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ABSTRACT

Automated synthetiscenegeneration is nowecoming feasible with calibrated camera remote sensing. pEper
implements computer vision techniques that have recéndyc o me popul ar to extract aostr
calibrated camera with respect to a target. This processsimilar toMi cr osoft 6s popul ar oPh
(PhotoSynth09)but, blends photogrammetric with computer vision techniques and appieegeébgraphic scenes inme
from an airborne platformAdditionally, it will be augmented with new featuresincrease the fidelity of the 3D structure
for realistic scenemodeling. This includes the generation of both sparse and gmise clouds useful for synthetic
macro/mico-scene reconstruction.

Although, the quest for computer vision has been an aatiwe of research for decades, it has recently experienced a
renaissancelue to a few significant breakthroughs. Theperwill review the developments in mathematicatnfalism,
robustautomated point extraction, and efficient sparse matrix algoiitiplementation that have fomented the capability to
retrieve 3Dstructure from multiple aerial images of the same target and @pplgeographical scene modeling.

Scenesare reconstructed on both a macro and a micro scBl® macro scene reconstruction implements the scale
invariant feature transform to establish initial correspondence, then extracteeme coordinate estimate using
photogrammetric techniques. Thstimates along with calibrated camera information are fed thr@ugiparse bundle
adjustment to extract refined scene coordinat&fe micro scale reconstruction uses a denser correspondencermone
specific targets using the epipolar geometry derived imihero method.

The seeds of computer vision were actually planted by photogrammetestd0 years ago, through the development of
fispace resedhumdliemgadijawmsit me ntivonly the garallelgbveakthroughB,uirt thei pteviously
mertionedareas that have finally allowed the dream of rudimentary compigien to be fulfilled in an efficient and robust
fashion. Bothareas will benefit from the application of these advancemergedgraphicasynthetic scene modeling. This
papemwill explorethe process the authors refer to asbéirne SyntheticSceneGeneratior{AeroSynth).
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AEROSYNTH INTRODUCTION

Recovering 3D structure fro@D imagesequires only that the scene is imaged from two different viewing geometries
and that the same features can be accurately identffigpire 1, depictsa site of interest imagefdom multiple viewsusing
an airborne sensor; here the point of interest is the top of a smokestack that will be imaged with the effects of parallax
displacing it with respect to other features within the scene. This parallax displacement effect has been used for decade
within the photogrammetry community to recover the 3D structure within a scene. Unfortunately, robust automated
techniques to match similar features within a scene have been fairly elusive until very recent breakthroughs in the area o
computer vision.

RECOVERING SPARSE STRUCTURE FROM IMAGES

The key toautomaticallyrecovering3D structure from an imaged scene is to identify reliable invariant features, match
these features from images with diverse angular views of that scene angtieeate accurate mathematical relationships to
relate the images.This information can then be utilized in concert with the camera external and internal orientation
parameters to derive scene structure that is defined within the World Coordinate 8Y€&&of choice.



Figure 17 Example showing the angular diversity required to recover 3D Terrain from Airborne Imagery.

Airbo rne Dataset

For thisstudy, the working imagery was obtained frahe Rochestetnstitute ofTechnology, Center for Imaging
Sci enc e 6 sWildfiRd Airbor@d Ser)sing PrografVASP) multimodal sensor suitelhis sensoprovides &x4k
Visible Near Infrared (VNIR) and 640x512 Short Wave Infrared (SWIR),-Wiave Infrared (MWIR), and Long Wave
Infrared (LWIR) images. Google Earth (GE) was utilized as the GIS visualization tooh détailed modedf the Frank E.
VanlLare Water Tratment Plan{Pictometry, 2008gmbedded within the standard satellite imagery and 3@mgin
elevationmaps(Figurel & Figured). Figurel shows the region of overlap (outlined in red) of 5 WASP images where the
site of interest is contained in the central (base) image.

Invariant Feature Detection and Matching

The Salelnvariant Feature Bnsform (SIFT) operator, proposed by David Lowe in 1@98ve, 2004) has become a
fifgol d standardo in 2D image registrati on Jdnhuadanttfeaturé viitsin a b i |
images. The SIFT technique caponsistentlyisolatethousandf potential invariant features within an arbitranyageas
seen inFigure2. This is extremely useful when attempting to create sparse structorerfatched point correspondences
since any matdhg features cathenbe processed to obtain the 3D structure of the imaged .sdaraddition, more recent
independent testing has confirmed that the SIFT feature detector, and its variants, performnbetterarying image
conditions than other current feature extraction techni¢/deseels & Perona, 200@& (Mikolajczyk & Schmid, 2005)

The SIFT algorithm utilizes a Difference of Gaiassedge detector of varying widths to isolate features and define a
gradient mapping around them. These gradient maps are then compared for similarity in another image and matches rest
from the most likely invariant feature pairs. Once potential nestene found, outliers usually need to be culled based on the
requisite epipolar relationships that must exist between two images of the same scene. This has always been challenging
the past due to the effects of parallax, but, this can now be robdsiiigssed using techniques highlighted in the next section.



Figure 2 - Thousandsof invariant keypoints generated and matched using the SIFT algorithm.

Outlier Removal

In order to successfully remove erroneous matches derived Ugn8IFT algorithmthe potential match set will be
processed using thBRANdom SampleConsensus RANSAC) technique in conjunction witthe Fundamental Matrix
relationship between images of the same sceigrife3). RANSAC has proven to be a robust technique for outlier removal,
even in the presee of large numbers of incorrect matcliidartley & Zisserman, 2004)Also, because it is not necessary to
test all the sets of points for a solution, it can be efficiently utilized with techniques like SIFT that paogeteumbers of
automated matches.

Epipolar Relationship Matches Must Fall on Lines
Between Images Defined by the Fundamental Matrix
X
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Figure 31 Depiction of the Fundamental Matrix constraint between two images which is used for outlier removal.

In the diagramabove Figure 3), the FundamentadWlatrix F dictates that for a giveBD scenepoint X, a ray must pass



from the camera centé€ (a focal length behind the image plane) through the image locatol this ray will be imaged by
the cameraC Gas an epipolar ling ,@assing from the image of the same model poidb that cameras epipoke.d6 The
epipole is the image of the other cameeater (which may be off the imagatirely).

Anyone that has worked for any length of time with automatic image registration can attest to the challenging issues
parallaxcan cause when relating featureBhe limitation of utilizing a 2D Projectivelomographyto relate imagery with
large degreelevation differencebetween acquisition stationgan be somewhat addressddough the use of the
Fundamental Matrix relationship. This relationship constrains the matches to an epipolar line evexxterderparallax
situations and can be simply formalized in a mathematical manner as showr(lHattey & Zisserman, 2004)

Fundamental S
Matrix @= e @
and so,x & must be in the left nulspace ok andFx must be in the right nupace ok b
Fundamental @@= 0 2

Null Space

So, for a given point, the prelimhary match point must lie along the epipolar linié order for it to beavalid match So,
the proposed featurmatches that do not fit this epipolar constrairg probably bad matches

Oncethe initial matched point set has been obtainsidg the atomated SIFTtechnique it is usuallynecessary to test
fortheseb ad mat c hes TheRANSAQalydithne(Fischier & Bolles, 1981¢an be utilized to iteratively take
random sample of the matches to creatEuadamental Matrix relationship between the images. Once this is done, the
veracity of that relationship can be tested by comparing the humber of resulting inliers against a statistically releeant num
of additional tests. The Fundamental Matrix thatdpices the most match point inliers is then accepted as the best
mathematical model and any outliers to this modettzaremoved
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Figure 41 Graphic showing two collection stations of an airborne sensor utilized to recover 3D Structure.



Initial Estimate of Sparse Structure

The initial estimation technique that is utilized to derithe 3D scene structurdilizes a simple approachthat is
augmented for more general situations by compensating for the aircraft motion and implementing coordinate system
conversions This basic process can be visualized-igure 4 and the followingequationgDeWitt & Wolf, 2000) can be
utilized to derive 3D structurence these corrections have been accomplistigd. flying height othe initial sensor location
is represented by,,, the baselinalistance between sensor locati8, the pixel distance between matchep;jsand each
image location islescribed as<;, yi] and[Xy, Y»].
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Figure5 depicts the corrections that are required for any deviation of the flight line from the coordinate axis of the
images and the pitch, yaw, and role of the aircrifitial coordinate conversions are required tgmlihe image planes with
the flight pathand compensate for heading and ydinless the acquisition platformésapable oacquiringperfectlynadir
imagingon a routine basis, is necessary to rectify the image or image correspondences to enabldipegpedD structure
estimation. The approach the author has taken to accomplish this is fprbpeek the image correspondences onto a virtual

focal plane that is located at the focal Hepiaedinfhigu(eSs., but

A. Flight Line and Yaw Correction B. Pitch and Roll Correction
Y2

Oblique View

Nadir View Virtual FP

Figure 57 Corrections are required to compensate for flight line orientation and aircraft pitch, yaw, and roll.

It is important to note that the height estimatg is dependent on the ratio of the BaseliBgt6 the pixel distace €;)
of the matches projected onto the virtual focal plane. This ratio ceorieetedo one that is aligned with the flight line by



performing a coordinate system conversion to the base imagegpldtieen compensating fahe relative Baselindistance
(Equation(7)). Finally, the corrected image plane distanae be calculated using Equati@). Here, the offset from the
flight line is represented by andT,; andT,; are respectively the Longitude and Latitude of the camera centers.

Baseline

DiStance a e - o 2 et o o 2
Correction 6= ivsYp Wi+dRSY WV (7)

Image

Distance = @o Qo’+ Qo Qo’ ®
Correction

The initial results can be viewed with their respectiamera stations iRigure6, wherenearly 20,000 individual point
correspodences were automatically recovered from 5 matching images (4 image pairs) to produce a Sparse Point Cloud
(SPC) representation of the scene. Note that here the results are still in a relative (meter based) coordinate sgstem center
the base cameradation.
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Figure6iThe initial estimates of the four imemdloocatiomsu a l

Non-Linear Optimization of Sparse Structure

Many of the problems presented in this research cannot be solved by linear methods alone. In these cases, it is necess
to apply norlinear estimation techniques to progidccurate solutions. Such real world problems as the resectioning of
images to models and the Bundle Adjustment (BA) of multiple images, to reconstruct 3D structure, both require nonlinear
minimization solutions. In fact, for BA, these solutions oftepeatal on calculating the interaction of several thousand
variables simultaneously. Due to its stability and dpekconvergence, the LevenbelMarquardt Algorithm (LMA) is
currentlyone ofthe most popular approaeh which is routinely usett solve thesehallenging problems.

When utilizing LMA, the computational challenge is to minimize a given cost function. For applications such as
resectioning and BA, this cost function is defined as the sum of the squared error between image points (actual data) an
projected 3D model points (predicted values) dictated by the current set of paraifleéeminimization function tale
advantage of the relationship between the estimated 3D strugtgrar(d its 2D projection onto the image plame) (@s
mathematically formalized belo@iHartley & Zisserman, 2004)
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The Projection Matrix®) can therbe utilized directly for minimization since it incorporates the cameras internal calibration
parametersK) , and external orientatiorR] and position €). This minimization guation then takes the following form
(Equationg11) and(12)).
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The $arseBundle Adjustment (SBA)lgorithm of Lourakis and Argyro@.ourakis & Argyros, 2004)s optimized for
speed and efficiency. It can easily optimize against several camera variables and the structure of tens of thousands of 3
points simultaneously to produce a sparsage bundle that is mutually selbnsistent. However, as with any erggnng
code, it requires specific formatting for the input variables and special care when preparing the camera IOPs ahkdeEOPs.
next section addresses this topic in order to ensure that accurate global coordinates can be obtained after utiBfng this S

minimization.

A. Final SPC in global UTM. B. Results Projected back onto Base Image

C. SPC displayed in Google Earth.

Figure 71 Example results of the Sparse Bundle Adjustment processing ondtSparse Point Cloud.



Relating the Results to World Coordinate System

Since the results of the SBA process minimize against a relative coordinate system anchored on the base camera positic
it can be difficult to determinéné absolute locations of the 3D points even though there is good self consistency between the
camera locations and the SPC. In order to recover the absolute location of the3D points, the collinearityg @€pzdittons
(13) and (14)) were utilized to reproject the 3D points back into the base image locations of the initial feature masches
seen inFigure7B.
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In this case, only the minimized depth parame®y fetained its absolute coordinate value and so could be utilized with
the camera locatits to determine the world coordinate Latitudfg &nd LongitudeX;) values.

RECOVERING DENSE STRUCTURE FROM IMAGES

The key to recovering Dense Point Cloud (DPC) from matching images lies in the ability to relate the images on a
pixel-to-pixel levd (Nilosek & Walli, 2009) This is the transition point between the macro and micro scene reconstruction,
and the micro process needs certain information derived in the macro prédetss point inthe pra@ess each image is
related to a base image of the scene through a fundamental matrix derived using the RANSAC process. The macro proce
has alsalerivedthe regions of overlap faach image with respect to the base image. Each fundamental matrix amdofegi
overlap are passed off to the micro procédsally this process would relate eyapixel in every overlapping image to the
base image however due to computing power restrigteamples in this paper focus on specific targets inside the regions
of overlap.

Dense CorrespondenceRelating Imagesat the Pixel Level

The utility of the Fundamental Matrix for outlier match removal has been shown, now this matrix will be used to help
derive a dense set of matches between overlapping redisimgy thismatrix and equation (1) for every point in the base
image an epipolar line that contains the corresponding point can be found in each other overlappirgigomr@g&shows
how epipolar lines are found in different overlapping regions from a singleipant imagdor three different images

Figure 81 Left: Target with single point chosen. Middle/Right: Corresponding epipolar lines.

This property of the Fundamental Matrix reduces the correspondence search to a 1 dimensional search along epipola
lines. The images are rectified so that the epipolar lines are thiertmprizontal thea normalized cross correlation is
computed on a small area selected around the single point in the baselinageximum response from the normalized



cross correlation is chosen as the match. This is done for every pixel overtheuat which results in a very dense
correspondence between the multiple views. The estimate of the dense structure follows the same pipeline as estimating the
sparse structure. First basic photogrammetry is used to extract an initial estimate attheestfhen the camera parameters,
initial estimate of the structure and correspondences are used in minimizing the reprojection error between all the images
using the SBA method. Ttellinearityequations can also be used to place the dense structbeevitorld coordinate

system.The dense structure is also mapped with an image of the target. Figure 9 shows the initial estimate of the structure
then the final product after all the processes.

Figure 91 Left: Initial estimate of the structure of the dense point cloud from three images. Right: Result afte8BA,
world coordinate mapping and imagetexturing .

Once the dense structure ofpecific target has been acquired it is added to the sparse structure. Figure 10 shows the
dense structure incorporated into the sparse structure overlaid on a map. Also on this map are hand generated CAD models
the same structures. Based on the CARIehdhe dense structure is not too far off from the correct structure. One very clear
issue stands out when working with only nadir imagery, and that is that it is very difficult to reconstruct the sidessof obje
Obligue imagery can be used to view Hides of objects however, the fairly severe projective transforms that relate oblique
images together provide its own set of correspondence problems.

Figure 107 Resulting 3D structure recovered from three overlapping images using Dense Point Correspondence
(Model provided by Pictometry International Corporation and embeddedwithin Google Earth).



Matching Oblique Images using ASIFTi Maximizing Angular Diversity

Reantly an algorithm has been developed that attempts to describe features as projectively imtégialgorithm is
called Affine Scale Invariant Feature Transfaiorel & Yu, 2009) This algorithm builds off ofhe original SIFT by taking
the initial images and simulagnrotations along both the x and y aXisessentially performs many SIFT operations over
these simulated images in order to find the best matching rotation between the imades ia rmove it. Once the initial
matching is found using ASIFT, the saRANSAC process using the Fundamental Matrix as the fitting neadebe used to
weed out the outliers found with ASIFT. Figure 11 shows an example of matching points using ASIFT and then RANSAC.

Figure 1171 Matching between a madir and oblique images using ASIFT and then RANSAC with the Fundamenal
Matrix as the fitting model (Images courtesy Pictometry International Corp).

The next steps to utilize the SPCresulting fundamental matesand regios of overlap toextract aDPC of a target
areawithin the sceneSincea projective transformtion cangreatly impairthe normalized crossorrelation method of point
matching a separat@pproactmay berequired fordealing with images thaiapturesignificant angular diversitgf a target

Growing a Depth Map from the Sparse Correspondence

Since & accurate sparse representation of the structure of the scene has already been derived, this structure can |
utilized as a good starting poi n(Goesete, SbayalypCGQuibessaHombe, B Satz, ma t
2007) A dense matching is generated around each sparse match using an optimization mettioghizats the normalized
pixel intengty difference between each overlapping image withees the base imagelere eactprojected SPC location
is uilized as an initial seed artde matched inge locations are slowly growinom the pixels surrounding these poinis.
this way adensecorrespondencappingcan be obtaied betweerimagesby constraining the epipolar line search space

4 2D Base Image Location

£ .

Match Locationnow ¥ Depthestimatel from closesSPC
constrainedo linesection

Figure 1271 Growing 3D depth maps based on thanitial SPCresults and epipolar relationships.



