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ABSTRACT  

Automated synthetic scene generation is now becoming feasible with calibrated camera remote sensing. This paper 

implements computer vision techniques that have recently become popular to extract òstructure from motionò (SfM) of a 

calibrated camera with respect to a target. This process is similar to Microsoftôs popular òPhotoSynthò technique  

(PhotoSynth09), but, blends photogrammetric with computer vision techniques and applies it to geographic scenes imaged 

from an airborne platform.  Additionally, it will be augmented with new features to increase the fidelity of the 3D structure 

for realistic scene modeling. This includes the generation of both sparse and dense point clouds useful for synthetic 

macro/micro-scene reconstruction.   

Although, the quest for computer vision has been an active area of research for decades, it has recently experienced a 

renaissance due to a few significant breakthroughs. This paper will review the developments in mathematical formalism, 

robust automated point extraction, and efficient sparse matrix algorithm implementation that have fomented the capability to 

retrieve 3D structure from multiple aerial images of the same target and apply it to geographical scene modeling.   

Scenes are reconstructed on both a macro and a micro scale.  The macro scene reconstruction implements the scale 

invariant feature transform to establish initial correspondence, then extracts a scene coordinate estimate using 

photogrammetric techniques. The estimates along with calibrated camera information are fed through a sparse bundle 

adjustment to extract refined scene coordinates.  The micro scale reconstruction uses a denser correspondence done on 

specific targets using the epipolar geometry derived in the macro method.   

The seeds of computer vision were actually planted by photogrammetrists over 40 years ago, through the development of 

ñspace resectioningò and ñbundle adjustmentò techniques. But it is only the parallel breakthroughs, in the previously 

mentioned areas that have finally allowed the dream of rudimentary computer vision to be fulfilled in an efficient and robust 

fashion. Both areas will benefit from the application of these advancements to geographical synthetic scene modeling. This 

paper will  explore the process the authors refer to as Airborne Synthetic Scene Generation (AeroSynth).  
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AEROSYNTH INTRODUCTION  

Recovering 3D structure from 2D images requires only that the scene is imaged from two different viewing geometries 

and that the same features can be accurately identified.  Figure 1, depicts a site of interest imaged from multiple views using 

an airborne sensor; here the point of interest is the top of a smokestack that will be imaged with the effects of parallax 

displacing it with respect to other features within the scene.  This parallax displacement effect has been used for decades 

within the photogrammetry community to recover the 3D structure within a scene.  Unfortunately, robust automated 

techniques to match similar features within a scene have been fairly elusive until very recent breakthroughs in the area of 

computer vision. 

RECOVERING SPARSE STRUCTURE FROM IMAGES  

The key to automatically recovering 3D structure from an imaged scene is to identify reliable invariant features, match 

these features from images with diverse angular views of that scene and then generate accurate mathematical relationships to 

relate the images.  This information can then be utilized in concert with the camera external and internal orientation 

parameters to derive scene structure that is defined within the World Coordinate System (WCS) of choice. 



 

 

 

 

Airbo rne Dataset 
For this study, the working imagery was obtained from the Rochester Institute of Technology, Center for Imaging 

Scienceôs (RIT/CIS), Wildfire Airborne Sensing Program (WASP) multimodal sensor suite.  This sensor provides 4kx4k 

Visible Near Infrared (VNIR) and 640x512 Short Wave Infrared (SWIR), Mid-Wave Infrared (MWIR), and Long Wave 

Infrared (LWIR) images.  Google Earth (GE) was utilized as the GIS visualization tool, with a detailed model of the Frank E. 

VanLare Water Treatment Plant (Pictometry, 2008) embedded within the standard satellite imagery and 30[m] terrain 

elevation maps (Figure 1 & Figure 4).  Figure 1 shows the region of overlap (outlined in red) of 5 WASP images where the 

site of interest is contained in the central (base) image. 

 
Invariant Feature Detection and Matching 

The Scale Invariant Feature Transform (SIFT) operator, proposed by David Lowe in 1999 (Lowe, 2004), has become a 

ñgold standardò in 2D image registration due to its ability to robustly identify large quantities of semi-invariant feature within 

images.  The SIFT technique can consistently isolate thousands of potential invariant features within an arbitrary image as 

seen in Figure 2.  This is extremely useful when attempting to create sparse structure from matched point correspondences, 

since any matching features can then be processed to obtain the 3D structure of the imaged scene.  In addition, more recent 

independent testing has confirmed that the SIFT feature detector, and its variants, perform better under varying image 

conditions than other current feature extraction techniques (Moreels & Perona, 2006) & (Mikolajczyk & Schmid, 2005).  

The SIFT algorithm utilizes a Difference of Gaussian edge detector of varying widths to isolate features and define a 

gradient mapping around them.  These gradient maps are then compared for similarity in another image and matches result 

from the most likely invariant feature pairs.  Once potential matches are found, outliers usually need to be culled based on the 

requisite epipolar relationships that must exist between two images of the same scene.  This has always been challenging in 

the past due to the effects of parallax, but, this can now be robustly addressed using techniques highlighted in the next section. 

Figure 1 ï Example showing the angular diversity required to recover 3D Terrain from Airborne Imagery. 



 
 
Outlier Removal 

In order to successfully remove erroneous matches derived using the SIFT algorithm, the potential match set will be 

processed using the RANdom Sample Consensus (RANSAC) technique in conjunction with the Fundamental Matrix 

relationship between images of the same scene (Figure 3).  RANSAC has proven to be a robust technique for outlier removal, 

even in the presence of large numbers of incorrect matches (Hartley & Zisserman, 2004).  Also, because it is not necessary to 

test all the sets of points for a solution, it can be efficiently utilized with techniques like SIFT that provide large numbers of 

automated matches. 

 
In the diagram above (Figure 3), the Fundamental Matrix F dictates that for a given 3D scene point X, a ray must pass 

Figure 3 ï Depiction of the Fundamental Matrix constraint between two images which is used for outlier removal. 

Epipolar Relationship 

Between Images 
Matches Must Fall on Lines 

Defined by the Fundamental Matrix 

Figure 2 - Thousands of invariant keypoints generated and matched using the SIFT algorithm. 



from the camera center C (a focal length behind the image plane) through the image location x and this ray will be imaged by 

the camera Cô as an epipolar line lô, passing from the image of the same model point xô to that cameras epipole eô.  The 

epipole is the image of the other camera center (which may be off the image entirely).   

Anyone that has worked for any length of time with automatic image registration can attest to the challenging issues 

parallax can cause when relating features.  The limitation of utilizing a 2D Projective Homography to relate imagery with 

large degrees elevation difference between acquisition stations, can be somewhat addressed through the use of the 

Fundamental Matrix relationship.  This relationship constrains the matches to an epipolar line even under extreme parallax 

situations and can be simply formalized in a mathematical manner as shown below (Hartley & Zisserman, 2004). 
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T
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Fundamental 

Null Space 
ὼᴂὝὊὼ= 0 (2) 

 

 

So, for a given point x, the preliminary match point must lie along the epipolar line lô in order for it to be a valid match.  So, 

the proposed feature matches that do not fit this epipolar constraint are probably bad matches. 

Once the initial matched point set has been obtained using the automated SIFT technique, it is usually necessary to test 

for these bad matches or ñoutliersò.  The RANSAC algorithm (Fischler & Bolles, 1981) can be utilized to iteratively take a 

random sample of the matches to create a Fundamental Matrix relationship between the images.  Once this is done, the 

veracity of that relationship can be tested by comparing the number of resulting inliers against a statistically relevant number 

of additional tests.  The Fundamental Matrix that produces the most match point inliers is then accepted as the best 

mathematical model and any outliers to this model are then removed. 

 Figure 4 ï Graphic showing two collection stations of an airborne sensor utilized to recover 3D Structure. 



Initial Estimate of Sparse Structure 
The initial estimation technique that is utilized to derive the 3D scene structure utilizes a simple approach that is 

augmented for more general situations by compensating for the aircraft motion and implementing coordinate system 

conversions.  This basic process can be visualized in Figure 4 and the following equations (DeWitt & Wolf, 2000) can be 

utilized to derive 3D structure once these corrections have been accomplished.  The flying height of the initial sensor location 

is represented by Tz1, the baseline distance between sensor locations is B, the pixel distance between matches is pi, and each 

image location is described as [x1i, y1i] and [x2i, y2i].  
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Figure 5 depicts the corrections that are required for any deviation of the flight line from the coordinate axis of the 

images and the pitch, yaw, and role of the aircraft.  Initial coordinate conversions are required to align the image planes with 

the flight path and compensate for heading and yaw.  Unless the acquisition platform is capable of acquiring perfectly nadir 

imaging on a routine basis, it is necessary to rectify the image or image correspondences to enable proper linear 3D structure 

estimation.  The approach the author has taken to accomplish this is to back-project the image correspondences onto a virtual 

focal plane that is located at the focal length (f), but, is situated perpendicular to the earthôs surface as depicted in Figure 5B. 

 

 
It is important to note that the height estimate (Zi) is dependent on the ratio of the Baseline (B) to the pixel distance (pi) 

of the matches projected onto the virtual focal plane.   This ratio can be corrected to one that is aligned with the flight line by 

Figure 5 ï Corrections are required to compensate for flight line orientation and aircraft pitch, yaw, and roll. 

A. Flight Line and Yaw Correction B.  Pitch and Roll Correction  



performing a coordinate system conversion to the base image plane and then compensating for the relative Baseline distance 

(Equation (7)).  Finally, the corrected image plane distance can be calculated using Equation (8). Here, the offset from the 

flight line is represented by K and Txi and Tyi are respectively the Longitude and Latitude of the camera centers. 
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The  initial results can be viewed with their respective camera stations in Figure 6, where nearly 20,000 individual point 

correspondences were automatically recovered from 5 matching images (4 image pairs) to produce a Sparse Point Cloud 

(SPC) representation of the scene.  Note that here the results are still in a relative (meter based) coordinate system centered on 

the base camera location. 

 
 

Non-Linear Optimization of Sparse Structure 
Many of the problems presented in this research cannot be solved by linear methods alone.  In these cases, it is necessary 

to apply non-linear estimation techniques to provide accurate solutions.  Such real world problems as the resectioning of 

images to models and the Bundle Adjustment (BA) of multiple images, to reconstruct 3D structure, both require nonlinear 

minimization solutions. In fact, for BA, these solutions often depend on calculating the interaction of several thousand 

variables simultaneously.  Due to its stability and speed of convergence, the LevenbergïMarquardt Algorithm (LMA) is 

currently one of the most popular approaches which is routinely used to solve these challenging problems. 

When utilizing LMA, the computational challenge is to minimize a given cost function.  For applications such as 

resectioning and BA, this cost function is defined as the sum of the squared error between image points (actual data) and 

projected 3D model points (predicted values) dictated by the current set of parameter.  The minimization function takes 

advantage of the relationship between the estimated 3D structure (╧Ὥ) and its 2D projection onto the image plane (●Ὥ) as 

mathematically formalized below (Hartley & Zisserman, 2004). 

 

Figure 6 ï The initial estimates of the four individual SPCôs can be seen compared to the camera locations. 
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The Projection Matrix (P) can then be utilized directly for minimization since it incorporates the cameras internal calibration 

parameters (K) , and external orientation (R) and position (t).  This minimization equation then takes the following form 

(Equations (11) and (12)). 
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The Sparse Bundle Adjustment (SBA) algorithm of Lourakis and Argyros (Lourakis & Argyros, 2004) is optimized for 

speed and efficiency.  It can easily optimize against several camera variables and the structure of tens of thousands of 3D 

points simultaneously to produce a sparse image bundle that is mutually self-consistent.  However, as with any engineering 

code, it requires specific formatting for the input variables and special care when preparing the camera IOPs and EOPs.  The 

next section addresses this topic in order to ensure that accurate global coordinates can be obtained after utilizing this SBA 

minimization. 

 

 
 

 

 

 

 

A. Final SPC in global UTM. B. Results Projected back onto Base Image. 

C. SPC displayed in Google Earth. D. SPC converted into faceted mesh model. 

Figure 7 ï Example results of the Sparse Bundle Adjustment processing on the Sparse Point Cloud. 



Relating the Results to World Coordinate System  
Since the results of the SBA process minimize against a relative coordinate system anchored on the base camera position, 

it can be difficult to determine the absolute locations of the 3D points even though there is good self consistency between the 

camera locations and the SPC.  In order to recover the absolute location of the3D points, the collinearity equations (Equations 

(13) and (14)) were utilized to re-project the 3D points back into the base image locations of the initial feature matches as 

seen in Figure 7B.   

Collinearity Eq 
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In this case, only the minimized depth parameter (Zi) retained its absolute coordinate value and so could be utilized with 

the camera locations to determine the world coordinate Latitude (Yi) and Longitude (Xi) values. 

RECOVERING DENSE STRUCTURE FROM IMAGES  

The key to recovering a Dense Point Cloud (DPC) from matching images lies in the ability to relate the images on a 

pixel-to-pixel level (Nilosek & Walli, 2009). This is the transition point between the macro and micro scene reconstruction, 

and the micro process needs certain information derived in the macro process.  At this point in the process each image is 

related to a base image of the scene through a fundamental matrix derived using the RANSAC process. The macro process 

has also derived the regions of overlap for each image with respect to the base image. Each fundamental matrix and region of 

overlap are passed off to the micro process. Ideally this process would relate every pixel in every overlapping image to the 

base image however due to computing power restrictions, examples in this paper focus on specific targets inside the regions 

of overlap.  

Dense Correspondence - Relating Images at the Pixel Level 
The utility of the Fundamental Matrix for outlier match removal has been shown, now this matrix will be used to help 

derive a dense set of matches between overlapping regions. Using this matrix and equation (1) for every point in the base 

image an epipolar line that contains the corresponding point can be found in each other overlapping image. Figure 8 shows 

how epipolar lines are found in different overlapping regions from a single point in one image for three different images.  

 
 This property of the Fundamental Matrix reduces the correspondence search to a 1 dimensional search along epipolar 

lines. The images are rectified so that the epipolar lines are along the horizontal then a normalized cross correlation is 

computed on a small area selected around the single point in the base image. The maximum response from the normalized 

Figure 8 ï Left: Target with single point chosen.  Middle/Right: Corresponding epipolar lines. 



cross correlation is chosen as the match. This is done for every pixel over the entire area which results in a very dense 

correspondence between the multiple views. The estimate of the dense structure follows the same pipeline as estimating the 

sparse structure. First basic photogrammetry is used to extract an initial estimate of the structure. Then the camera parameters, 

initial estimate of the structure and correspondences are used in minimizing the reprojection error between all the images 

using the SBA method. The collinearity equations can also be used to place the dense structure in the world coordinate 

system. The dense structure is also mapped with an image of the target. Figure 9 shows the initial estimate of the structure 

then the final product after all the processes.  

 

 
 Once the dense structure of a specific target has been acquired it is added to the sparse structure. Figure 10 shows the 

dense structure incorporated into the sparse structure overlaid on a map. Also on this map are hand generated CAD models of 

the same structures. Based on the CAD model the dense structure is not too far off from the correct structure. One very clear 

issue stands out when working with only nadir imagery, and that is that it is very difficult to reconstruct the sides of objects. 

Oblique imagery can be used to view the sides of objects however, the fairly severe projective transforms that relate oblique 

images together provide its own set of correspondence problems.  

 
 

Figure 9 ï Left: Initial estimate of the structure of the dense point cloud from three images. Right: Result after SBA, 

world coordinate mapping and image texturing. 

Figure 10 ï Resulting 3D structure recovered from three overlapping images using Dense Point Correspondences 

(Model provided by Pictometry International Corporation  and embedded within  Google Earth). 



Matching Oblique Images using ASIFT ï Maximizing Angular Diversity  
Recently an algorithm has been developed that attempts to describe features as projectively invariant. This algorithm is 

called Affine Scale Invariant Feature Transform (Morel & Yu, 2009). This algorithm builds off of the original SIFT by taking 

the initial images and simulating rotations along both the x and y axis. It essentially performs many SIFT operations over 

these simulated images in order to find the best matching rotation between the images in order to remove it. Once the initial 

matching is found using ASIFT, the same RANSAC process using the Fundamental Matrix as the fitting model can be used to 

weed out the outliers found with ASIFT. Figure 11 shows an example of matching points using ASIFT and then RANSAC.  

 
 

The next step is to utilize the SPC, resulting fundamental matrices and regions of overlap to extract a DPC of a target 

area within the scene. Since a projective transformation can greatly impair the normalized cross-correlation method of point 

matching, a separate approach may be required for dealing with images that capture significant angular diversity of a target.   

 
Growing a Depth Map from the Sparse Correspondence 

Since an accurate sparse representation of the structure of the scene has already been derived, this structure can be 

utilized as a good starting point to ógrowô a dense matching between images. (Goesele, Snavely, Curless, Hoppe, & Seitz, 

2007). A dense matching is generated around each sparse match using an optimization method that minimizes the normalized 

pixel intensity difference between each overlapping image with respect to the base image.  Here each projected SPC location 

is utilized as an initial seed and the matched image locations are slowly grown from the pixels surrounding these points.  In 

this way a dense correspondence mapping can be obtained between images by constraining the epipolar line search space. 

 

 Figure 12 ï Growing 3D depth maps based on the initial  SPC results and epipolar relationships. 

2D Base Image Location 

Match Location now 

constrained to line section. 

3D SPC Location 

Depth estimated from closest SPC. 

Figure 11 ï Matching between a nadir and oblique images using ASIFT and then RANSAC with the Fundamental 

Matrix as the fitting model (Images courtesy Pictometry International Corp). 


