captions generated by the developed model

have better grammar and language semantics due to the increased depth of recurrent

network. Figure 3.4 shows more examples including negative results.
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(LSTM) a group of people standing around a parking
meter .
(RHN) a group of people standing next to each other
.
(BNRHN) a young man riding a skateboard down a
street .
(G.T.) a person is doing a trick on a skateboard

(LSTM) a red stop sign sitting on top of a metal
pole .
(RHN) a red stop sign sitting on the side of a road .
(BNRHN) a stop sign with a street sign attached to
it .
(G.T.) Street corner signs above a red stop sign.

(LSTM) a box with a donut and a cup of coffee .
(RHN) a birthday cake with a picture of a dog on it .
(BNRHN) a plate with a doughnut and a cup of
coffee .
(G.T.) A bag with a hot dog inside of it.

(LSTM) a large brown dog sitting on top of a wooden
bench .
(RHN) a statue of a cow with a bird on top of it .
(BNRHN) a statue of a cow standing on top of a
wooden bench .
(G.T.) A giant chair with a horse statue on it

(LSTM) a man holding a banana in his hand .
(RHN) a woman is holding a banana in her hand .
(BNRHN) a man holding a banana up to his ear .
(G.T.) A man is holding a banana up to his temple.

(LSTM) a group of people flying kites in the sky .
(RHN) a group of people standing on top of a sandy
beach .
(BNRHN) a group of people flying kites on a beach .
(G.T.) A group of people standing on a bitch flying
large kites.

Figure 3.3: Example results on MSCOCO captioning dataset.
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(LSTM) a baseball player standing on top of a field .
(RHN) a baseball player standing on a field holding
a bat .
(BNRHN) a man in a baseball uniform throwing a
ball .
(G.T.) A man in a black shirt is throwing a baseball.

(LSTM) a teddy bear sitting on top of a skateboard .
(RHN) a man holding a giant pair of scissors .
(BNRHN) a person wearing a hat and holding a
banana .
(G.T.) A man holding a giant banana while riding a
scooter.

(LSTM) a bus driving down a street next to a tall
building .
(RHN) a group of people riding bikes down a street .
(BNRHN) a city street filled with lots of traffic .
(G.T.) A group of people walking down a sidewalk
near a bus.

(LSTM) a cat sitting on a chair in a kitchen .
(RHN) a cat sitting on a chair in a room .
(BNRHN) a black and white dog standing in a
kitchen .
(G.T.) A puppy is looking at a paper bag in the
kitchen.

(LSTM) a rear view mirror of a car in the side view
mirror .
(RHN) a rear view mirror on the side of a car .
(BNRHN) a rear view mirror with a dog in the side
mirror .
(G.T.) A guy takes a picture of his car’s rear view
mirror.

(LSTM) a person sitting on a bench in a park .
(RHN) a wooden bench sitting on top of a lush green
field .
(BNRHN) a person sitting on a bench in a park .
(G.T.) A woman standing next to a group of horses
on a field.

Figure 3.4: More results on MSCOCO captioning dataset. The bottom two are negative
examples.
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3.4 Discussion

This chapter introduces a novel recurrent neural network model that is based on batch

normalization and recurrent highway networks. The analyses provide insight into the

ability of the batch normalized recurrent highway model to dynamically control the

gradient flow across time steps. Additionally, this model takes advantages of faster con-

vergence compared to the original RHN, and keeps the feature of increasing depth in the

recurrent transitions while retaining the ease of training. These theoretical advantages

were supported by the results and analysis. Experimental results on image captioning

task reveals that the developed model achieves high METEOR and BLEU scores com-

pared to previous models on a modern dataset. Since this work is able to deal with

applications with RNN structure, such as captioning, it turns out that this technique

can be used in Multi-Modal Vector Representation (MMVR) as we will see in Chapter

5.



Chapter 4

Semantic Sentence Embeddings

We have already seen the success in image-to-text conversion using developed BNRHN.

If we look at the image-to-text model closely as shown in Figure 4.1, one can see that

the hidden state between the feature extractor (CNN) and the captioner (RNN) is

represented by a vector h. This vector encodes the image and can be decoded in to

a sentence as caption. Intuitively, other types of multimedia can also be encoded as

a vector in similar ways, for example, machine translation uses a sequence-to-sequence

model to encode a sentence into a vector, then the vector is decoded as another language.

Image hCNN

<START>

feature extractor captioner

Figure 4.1: The typical image-to-text (image captioning) inference model. The CNN
encodes the image into a feature vector h, which is decoded by the following RNN.

To further explore the embedding, this chapter introduces a sentence to vector en-

coding framework suitable for advanced natural language processing. The latent repre-

70



CHAPTER 4. SEMANTIC SENTENCE EMBEDDINGS 71

sentation is shown to encode sentences with common semantic information with similar

vector representations. The vector representation is extracted from an encoder-decoder

model which is trained on sentence paraphrase pairs1. This chapter demonstrates the

application of the sentence representations for two different tasks – sentence paraphras-

ing and paragraph summarization, making it attractive for commonly used recurrent

frameworks that process text. Experimental results help gain insight into how vector

representations are suitable for advanced language embedding.

The rest of this section is organized as follows: Section 4.1 reviews some related

techniques. Section 4.2 presents the developed encoder-decoder framework for sentence

and paragraph paraphrasing. Section 4.3 discusses the experimental results. Concluding

remarks are presented in Section 4.4.

4.1 Related Work

Most machine learning algorithms require inputs to be represented by fixed-length fea-

ture vectors. This is a challenging task when the inputs are text sentences and para-

graphs. Many studies have addressed this problem in both supervised and unsupervised

approaches. For example, [30] presented a sentence vector representation while [27] cre-

ated a paragraph vector representation. An application of such representations is shown

by [94], that has used individual sentence embeddings from a paragraph to search for

relevant video segments.

An alternate approach uses an encoder-decoder [95] framework that first encodes f

inputs, one at a time to the first layer of a two layer Long Short-Term Memory (LSTM),

where f can be of variable length. Such an approach is shown for video captioning tasks

by S2VT [96] that encodes the entire video, then decodes one word at a time.

There are numerous recent works on generating long textual paragraph summaries

from videos. For example, [97] present a hierarchical recurrent network that comprise of

1For example, the sentence “the young boys are playing outdoors and the man is smiling nearby”
and “the kids are playing outdoors near a man with a smile” form a paraphrase pair.
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a paragraph generator that is built on top of a sentence. The sentence generator encodes

sentences into compact representations and the paragraph generator captures inter-

sentence dependencies. [98] performed similar narratives from long videos by combining

sentences using connective words at appropriate transitions learned using unsupervised

learning.

4.2 Methodology

The vector representation of a sentence is extracted from an encoder-decoder model on

sentence paraphrasing, and then tested on a text summarizer.

4.2.1 Vector Representation of Sentences

The sentence paraphrasing framework is considered as an encoder-decoder model, as

shown in Figure 4.2. Given a sentence, the encoder maps the sentence into a vector

(sent2vec) and this vector is fed into the decoder to produce a paraphrase sentence.

The paraphrase sentence pairs are represented as (Sx, Sy). Let xi denote the word

embedding for sentence Sx; and yj denote the word embedding for sentence Sy, i ∈

{1...Tx}, j ∈ {1...Ty} where Tx and Ty are the length of the paraphrase sentences.

Several choices for encoder have been explored, including LSTM, GRU [99] and

BNRHN [100]. In the developed model, an RNN encoder with LSTM cells is used

since it was easy to implement and performs well on this model. Specifically, the words

in Sx are converted into token IDs and then embedded using GloVe [25]. To encode

a sentence, the embedded words are iteratively processed by the LSTM cell [95]. To
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yTy
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sent2vec

hTx

... ...

...

Figure 4.2: The sentence paraphrasing model. The red and blue cells represent encoder
and decoder respectively. The intermediate vector in black (sent2vec) is vector encoded
sentence.

encode a sentence, we iterate the following sequence of equations:

it = σ(Wi · [ht−1, xt] + bi) (4.1)

ft = σ(Wf · [ht−1, xt] + bf ) (4.2)

ot = σ(Wo · [ht−1, xt] + bo) (4.3)

gt = tanh(Wg · [ht−1, xt] + bg) (4.4)

ct = ft � ct−1 + it � gt (4.5)

ht = ot � tanh(ct) (4.6)

where h is the hidden state, W and b are weights and biases. � denotes a component-

wise product.

The decoder is a natural language model which conditions on the encoder output

hTx . The computation is similar to that of the encoder. The vector hTx encodes the

input sentence into a vector and is known as the vector representation of the input

sentence, or “sent2vec” in this paper. Note that there is no attention between encoder

and decoder. This ensures that all the information extracted from the input sentence
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by encoder goes through sent2vec. In other words, attention is not adopted in order to

avoid information leakage.

In full softmax training, for every training example in the word level, we would

need to compute logits for all classes L. However, this can get expensive when the

vocabulary is very large. Given the predicted sentence and ground truth sentence,

the sampled softmax [101] is used as a candidate sampling algorithm. In details, each

training sample (xi, ti) consists of a context and one target class, and we write P (y|x)

for the probability of that the one target class is y given that the context is x. A small

set si ⊂ L of sampled classes is picked according to a chosen sampling function Q(y|x)

and a set of candidates Ci is created containing the union of the target class and the

sampled classes.

Ci = Si
⋃
ti (4.7)

Applying softmax, the training task figures out, given this set Ci, which of the classes

in Ci is the target class.

P (ti = y|xi, Ci) =
exp(W T

ti φ(xi))∑
y∈Ci

exp(W T
y φ(xi))

(4.8)

where φ is an affine transformation followed by a nonlinear activation and W is the

corresponding weight (bias is omitted). Now the problem becomes how to find the small

set Si. Given training example (xi, ti), the likelihood function of extracting subset Si

from L according to distribution Q(y|x) is

P (Si = S|xi) =
∏
y∈S

Q(y|xi)
∏

y∈(L−S)

(1−Q(y|xi)) (4.9)

i.e., each class y ∈ L is included in Si independently with probability Q(y|xi). In

practice, log-uniform distribution, also known as Zipfian distribution, is adopted. Zipf’s

law states that given some corpus of natural language utterances, the frequency of
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any word is inversely proportional to its rank in the frequency table. Note that this

operation is for training only. It is generally an underestimate of the full softmax loss.

A common use case is to use this method for training, and calculate the full softmax

loss for evaluation or inference.

4.2.2 Hierarchical Encoder for Text Summarization

Each sentence in a paragraph can be represented by a vector using the method described

in Section 4.2.1. These vectors xi, i ∈ {1...Tx} are fed into a hierarchical encoder [102],

and then the summarized text is generated word by word in an RNN decoder, as shown

in Figure 4.3. This method first divides all Tx vectors into several chunks (x1, x2, ..., xn),

(x1+s, x2+s, ..., xn+s), ..., (xT−n+1, xT−n+2, ..., xT ), where s is the stride and it denotes

the number of temporal units adjacent chunks are apart. For each chunk, a feature vector

is extracted using a LSTM layer and fed into the second layer. Each feature vector gives

a proper abstract of its corresponding chunk. The LSTM units are also used in the

second layer to build the hierarchical encoder. The first LSTM layer serves as a filter

and it is used to explore local temporal structure within subsequences. The second

LSTM learns the temporal dependencies among subsequences. As a result, the feature

vector generated from the second layer, which is called “paragraph2vec”, summarizes

all input vectors extracted from the entire paragraph. Finally, a RNN decoder converts

“paragraph2vec” into word sequence (y1, y2, ...), forming a summarized sentence.

A soft attention mechanism [103] is integrated in the hierarchical encoder. Specifi-

cally, dynamic weights are used to generate a new sequence (v1, v2, ..., vm):

vt =

Tx∑
i=1

α
(t)
i xi (4.10)
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paragraph2vec

x9 x8 x7 x6 x5 x4 x3 x2 x1

y4 y3 y2 y1

...

...

Figure 4.3: The paragraph summarizer. The red and blue cells represent encoder and
decoder respectively. The encoder inputs xi are the vector representation generated
using sent2vec of the sentences in the paragraph. The decoder outputs yi are the words
in summarized text. The intermediate vector in black (paragraph2vec) is vector encoded
paragraph. Dashed arrows indicate temporal boundaries.

where
∑Tx

i=1 α
(t)
i = 1 and α

(t)
i is calculated at each time step t = 1, 2, ...,m:

αi = exp(e
(t)
i )/

Tx∑
j=1

exp(e
(t)
j ) (4.11)

and the relevance score e
(t)
i is

e
(t)
i = W T tanh(Waxi + Uaht−1 + ba) (4.12)

where W,Wa, Ua, ba are trained parameters and ht−1 is the hidden state of the LSTM

at the (t− 1)th time step. The attention mechanism allows the LSTM to pay attention

to different temporal locations of the input sequence. When the input sequence and the

output sequence are not strictly aligned, attention can be especially helpful.
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4.3 Experimental Results

4.3.1 Datasets

Visual Caption Datasets There are numerous datasets with multiple captions for

images or videos. For example, MSR-VTT dataset [104] is comprised of 10,000 videos

with 20 sentences each describing the videos. The 20 sentences are paraphrases since all

the sentences are describing the same visual input. Pairs of these sentences are formed

to create input-target samples. Likewise, MSVD [105], MSCOCO [32], and Flickr-30k

[106] are used. Table 4.1 lists the statistics of datasets used. 5% of captions from all

datasets was held out as a test set. In total, there are over 10M training samples that

have been created.

Table 4.1: Sentence pairs statistics in captioning datasets.

MSVD MSRVTT MSCOCO Flickr

#sent 80K 200K 123K 158K
#sent/samp. ∼42 20 5 5
# sent pairs 3.2 M 3.8 M 2.4 M 600 K

The SICK dataset The Sentences Involving Compositional Knowledge (SICK) dataset

[107] is used as a test set for sentence paraphrasing task. It consists about 10,000

English sentence pairs, which are annotated for relatedness by means of crowd sourcing

techniques. The sentence relatedness score (on a 5-point rating scale) for each sentence

pair is provided and meant to quantify the degree of semantic relatedness between

sentences. For human evaluation in section 4.2.1, the pool consists of the sentence pairs

with the relatedness score above 3, resulting in 3,872 pairs within the [3, 4) range, and

3,672 pairs within the [4, 5] range.

TACoS Multi-Level Corpus The training pairs are extracted for the paragraph sum-

marization task from TACoS Multi-Level Corpus [108]. This dataset provides coherent

multi-sentence descriptions of complex videos featuring cooking activities with three

levels of detail: “detailed”, “short” and “single sentence” description. There are 143
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training and 42 test video sequences with ∼20 annotations for each of the description

levels in each sequence.

4.3.2 Training Details

The developed frameworks are implemented using TensorFlow [92] and trained with

dual GeForce GTX 1080 graphics cards. Below are training details of two experiments.

Sentence Paraphrasing In the training phase, the <START> token is added at the

beginning of the sentence and the <END> token is attached at the end of the sentence

so that the model can generate sentences of varying lengths. In inference mode, the

sentence generation is started with <START> and the word combination with highest

probability will be selected. Thehe model is trained as described in Section 4.2.1 on

the Visual Caption Datasets. The word embedding is initialized using GloVe [25]. The

number of units per layer in both encoder and decoder are empirically set to 300 and

1024. Two sets of vocabularies are generated with size 20k and 50k. Stochastic gradient

descent is employed for optimization, where the initial learning rate and decay factor

are set to 0.0005 and 0.99, respectively.

Paragraph Summarization: This task summarizes “detailed” description to “single

sentence” in TACoS Multi-Level Corpus. Detailed descriptions with less than 20 sen-

tences are selected. There are total of 3,176 samples, 2,467 are used for training and

709 are used for testing. The hierarchical architecture described in Section 4.2.2 with

stride s of 5 is employed in this model. 20 feature vectors (short paragraphs are zero

padded) are fed into the model, with each vector’s sentence representation extracted

from the developed paraphrasing model. To make the model more robust, soft attention

is used between each layer. During training, the learning rate is set to 0.0001 and Adam

optimizer is used. All the LSTM cells are set to 1024 units, except the one in sentence

generation layer which is set to 256 units.



CHAPTER 4. SEMANTIC SENTENCE EMBEDDINGS 79

4.3.3 Sentence Paraphrasing

Given a reference sentence, the objective is to produce a semantically related sentence.

The paraphrasing model was trained on Visual Caption Datasets and evaluated on

the SICK dataset, without any fine-tuning. The results are shown in Table 4.2. The

evaluation metrics for this experiment are Pearson’s r, Spearman’s ρ and Mean Squared

Error (MSE). The setup is the same as it is in [109] for calculation of these metrics.

Table 4.2: Test set results on the SICK semantic relatedness task, where 300, 1024
denote the number of hidden units and 20k, 50k denote the size of the vocabulary. r
and ρ are Pearson’s and Spearman’s metric respectively.

r ρ MSE

sent2vec(300,20k) 0.7238 0.5707 0.4862
sent2vec(300,50k) 0.7472 0.5892 0.4520
sent2vec(1024,50k) 0.6673 0.5285 0.5679

In order to visualize the performance of the developed method, PCA is applied to

the vector representation. Figure 4.4 visualizes some of the paraphrase sentence pairs

in the SICK dataset. Representations are sensitive to the semantic information of the

sentences since pairwise sentences are close to each other. For example, point 2A and

4A are close because “watching” and “looking” are semantically related.

The semantic relatedness and grammar correctness are verified by human generated

scores. Each score is the average of 32 different human annotators. Scores take values

between 1 and 5. A score of 1 indicates that the sentence pair is not at all related or

totally incorrect syntax, while a score of 5 indicates they are highly related or grammat-

ically correct. The sentences in human evaluation come from the Visual Caption and

SICK test sets. The human evaluated scores for most sentence pairs are inversely propor-

tional to the Euclidean distance between the vector representation of the corresponding

sentences.
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0A: the young boys are playing outdoors and the man
is smiling nearby
0B: a group of kids is playing in a yard and an old man
is standing in the background
1A: a brown dog is attacking another animal in front
of the man in pants
1B: a brown dog is helping another animal in front of
the man in pants
2A: two people are kickboxing and spectators are
watching
2B: two people are fighting and spectators are watch-
ing
3A: kids in red shirts are playing in the leaves
3B: three kids are jumping in the leaves
4A: a little girl is looking at a woman in costume
4B: the little girl is looking at a man in costume
5A: a woman is removing the peel of a potato
5B: a woman is peeling a potato
6A: five children are standing in front of a wooden hut
6B: five kids are standing close together and one kid
has a gun

Figure 4.4: Some paraphrase sentence pairs are represented by the sent2vec and then
projected into 2D space using PCA. Each point represents a sentence in SICK dataset
and the corresponding sentence is shown on the right.

4.3.4 Text Summarization

In addition to paraphrasing, sent2vec is useful for text summarization. Using the TACoS

Multi-Level Corpus [108], sentences from detailed descriptions of each video sequence

are first converted into vectors using the developed model. These vectors are fed into

the summarizer described in Section 4.2.2. The performance of the summarized text is

evaluated based on the metric scores and compared to skip-thoughts [30] and skip-gram

Table 4.3: Evaluation of short to single sentence summarization on TACoS Multi-Level
Corpus using vectors from sent2vec, skip-thoughts, and skip-gram respectively.

sent2vec skip-gram skip-thoughts

BLEU-1 0.479 0.514 0.520
BLEU-2 0.342 0.378 0.392
BLEU-3 0.213 0.245 0.276
BLEU-4 0.144 0.173 0.206

METEOR 0.237 0.250 0.253
ROUGE-L 0.48 0.509 0.522

CIDEr 1.129 1.430 1.562
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[110]. Note that skip-gram is used as the frequency-based average of word2vec for each

word in the sentence. As shown in Table 4.3, the scores generated by this model are

very close and comparable to the benchmark skip-thoughts. This result is reasonable

since the dataset used in training sent2vec are all from captions. The styles and topics

of the sentences in this dataset are limited. However, the approach of forming sentence

paraphrasing pairs and representing sentences using vectors are valid.

Figure 4.5 shows t-SNE [111] vector representation using (a) the developed sent2vec,

(b) skip-thoughts and (c) skip-gram of randomly selected ∼15 test sequences. In these

plots, each point represent a single sentence. Points describing the same video sequence

should be clustered. Points with the same color are nicely grouped in sent2vec visual-

ization.

(a) (b) (c)

Figure 4.5: t-SNE visualizations of single sentence descriptions of a subset of all se-
quences on TACoS Multi-Level Corpus. (a) The developed sent2vec; (b) Skip-thoughts
and (c) Skip-gram. Points are colored based on their sequence IDs. There are ∼20
different annotations for each sequence.

4.4 Discussion

This chapter showed the use of a deep LSTM based model in a sequence learning prob-

lem to encode sentences with common semantic information to similar vector repre-

sentations. The presented latent representation of sentences has been shown useful for

sentence paraphrasing and document summarization. We believe that reversing the en-
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coder sentences helped the model learn long dependencies over long sentences. One of

the advantages of the developed simple and straightforward representation is the appli-

cability into a variety of tasks. Further research in this area can lead into higher quality

vector representations that can be used for more challenging sequence learning tasks.



Chapter 5

Multi-Modal Vector

Representation

This chapter is going to further explore the relationship between multimedia and vec-

tors. The ultimate goal of this chapter is to find the common vector representation for

different types of sources, as shown in Figure 5.1. In other words, given a(n) video se-

quence/image/audio/sentence/paragraph, we would like to extract an embedded vector

containing the semantics of the source, and decode it to any type of the multimedia.

The embedded vectors from different types of sources lie in a common space so that

there is no need to align the vectors in the generative models. As an example, video

text summarization converts a video sequences into a vector, and then the vector is

used to generate text. In the other direction, the vector representation should be able

to generate an image with related content. The common vectors form a space referred

to as common vector space (CVS).

Considering the complexity of dealing with multiple types of sources, the study is fo-

cusing on images and text. Specifically, the common vector space deals with four source-

target conversion: text-text (text2text), text-image (text2im), image-text (im2text), and

image-image (im2im), as shown in Figure 5.2. Among these tasks, im2text is an image

83
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captioning model as illustrated in Chapter 3, and text2text is a sentence paraphras-

ing model described in Chapter 4. The generative model text2im and im2im are new

problems we are going to address along with combination of the other two objectives.

Recent success in image captioning [33, 34, 35, 36] has shown that deep networks

are capable of providing apt textual descriptions of visual data. In parallel, advances in

conditioned image generation [37, 38, 39, 40] provide diverse images from a text based

prior. An ambitious goal for machine learning in the vision and language domain is

to be able to represent different modalities of data that have the same meaning with
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Figure 5.1: Different types of multimedia are semantically connected to each other by a
common vector space (CVS).
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Figure 5.2: High level view of image-to-text conversion using CVS.
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Figure 5.3: Overview of the bidirectional image-text generation model. To form the
respective encoder and decoder networks, a CNN-GAN combination is used for visual
and a recurrent machine translation model for text modalities.

a common latent representation. For example, words like “baseball” and “batter”, a

sentence describing a baseball game, or image representations of a baseball game all

refer to similar concepts. Generally, concepts that are semantically similar would lie

close together in the descriptor’s space while dissimilar concepts would lie far apart. A

sufficiently powerful model should be able to store similar concepts in a similar repre-

sentation or produce any of these realizations from the same latent space. Successfully

mapping visual and textual modalities in and out of this latent space would significantly

impact the broad task of information retrieval.

This chapter introduces a cross-domain model capable of converting between text

and image. The networks used in these domains are combined by merging the latent

representations obtained during transition as shown in Figure 5.3. By modifying the cost

function and introducing multiple sentence conditioning, the developed model, which we

call Multi-Modal Vector Representation (MMVR) improves state of the art [37] by 23.7%

(from 6.71 to 8.30 inception score).

The contributions of this work are as follows: 1) The formulation of a latent represen-

tation based model that merges inputs across multiple modalities; 2) The development
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of an n-gram based cost function that generalizes better to a text prior; 3) The im-

provements in image quality while using multiple semantically similar sentences for con-

ditioning image generation on generalized text; 4) To advance qualitative measurement

of text-to-visual models, an object detector based metric is introduced, and the human

evaluations is conducted which compare the used metric to the standard inception score

[41]. Results show that adding paraphrased sentences improves images quality across

all three metrics. Along with quantitative evaluation, the qualitative evaluation is also

performed through text and image arithmetic in latent space. The results demonstrate

mathematical properties exhibited by latent representations for certain objects.

The rest of this paper is organized as follows: Section 5.1 reviews related work

associated with models using latent representation and introduces the relevant pre-

requisites for MMVR. Section 5.2 details the MMVR and the introduced methodology.

Section 5.3 describes the experiments along with the results. Concluding remarks are

presented in Section 5.4.

5.1 Related Work

The notion of a latent space where similar points are close to each other is a key principle

of metric learning. The representations obtained from this formulation generalize well

when the test data has unseen labels. Models based on metric learning have been used

extensively in the domain of face verification [112], image retrieval [113], person-re-

identification [114] and zero-shot learning [115].

Multi-Modal Learning Using Vector Representation – Ngiam et al. [116]

used an autoencoder model to learn cross-modal representations and showed results on

audio and video datasets. Srivastava et al. [117] used deep Boltzmann machines to

generate tags from images or images from tags. Sohn et al. [118] introduced a novel

information theoretic objective that was shown to improve deep multi-modal learning

for language and vision. Joint learning based on image category was shown in [119].
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They used joint training for zero-shot image recognition and image retrieval. Sohn

et al. [120] introduced multi-class N -tuple loss and showed superior results on image

clustering, image retrieval and face re-identification. Eisenschtat et al. [121] introduced

a 2-layer bidirectional network with batch-normalization and dropout techniques to

map vectors coming from two data sources by optimizing correlation loss. Wang et al.

[122] learned joint embeddings of images and text by enforcing margin constraints on

training objectives. Recently, Wu et al. [123] leveraged this concept to associate data

from different modalities. This work shares similarities with [123]. However, we focus

on generating visual/textual data.

Conditional Image Generation – Generative Adversarial Networks (GANs)

[124] are a sub-class of generative models based on an adversarial game. Training a

GAN involves two models: a generator that maps a random distribution to the data

distribution; and a discriminator that estimates the probability of a sample being fake

or real. A GAN can produce sharp images but the generated images are not always

photo-realistic. To improve upon photo-realistic quality, class category [40, 125, 126],

caption [37, 38] or a paragraph [127] has been used to condition image generation. Reed

et al. [38] encoded text into a vector to condition images, however direct encoding

reduces the diversity of generated images. Introducing an additional prior on the latent

code, Plug and Play Generative Networks (PPGN) [37] drew a wide range of image

types and introduced an image conditioning framework. This work is complementary to

such captioning and generative models as we define a common latent space that allows

transitioning within and from modalities.

Sequence to Sequence Models – Sequence to sequence [95] models encode

the inputs one at a time, then decodes one word at a time, using a recurrent neural

network architecture. These models have been used in applications such as sentence

vector representations [30, 128], visual question answering [129, 130] as well as video

captioning [96, 131] that encodes the entire video, then decodes one word at a time.

Paraphrasing sentences [132, 133] is another application of sequence to sequence models.
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This work leverages the paraphrasing application to generate synthetic captions from a

single caption to improve the quality of the generated images.

Image Captioning – Recent advances in recurrent neural networks have enabled

generation of a natural language description of still images [33, 35, 34, 134]. The exten-

sion of this to video can be done by pooling over frames [21] or utilizing a fixed number

of frames [22]. The developed model uses an image captioner to add a caption based

prior on image generation.

5.2 Methodology

5.2.1 Multi-Modal Vector Representation

Inspired by [37], we introduce Multi-Modal Vector Representation (MMVR) to create a

unified representation for visual and text modality in latent space. Given an image or

sentence, MMVR performs iterative sampling to generate data in either modality while

conditioning on an input. Figure 5.4 provides an overview of the MMVR architecture.

The model can be divided into two interdependent modules: an image generator based

on [135] and an image captioner based on [33].

ht   t

          caption  

Generator

G
CNN

image

 
ĥ

x̂

Forward Propagation

Latent Vector Update

ŷ

Image Generator Image Captioner

Figure 5.4: Overview of the MMVR model. It consists of two pre-trained modules – an
image generator (G) that inputs a latent representation ht and generates an image x̂;
and an image captioner that inputs an image x̂ and generates a caption ŷ. To update
the latent vector ht, cross-entropy between the generated caption ŷ and a ground truth
caption y is used while the weights for the generator and CNN are fixed.
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The forward pass is initiated by passing a random latent vector ht into the image

generator which generates an image x̂. The image captioner uses the generated image

to create a caption. Word-level cross entropy is used to determine the error between

the generated caption, ŷ and a ground truth caption y. This error is used to iteratively

update ht (and thus x̂), while keeping all other components fixed. With each iteration,

ŷ approaches y, and the generated image x̂ serves as a proxy for the target caption. The

gradient associated with the cross-entropy error is specified in (5.1).

grad(C) =
∂L(Cpred, Cgt)

∂ht
(5.1)

where grad(C) is the gradient of cross-entropy with respect to latent vector ht, Cpred is

the predicted caption and Cgt is a ground truth caption. L is the word level cross-entropy

between the two captions. The grad(C) component of the update rule ensures that the

generated images have relevant context. However, to improve the realistic nature of the

images, a reconstruction error is included in the update rule. This is computed as the

difference between ht and ĥt. This component is referred to as a Denoising Autoencoder

(DAE) in [37]. Finally, to add diversity in generated images, a noise term N is also

included. The resulting update rule is a weighted sum of four terms and is described in

(5.2).

ht+1 = ht + γ1grad(C) + γ2R(ht, ĥt) +N (0, γ3) (5.2)

where R(ht, ĥt) is the reconstruction error which is computed as difference between ht

and ĥt, N is Gaussian noise with standard deviation γ3 and ht+1 is the latent vector

after the update. γ1 and γ2 are weights associated with the gradient of cross entropy

and the DAE, respectively.

The update rule is based upon previous works on latent space interpolation [125,

37, 40]. The developed model updates the latent vector h iteratively, which is the

input to the image generator, based on (5.2). It also encourages h and ĥ to be similar,
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thereby creating a common latent representation capable of generating both images and

sentences.

5.2.2 n-gram Metric Conditioning

An intrinsic limitation with the above introduced model is that the cross-entropy loss

requires exact word level correspondences between generated and ground truth captions.

For example, consider a case when the generator is conditioned on “a red car”, whereas

the captioner outputs “the car is red”. Both captions are semantically very similar but

lack one-to-one correspondence between words. This may result in unwanted updates

of the latent vector ht due to high word level cross-entropy. This problem is addressed

by introducing a n-gram metric in the latent vector update. The metric is responsive to

cases when generated and reference captions are different, but semantically similar.

(5.3) describes the updated γ1 term when the n-gram metric is used in conjunction

with cross-entropy. We compute word level differences and scale γ1 with the n-gram

metric between the generated and reference captions:

γ1
1−F(Cpred, Cgt)

n
grad(C) (5.3)

where F is the n-gram metric, such as BLEU [87] and CIDEr [89]. In the experiments,

the BLEU scores is used as n-gram metric. As before, the latent vector ht is obtained

through an iterative process. When the captions are semantically similar, the magnitude

of the update is significantly reduced by n-gram metric scaling, preventing unwanted

updates to the latent vector.

5.2.3 Conditioning on Multiple Captions

Another way to overcome one-to-one word correspondences between a predicted and

reference sentence is to use semantically similar sentences.

Multiple captions would increase syntactic variability for the generator to condition
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on, hence improving the overall image quality. The forward pass is performed in a

same way as MMVR. As shown in Figure 5.5, the predicted caption is compared against

multiple captions from a sentence paraphraser [136] to obtain the individual gradients.

The aggregated gradients are used to update the latent vector ht. The caption gradient

component of the ht update rule is replaced by the summation of gradients from multiple

captions as

gradavg =
1

NC

NC∑
i=1

grad(Ci) (5.4)

where NC is the total number of reference captions and gradavg is the average gradient

over the NC captions.
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Figure 5.5: Conditioning the image generation through multiple captions by aggregating
the gradients from individual caption cross-entropy. Solid black lines show the direction
of forward pass during sentence generation and dashed red lines show direction of error
back-propagation during latent vector update.

5.2.4 MMVR Architecture

The image generator use in the model is based upon DeePSiM [135] which comprises of

three networks:
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• an AlexNet [137] CNN encoder. It yields a 4096-dimensional vector.

• an inverted-AlexNet [138] based generator that up-samples the 4096-dimensional

vector to an image of size 256× 256.

• a discriminator that takes a 256 × 256 dimensional image and classifies it as real

or fake.

Given an input image, the generator is trained to invert the features extracted from

a pre-trained AlexNet and reconstruct the input image. A limitation of this generator

is that it can only generate single object categories. A typical caption would be a

description involving multiple object categories. In order to address this issue and

improve conditioning on captions, fine-tuning the generator on MS-COCO [32] is needed.

Thus, the fine-tuned generator is capable of rendering multiple objects in a image, a

characteristic missing in the model trained on ImageNet [139]. Additional training

details are provided in the supplementary material.

The image captioner uses a Long-term Recurrent Convolutional Network (LRCN)

[33] which was trained on 82,783 images and 414,113 captions from the MS-COCO

dataset [32]. The image captioner is used to steer the search for the 4096-dimensional

vector required by the generator to render a representative image for the caption.

The developed framework uses a sentence paraphrasing model as described in Sec-

tion 4.2.1 to obtain multiple semantically similar sentences from a single sentence. Three

layers of attention based LSTM [103] are stacked in both encoder and decoder networks.

For paraphrasing, the model is trained on captions from a combination of MS-COCO

[32], MSVD [105], MSR-VTT [104] and Flickr-30k [106] image and video captioning

datasets. Further training and dataset details are provided in the supplementary mate-

rial.

The bi-modal nature of MMVR allows the model to take as input an image or

a sentence which is then used to condition data generation in either modality. This

section describes the transitions between visual and text modalities using the MMVR:
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• Visual-to-Text – As described in Chapter 3, the visual-to-text is a simple

transition in the model as a pre-trained image-captioner is an independent sub-

module of the developed model.

• Text-to-Visual – As illustrated in Figure 5.4, the latent vector is initialized

as a random vector. The forward propagation through the network provides a

sentence as caption. The given text is considered as the ground truth of the image

captioner. The word-level cross entropy between the generated caption and ground

truth is calculated and back-propagated through the network to update the latent

vector iteratively. Consequently, the image is also updated by the image generator

along with the latent vector. Finally the generated image serves as the proxy for

the target text.

• Text-to-Text – Paraphrasing sentences is achieved through the sequence-to-

sequence model present in MMVR. The sequence-to-sequence model as shown in

Figure 4.2 was pre-trained on a large corpus of similar sentences for the purpose

of paraphrasing.

• Visual-to-Visual – An image can be translated into a visually different but

semantically similar image. Starting with an image, we generate a caption. Using

sentence paraphraser, a paraphrased caption is generated from the input caption.

Then the process described in text-to-visual mode is performed to generate an

alternate image representation. Paraphrased captions are employed to increase

the image diversity, in addition to noise.

5.3 Results and Discussion

5.3.1 Inference

For the text-to-visual transition, the image captioner guides the generator during image

generation. To this end, the model starts with a random 4096-dimensional vector ht
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to render a 256×256 image and iteratively update ht. A resulting caption is obtained

using a captioner that is compared with the ground truth caption and the difference

between them is used to modify h. The process is terminated after 200 iterations and

the resulting image is treated as a representative image for the caption. γ1 and γ2

hyper-parameters from (5.2) are set to 1 and 10−3, respectively.

5.3.2 Evaluation Metrics

The image generation tasks are evaluated through qualitative comparisons as well as

by quantitative metrics and human evaluations. In addition to using the inception

score [41] metric, a new metric based on object detection is developed that captures

the quality of multiple objects present in a generated image. A pre-trained YOLO

object detector model [140] is used for this purpose. The model is trained on 80 object

categories commonly present in the MS-COCO dataset. Figure 5.6 shows some examples

with synthesized images. Each synthesized image is passed through the object detector

model that yields bounding boxes and their corresponding confidences. Formally,

detection score =
∑
d

Ad

AT
pd (5.5)

which reports the weighted sum of all detections (d) greater than a 0.1 confidence thresh-

old (pd), where the weight is the ratio of the detected bounding box area (Ad) and the

full image area (AT ). Having an area weight is critical since some object detector models

may predict a large number of small bounding boxes. The YOLO architecture intrinsi-

cally takes care of that and hence area weighting was not applied. Finally, the reported

score is the average over the entire test set comprising of 1000 generated images.

Human Evaluations – Human evaluations are conducted to validate image gen-

eration. 50 image-caption pairs and asked 80 humans (not including any of the authors)

are collected to judge the performance. Each participant was shown eight random im-

ages from all methods in random order totaling to 40 samples per person. Each evaluator
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Figure 5.6: Examples of the YOLO object detection on generated images. The bounding
boxes and corresponding labels are detections with confidence greater than 0.5 threshold.

was asked to rate on a 1 (bad) − 5 (good) Likert-type scale. On average, each method

received more than 600 ratings. The questions asked to the human judges were: (1)

Can you identify any one object in the image? and (2) How well does the sentence align

with the image? The human evaluation results are shown in Table 5.1 and 5.2.

5.3.3 Text-to-Visual

An important property of common latent space is cross-modal transformations. Cross-

modal experiments aid in proving that the representations of individual modalities are

well aligned in the common space. Figure 5.7 shows examples of text-to-visual gener-

ation. It can be observed that MMVR synthesizes reasonable images from captions.

As noted in [37], one of the major challenges while conditioning on text include the

cross-entropy computation from a sentence with many words. The captions could be

10-15 words long including stop-words which have limited significance on the image

content. Moreover, gradients for all words are aggregated and back-propagated, hence

significant words may loose importance. This may result in poor image quality. The

inclusion of n-gram scaling to the update function and conditioning on multiple ground

truth sentences help address such limitations. One can observe that the captioner gen-

erating good captions even for unrealistic images. These could be “fooling” images [39]

which are unrecognizable to humans but deep neural networks recognize them with high

confidence.

Table 5.1 compares the text-to-visual techniques against a baseline (direct FC-6).
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Figure 5.7: Examples of text-to-visual transformation.

The inception scores indicate the improvement in generated images when BLEU-1 (B-

1) and the multiple caption conditioning (NC = 5) are used. The detection scores

for multiple captions are significantly better than other variants. However, BLEU-1 is

slightly lower than the baseline result. Despite having worse inception scores, baseline

methods got higher human evaluation scores. Possibly the reason for this trend is lack of

detail in objects generated by multiple captions. The baseline model generates images

with single objects, making them visually appealing.

Table 5.1: Evaluation of the generated image quality using the inception, detection and
human scores on the test set.

Method Inception Detection Human

Baseline (FC-6) 5.77± 0.96 0.762 2.95
PPGN [37] 6.71± 0.45 0.717 2.34

MMVR (B-1) 7.22± 0.81 0.713 2.31
MMVR (Nc = 5) 8.30± 0.78 1.004 2.71

Conditional Image Generation on Multiple Sentences – To understand the

effect of conditioning image generation on multiple sentences, experiments are performed

by varying the number of sentences. Synthetic sentences were generated using a sentence

paraphraser [136]. Figure 5.8 shows the input caption and the generated images with

1, 3 and 5 captions. Image quality enhances with increase in number of sentences. The

food example also show gains in understanding the concept of quantity (four) through
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text. Similar trends are observed through the inception and detection score metrics as

reported in Table 5.2. The detection score helps prove that multiple sentences assist in

generating multiple objects in the image that are recognized by the object detector.

Figure 5.8: Examples of the text-to-image generation as conditioned on varying number
of input captions. One can observe more detailed images being synthesized with increase
in captions.

Table 5.2: Evaluation of the generated image quality by conditioning on varying number
of paraphrased sentences (NC).

NC Inception Detection Human

1 7.22± 0.81 0.713 2.30
3 8.04± 0.57 0.915 2.73
5 8.30± 0.78 1.005 2.71

Was the n-gram scaling useful?

Figure 5.9 shows examples with and without the n-gram scaling of the gradient term

in (5.3). It is very difficult to judge the two techniques visually. This experiment uses

only a single caption to condition the image generator to have a fair comparison in this
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case. The BLEU-1 score was used as the word level error multiplier and it scales the

gradients accordingly. The inception scores in Table 5.1 show slight improvement for

BLEU-1 against the PPGN.

Figure 5.9: Examples comparing the text-to-image for PPGN and the BLEU-1 scaled
cross-entropy. Even though slight improvements could be observed with the n-gram
scaling, judging the image quality visually is very challenging.

Which degree n-gram is better for scaling?

Different BLEU scaling in (5.3) are compared by varying the n-gram metric. Results

are reported in Table 5.3. One reason the BLEU-1 performs better than the higher

n-gram techniques might be the simple removal of one-to-one word correspondences

between the predicted and ground truth captions is sufficient. Higher BLEU metrics

require n-gram matching which puts hard constraints on the generated caption. This

may dampen the significance on important words in the overall update.

Do stop words have significance?

A caption might have more stop words (“a”, “an”, “the”, “to”, etc.) than actual

informative words that describe image content. Experiments are performed by masking

the gradient for the stop words. This did not improve the image quality. This is
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Table 5.3: Comparison of image quality with different BLEU metrics for scaling the
latent vector update function.

Scaling n-gram Metric Inception Score

BLEU-1 7.22± 0.81
BLEU-2 7.12± 0.66
BLEU-3 7.05± 0.73
BLEU-4 6.83± 0.74

attributed to the lack of sentence structure after masking stop words. The captioner

was trained to generate complete English language sentences. It always generates a

complete text description, even though the ground truth caption may be a collection

of only relevant words. Hence, all other experiments take the running average of the

number of words in the caption so all words contribute equally.

Does fine-tuning the image generator help?

The generator was unable to address common words that occur in a caption (“man”,

“woman”, “person”, numbers, etc.) since ImageNet does not contain such categories.

Moreover, some dominant categories in MS-COCO dataset like giraffe, stop sign and

person are not present in ImageNet dataset. By fine-tuning, the generator is able to

semantically capture such categories. Additionally, one can observe that multiple objects

could also be generated since the original ImageNet model mostly comprised of single

object images. An example caption and generated images are shown in Figure 5.10. It

could also be interpreted that the generator model correlates better with the captioner

since the caption cross-entropy is computed on MS-COCO trained captioner.

5.3.4 Text Generation

Similar to image generation, both input modalities can independently yield text as

output. Since LRCN [33] is used, the evaluation of the visual-to-text mode is performed

on the test partition of the MS-COCO dataset. Examples are shown on the left side of

Figure 5.11.

MMVR in language translation tasks is useful. Given a reference sentence, the objec-
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Figure 5.10: Examples that show text-to-image improvements after fine-tuning the gen-
erator on MS-COCO dataset. Object categories such as giraffe and stop sign that are
not part of ImageNet dataset show some enhancement in details. One can also observed
slight improvements in understanding of size, shape and quantity aspects.

tive is to produce a semantically related sentence. The right side in Figure 5.11 shows

examples of paraphrasing. Furthermore, to test the robustness of the sentence para-

phraser, experiments were ran by varying noise levels in the latent space. To evaluate

the quality of generated captions, the model uses BLEU [87], METEOR [31], CIDEr [89]

and ROUGE [88] natural language metrics. Since every sample from MS-COCO dataset

consists of five captions, one of the captions is used as the input to the paraphraser and

the remaining four captions for evaluation. The input caption is fed in the encoder to

obtain a vector representation. This representation is corrupted using random uniform

noise before being input to the decoder. The results are reported in Table 5.4, where
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Figure 5.11: Examples of the visual-to-text (left) and text-to-text (right) modes of the
MMVR. The inputs can be the visual or text modalities.

the scale is the noise multiplier. A scale of 0.0 is equivalent to feeding the latent vector

without any noise and could be considered as the upper-limit of the paraphraser. Ob-

servation shows that the model is robust to noise up to 1 standard deviation but the

performance degrades significantly beyond that. This also indicates that the sentences

do not form very dense clusters in the latent space.

Table 5.4: Evaluation of Text-to-Text paraphrasing model with variation of noise in
the latent vector space. The noise scale is the multiplier for the standard deviation
of the feature space to generate random uniform noise. Noise with scale 0.0 could be
considered as the upper-limit of the paraphraser.

Scale 0.0 0.1 0.5 1.0 2.0 3.0

BLEU-1 0.71 0.71 0.7 0.68 0.56 0.3
BLEU-2 0.53 0.53 0.52 0.5 0.38 0.15
BLEU-3 0.38 0.38 0.38 0.35 0.24 0.07
BLEU-4 0.27 0.27 0.27 0.24 0.16 0.04

METEOR 0.24 0.24 0.24 0.23 0.18 0.09
ROUGE 0.52 0.52 0.52 0.5 0.42 0.24
CIDEr 1.03 1.03 1.02 0.92 0.59 0.15
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Vector Arithmetic in Latent Space – Lastly, the text-to-text model is evaluated

by performing arithmetic operations in the latent space. Vector arithmetic for language

has been shown with words [25] but is still in a nascent stage for complete sentences.

The input sentences are fed in the encoder to obtain vector representations. A composite

vector is obtained after performing simple mathematical operations on the vector and

is fed to the decoder to generate a sentence description. Examples are shown in Figure

5.12. The first three samples demonstrate simple additive properties. Samples 4 and

5 validate more complicated operations and show relationships between objects and

actions in the latent space.

Figure 5.12: Examples of arithmetic operations in the latent space for the text-to-text
model.

5.4 Conclusion

This work advances the area of caption conditioned image generation by allowing the

vector space to be shared between vision and language representations. MMVR shows

flexibility in performing cross-modal transformations and improves state-of-the-art by

more than 20%. This chapter addressed some limitations such as one-to-one word corre-

spondence by using a n-gram metric and conditioning on multiple semantically similar
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sentences. Also, this chapter introduced a new objective metric for evaluating generated

images which allows for multiple objects per generated image. We believe this to be the

first effort to directly tie a common vector connection space in a bidirectional visual to

text framework by adopting image and text generative techniques.



Chapter 6

Conclusions and Future Work

This chapter will first draw and summarize conclusions from this current research, and

then discuss some future work that should be carried out related to this study.

6.1 Conclusions

The addressed problems in this research are: 1) Developing a decision level video analysis

scheme that performs the spatio-temporal segmentation of video sequences and designing

a video text summarization architecture to automatically extract the text description

from a video sequence; 2) Exploring a better RNN architecture to ensure the stable

gradient distribution during training, which can be used in computer vision tasks, such

as image captioning; 3) Researching a new way to encode sentences into vectors so

that the vision/language based deep networks can make use of this embedding method,

thus providing remarkable performance in computer vision tasks; 4) Exploring a latent

common vector representation of different types of sources (modalities), such as visual

inputs and languages, achieving the goal of conversion between different modalities with

no need to align the vectors in the generative models.

Chapter 2 developed a novel and accurate coarse-to-fine approach to segment the

salient object in video sequences and generate interesting and pleasing visual outputs.

104
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This approach involves a parallel scheme which consists of utilizing the KLT, SSC and 3D

SLIC algorithms to identify the approximate location of the most salient object and as

a result, an unsupervised graph-based method can be used in subsequent step. The ex-

perimental results on SegTrack [71] dataset and Kodak Alaris Consumer Video Dataset

reveal that this method outperforms the state-of-the-art supervised and unsupervised

approaches in terms of accuracy and robustness.

Chapter 3 introduced a novel recurrent neural network model that is based on batch

normalization and recurrent highway networks. The analyses provide insight into the

ability of the batch normalized recurrent highway model to dynamically control the

gradient flow across time steps. Additionally, this model takes advantages of faster

convergence compared to the original RHN, and keeps the feature of increasing depth

in the recurrent transitions while retaining the ease of training. Experimental results

on image captioning task reveals that the developed model achieves high METEOR and

BLEU scores compared to previous models. Moreover, the theoretical advantages were

supported by the results and analysis.

The work in Chapter 4 inspired us to use a deep LSTM based model in a sequence

learning problem to encode sentences with common semantic information to similar vec-

tor representations. The presented latent representation of sentences has been shown

useful for sentence paraphrasing and document summarization. We believe that revers-

ing the encoder sentences helped the model learn long dependencies over long sentences.

Experimental results help gain insight how vector representations are suitable for ad-

vanced language embedding. One of the advantages of this simple and straightforward

representation is the applicability into a variety of tasks. Further research in this area

can lead into higher quality vector representations that can be used for more challenging

sequence learning tasks.

Image captioning models have been shown to be capable of generating plausible text

given input images or videos. Further, recent work in image generation has shown sig-

nificant improvements in image quality when text is used as a prior. Chapter 5 ties these
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concepts together by creating an architecture that can enable bidirectional generation

of images and text. We call this network Multi-Modal Vector Representation (MMVR).

Along with MMVR, two improvements are introduced to the text conditioned image

generation. Firstly, a n-gram metric based cost function is introduced that generalizes

the caption with respect to the image. Secondly, multiple semantically similar sentences

are shown to help in generating better images. Qualitative and quantitative evaluations

demonstrate that MMVR improves upon existing text conditioned image generation

results by over 20%, while integrating visual and text modalities.

To summarize, the main contributions of this thesis are listed below.

• This research developed a novel coarse-to-fine framework and prototype system for

automatically segmenting a video sequence and extracting a salient moving object

from it. The study showed that the developed coarse-to-fine framework is capable

to generate interesting and pleasing visual outputs.

• This research developed Batch-Normalized Recurrent Highway Networks (BNRHN)–

a novel recurrent framework based on recurrent highway networks for sequence

modeling using batch normalization. It has been shown that in computer vision

tasks, such as image captioning, BNRHN reasonably controls the gradient flow and

effectively strengthens the ability of processing the data as sequences by increasing

the depth of the network

• This research explored the semantic sentence embedding method for paraphrasing

and text summarization. This work made use of sentences from widely available

image and video captioning datasets to form sentence paraphrase pairs, whereby

these pairs are used to train the encoder-decoder model. The application was

also demonstrated of the sentence embeddings for paragraph summarization and

sentence paraphrasing, whereby evaluations are performed using metrics, vector

visualizations and qualitative human evaluation. Moreover, we expend of the vec-

torized sentence approach to a hierarchical architecture, enabling the encoding of
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more complex structures such as paragraphs for applications such as text summa-

rization.

• This research developed a cross-domain Multi-Modal Vector Representation (MMVR)

model, capable of converting between text and image. A latent representation

based model was formulated that merges inputs across multiple modalities intro-

duced an n-gram based cost function that generalizes better to a text prior. The

improvements in image quality were shown while using multiple semantically sim-

ilar sentences for conditioning image generation on generalized text. To advance

qualitative measurement of text-to-visual models, an object detector based metric

was introduced, and human evaluations were conducted which compare the used

metric to the standard inception score [41].

• This research introduced the concept of common vector space (CVS), which en-

sures the embedded vectors from different types of sources lie in a common space

so that there is no need to align the vectors in the generative models. Also, the

vectors embedded from semantically similar modalities are close in the common

space, whereas dissimilar patches are further away.

6.2 Future Work

Recently, deep learning has enabled dramatic advancement in image, video and text

understanding. For example, image classification [137, 141, 10, 142], object detec-

tion [143, 144], image captioning [33, 134], localized image description [145], image and

sentence retrieval [146, 147] and visual question answering [148] tasks have witnessed

tremendous progress in the last few years. However, general vision or language models

are hard to emerge within a paradigm that focuses on the particularities of a single

metric, dataset, and task.

Chapter 5 introduced a model that achieve the goal of conversion between images

and texts using MMVR. This model successfully relates different modalities by a latent
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vector space. Note that this is not the only way to discover the latent vector repre-

sentation of different type of sources. In fact, a straight-forward way is worthy to be

considered: utilizing the unified Common Vector Space (CVS) for vision and language,

that spans across five broad tasks: classification, captioning, object detection, retrieval

and visual question answering. By learning a common vector space, the similar inputs

from different modalities cluster together. It is expected that the combination of these

resources will facilitate research in multitask learning, transfer learning, general embed-

dings and encoders, architecture search, zero-shot learning, general purpose question

answering, meta-learning, and other related areas of vision and language. The novelty

of CVS includes: 1) The formulation of an efficient vector space based model using

neural embeddings that act as a bridge between vision and language modalities and

is easily expandable to new modalities; 2) The multi-modal loss function that includes

metric loss, category loss and adversarial loss terms. The adversarial framework includes

within-modality and across modality discriminators.

6.2.1 Common Vector Space

The new CVS model deals with multiple modalities. For simplicity, taking image and

text as an example, Figure 6.1 shows the high level structure of the CVS model. The

images and texts are encoded by their encoders (CNN for image encoding and sent2vec

for text encoding) respectively, resulting in the initial vector representations of the input

modalities, hi and ht. The size of each vector in both paths are unified by the fully con-

nected layer Fi and Ft so that they can be sent into the subsequent embedding block Fc.

Note that embedding Fc can be single or consist of multiple fully connected layers, and

the embedding Fc layer(s) from different modalities are shared weights during training.

With proper loss function (see Section 6.2.2 for details) adopted, this architecture leads

the resulting vector in a common space. The input of the CVS model can be the pair

of the modalities, for example, image-image, sentence-sentence, or image-sentence pairs

(based on the task). During training, the input also includes the label for the pair and a
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ground truth output. The CVS model outputs image or sentence based on the task, for

example, bounding box of image, retrieved image or sentence, class category of input,

generated caption, etc.

6.2.2 Losses for Metric Learning

Similarity between objects plays an important role in both human cognitive processes

and artificial systems for recognition and categorization. Many approaches in machine

learning relies on the distance/similarity metric between two samples, for example, Eu-

clidean distance. The problem is that each problem has its own semantic notion of

similarity, which is often badly captured by standard metrics. In other words, these

distances are problem dependent. How to appropriately measure such similarities for a

given task is crucial to the performance of many machine learning, pattern recognition

and data mining methods. This section is devoted to the metric learning, a set of losses

to learn similarity and distance functions from data that has attracted a lot of interest in

machine learning and related fields in the past years. This section provides a thorough

review of the metric learning losses that can be utilized in the CVS model potentially.

hi
Embedding 1

Fi

Embedding 3

Fc

CNN

(Image Encoding)

CNN

(Image Encoding)

sent2vec

(Sentence Encoding)

A giraffe standing 

amongst tall, dry 

grass under a tree

ht
Embedding 2

Ft

CVS LossLoss

Figure 6.1: The CVS model training architecture. The solid arrows and dashed arrows
represent image path and text path respectively, the dotted line indicates the connection
to CVS.
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Triplet Loss

Usually in supervised learning there is a fixed number of classes and the network is

trained using the softmax cross entropy loss. However in some cases it needs to be able

to have a variable number of classes. In face recognition [112] for instance, the model

compares two unknown faces and indicates whether they are from the same person or

not. Triplet loss in this case is a way to learn good embeddings for each face. In the

embedding space, faces from the same person should be close together and form well

separated clusters.

The goal of the triplet loss is to make sure that two examples with the same label have

their embeddings close together in the embedding space, and with different labels have

their embeddings far away. However, it is not expected to push the train embeddings of

each label to collapse into very small clusters. The only requirement is that given two

positive examples of the same class and one negative example, the negative should be

farther away than the positive by the margin. Similarly to the margin used in Support

Vector Machines (SVMs), the clusters of each class are separated by the margin. As

shown in Figure 6.2, to formalize this requirement, the loss is defined over triplets of

Embeddings

anchor

positive 

example

negative 

example

shared weights

shared weights

Triplet 

Loss

Triplet 

Loss

CNN

CNN

CNN

Figure 6.2: Triplet loss on two positive examples and one negative example.
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embeddings: an anchor a, a positive example of the same class as the anchor p, and a

negative example of a different class n. In terms of CVS model, the anchor and positive

example indicate the modalities with similar semantics, and negative example refers to

the modality which is semantically different from the anchor.

For some distance on the embedding space d, the loss of a triplet (a, p, n) is

L = max(d(a, p)− d(a, n) + ∆, 0) (6.1)

where ∆ indicates the margin. This loss is minimized, that pushes d(a, p) to 0 and

d(a, n) to be greater than d(a, p) + ∆. As soon as n becomes an “easy negative”, the

loss becomes zero.

Based on the definition of the loss, there are three categories of triplets:

• Easy triplets: triplets which have a loss of 0, because d(a, p) + ∆ < d(a, n).

• Hard triplets: triplets where the negative is closer to the anchor than the positive,

i.e., d(a, n) < d(a, p)

• Semi-hard triplets: triplets where the negative is not closer to the anchor than the

positive, but which still have positive loss, i.e., d(a, p) < d(a, n) < d(a, p) + ∆.

Each of these definitions depend on where the negative is, relatively to the anchor

and positive. Therefore, these three categories can be extended to the negatives: hard

negatives, semi-hard negatives or easy negatives. The three corresponding regions of

the embedding space for the negatives are shown in Figure 6.3.

Choosing the kind of triplets to train on will greatly impact the metrics. In the CVS

model, a random semi-hard negative can be picked for every pair of anchor and positive

samples, and train on these triplets.
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Figure 6.3: The three types of negatives, given an anchor and a positive.

N-pair Loss

The fundamental philosophy behind triplet loss is the following: for an input (query)

example, it is desire to shorten the distances between its embedding vector and those

of positive examples while enlarging the distances between that of negative examples.

However, during one update, the triplet loss only compares an example with one negative

example while ignoring negative examples from the rest of the classes. As a consequence,

the embedding vector for an example is only guaranteed to be far from the selected

negative sample but not necessarily the others. Thus it ends up only differentiating an

example from a limited selection of negative samples yet still maintain a small distance

from many other classes. In practice, the hope is that, after looping over sufficiently

many randomly sampled triplets, the final distance metric can be balanced correctly; but

individual updates can still be unstable and the convergence would be slow. Specifically,

towards the end of training, most randomly selected negative examples can no longer

yield non-zero triplet loss error. An evident way to improve the vanilla triplet loss is to

select a negative example that violates the triplet constraint. However, hard negative

data mining can be expensive with a large number of output classes for deep metric
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learning. According to [120], the alternative can be a loss function that recruits multiple

negatives for each update. In this case, an input example is being compared against

negative examples from multiple classes and it needs to be distinguishable from all of

them at the same time. Ideally, the loss function incorporates examples across every

class all at once. But it is usually not attainable for large scale deep metric learning

due to the memory bottleneck from the neural network based embedding. Motivated

by this thought process, [120] propose the computationally feasible N-pair loss, which

approximates the ideal loss by pushing N examples simultaneously.

Consider an (N+1)-tuplet of training examples {x, x+, x1, ..., xN−1}, the embeddings

of anchor x, the positive example x+, and negative examples xi, i = 1, ..., N − 1 are

represented as a, p, and ni. The (N + 1)-tuplet loss is defined as

L = log
[
1 +

N−1∑
i=1

exp(aTni − aT p)
]

(6.2)

where the natural exponential hugely increase the probability of the biggest score and

decrease the probability of the lower scores when compared with standard normalization,

and also it makes the loss always be non-negative during training. Suppose the (N +1)-

tuplet loss is directly applied to the deep metric learning framework. When the batch

size of SGD is M , there are M × (N + 1) examples to be passed through the embedding

vectors at one update. Since the number of examples to evaluate for each batch grows in

quadratic to M and N , it again becomes impractical to scale the training for a very deep

convolutional network. The solution is to make use of an effective batch construction

to avoid excessive computational burden. Let {(x1, x
+
1 ), ..., (xN , x

+
N )} be N pairs of

examples from N different classes (denoted by yi, where i ∈ {1, 2, ..., N}). N tuplets,

denoted as {Si}Ni=1, are built from N the pairs, where Si = {xi, x+
1 , x

+
2 , ..., x

+
N}. In

this expression, xi is the query for Si, x
+
i is the positive example and x+

j , j 6= i are

the negative examples. The corresponding (N + 1)-tuplet loss, which referred to as the
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multi-class N-pair loss, is formulated as

L =
1

N

N∑
i=1

log
[
1 +

∑
j 6=i

exp(aTi nj − aTi pi)
]

(6.3)

where ai, pi and nj , i 6= j are the network-defined embeddings of the anchor (xi), positive

(x+
i ) and negative (x+

j ) example respectively. The batch construction is designed to

achieve the utmost potential of such (N + 1)-tuplet loss, when using deep CNNs as

embedding kernel on large scale datasets both in terms of training data and number

of output classes. Therefore, this framework consists of two indispensable components:

the (N +1)-tuplet loss, as the building block loss function, and the N -pair construction,

as the key to enable highly scalable training.

6.2.3 Applications of CVS

As an extension of this thesis, a lot of computer vision applications can be explored

directly or indirectly supported by the concept of CVS, as shwon in Figure 6.4.

Classification

Classification models are trained to classify the input into a category. The models are

also capable of zero-shot classification for categories that are not part of the training.

This is an intrinsic advantage with CVS since it is trained in a multi-task manner across

multiple datasets. For example, Figure 6.4(a) illustrates the classification inference using

CVS model. Given an image or the language (paragraph, sentence, phrase, word, etc.)

as input modality, the inference model encode the source into a vector in the trained

CVS, which is linked to the list of categories. Note that this model is capable to classify

the input into the category that is never seen in the training set, since the CVS is trained

to learn semantics
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Figure 6.4: Inference with the multi-task CVS model.

Object Localization

This involves localizing the object in the image with an object category or a natural

language description, as shown in Figure 6.4(b). The input pair to the model is an image

and the query text. The output is the bounding box of the region in the image that is

most closely associated with the sentence. This model first extracts the information of

objects and their spatial locations in an image. This is formulated through a bottom-

up mechanism [149] to obtain a set of salient image regions each represented by a

pooled convolutional feature vector. Practically, this bottom-up attention is achieved

using faster R-CNN [143] to obtain the image region proposals. Once the image region

proposals are obtained, the CVS model associates a query text (sentence/phrase/word)

with the proposed locations, i.e., the text is automatically aligned to different objects,
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that is represented by the extracted region proposals in the input image. An end-to-end

trainable model for a similar task was presented in [145] for sentence generation and

retrieval experiments.

Captioning

Image captioning task involves generating a natural language summary describing the

image. Typically, the inputs to the captioning model is an image and the matching

caption pair. The model makes use of a CNN which encodes the input image into a

fixed dimensional vector, and uses this representation to decode it to the desired output

sentence [134]. In other words, a pre-trained CNN is used for image feature extraction

and an RNN to generate a sequence of words. Using CVS model, this goal can be

achieved during inference by encoding the image into the vector in the trained CVS,

and then decoding it into a sentence, as shown in Figure 6.4(c).

Visual Question Answering

The Visual Question Answering (VQA) model needs to answer text-based questions

about images. The input pair consists of an image and corresponding question. Two

parallel paths deal with image and question encoding, as shown in Figure 6.4(d). Since

the model is trained to make the embedded vectors in the same space, the visual and

text path end up with a probability distribution over a set of possible answers, which is

in the form of the class label generated by a classifier, or an a sentence decoded by an

RNN-based decoder.

Cross-modal Retrieval

Since the core of CVS is to learn a common subspace where items of different modalities

can be directly compared to each other, a natural application is cross modal retrieval

[147]. While retrieving from the same modality, the model translated the input to CVS

and outputs the top results from the same modality from the test set. For example,
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providing an image, the single model retrieval finds out the similar images in the li-

brary according to its content. In the similar way, the CVS model is used to perform

multi-modal retrieval as as shown in Figure 6.4(e). For cross-modal retrieval, the input

modality is encoded and translated into CVS, and the output is generated from a differ-

ent modality with a proper generator. As an example, the task can be sorting a set of

images based on the relevance with the input sentence. Like the classification inference,

this model is able to deal with zero-shot retrieval, that the test categories are not part

of training.
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