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Abstract

i

Measurements of effluent gases in the plumes of hot industrial emission stacks are
reported. Overhead data were collected on a refinery using the SEBASS (Spatially
Enhanced Broadband Array Spectrograph System) thermal-infrared, hyperspectral
imaging sensor. Ammonia, sulfur dioxide, ethylene, methane, water vapor, carbon
dioxide, and nitrogen dioxide were identified in the imagery. Methods of data analysis
are formulated and demonstrated. Principal-component projection and spectral matched
filtering are used for detection. Principal-component projections constructed from the
spectral clutter covariance matrix of the data are superior to projections constructed from
correlation or noise-adjusted matrices in revealing plume activity. Linear least-squares
regressions are used for quantitative gas analysis. The regression model is formulated as
a linear expansion of pixel spectra in terms of gas-absorption spectra and a basis set of
background spectra. The absorption spectra for water vapor, carbon dioxide, and meth-
ane are adjusted to account for line correlation between the plume emission and atmos-
pheric attenuation spectra. Basis sets of mean cluster spectra are used in most of the
analyses. A fast, single-pass clustering algorithm with a single adjustable parameter is
formulated. It forgoes the minimization of the total within-cluster sum-of-squares
implemented in clustering algorithms such as K-Means or ISODATA. Basis sets con-
sisting of eigenvectors of the scene clutter covariance matrix are also investigated. Basis
sets constructed with endmember extraction algorithms are not considered owing to the
current inability of these algorithms to handle thermal variation in the data. Uncon-
strained regression is shown to be inadequate for quantitative estimation of gas concen-
tration. Underpredictions up to a factor of ~3 are obtained for some gases. The failing
of unconstrained regression is its unbridled power to fabricate unrealistic emission spec-
tra for the surface underlying the plume. Quantitative results are obtained with con-
strained regression in which all gas contrast radiance coefficients are required to have
the same sign, and the background basis set is required to consist of physically meaning-
ful spectra represented by non-negative expansion coefficients. Statistical tests are used
to assess the significance of all gas measurements. A method is formulated to extract
gas column density and plume temperature from the gas contrast radiance. The method
employs a spatial degradation of the data to circumvent the indeterminacy inherent to the
problem. Downwind variations of ammonia column density and plume temperature for
the largest plume at the site are fit to a simple cone-expansion plume model to extract
the ammonia flow rate. Estimated concentrations for carbon dioxide and water vapor
within the plume are 900 * 400 and 21000 = 6000 ppm, respectively. These values
account for both stack emission and entrainment of ambient air. Nitrogen dioxide,
ammonia, sulfur dioxide, ethylene, and methane are detected at concentrations of order

0.1 to 10 ppm.
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1. Introduction

Hyperspectral imaging in the mid-wave infrared (MWIR) and long-wave infrared (LWIR) atmos-
pheric window bands provides the capability for remote sensing of both the spatial distribution of gas
plumes and the identification of trace gases within the plumes. Measurements of effluent gases in
the plumes of hot emission stacks are reported here. Data were collected with the SEBASS (Spa-
tially Enhanced Broadband Array Spectrograph System) hyperspectral imaging spectrometer owned
and operated by The Aerospace Corporation. A series of overhead collections was made in the
spring of 2001 as part of a corporate-funded research and development program to address the issue
of anthropogenic point-source emission of carbon dioxide in analysis of natural carbon-cycle data.
This report establishes the general capabilities of plume gas detection in hyperspectral imagery by
applying various analysis methods to data collected on a commercial refinery. Eight regions of hot-
stack plume activity within the refinery imagery were investigated. Ammonia, sulfur dioxide, ethyl-
ene, water vapor, carbon dioxide, methane, nitrogen dioxide, and (possibly) nitrous oxide were

detected.

Measurement of trace gases in plumes using passive, non-imaging spectroscopy at hyperspectral
resolution (44 ~0.01 to ~0.1 pum) is well established. Carlson et al. [1988] and Polak et al. [1995]
cite several investigations. Thermal-infrared imaging of gas plumes at resolutions ranging from sin-
gle-band radiometry to hyperspectral resolution has been reported. Bennett et al. [1995] report full
hyperspectral imaging of ammonia and sulfur hexafluoride in a hot-stack plume viewed against both
sky and terrestrial backgrounds. Gittins and Marinelli [1998] and Marinelli et al. [1999] report
imaging of sulfur hexafluoride and dimethyl methylphosphonate using Fabry-Perot etalon spectrora-
diometry. Gas-correlation spectroscopy has been employed to image methane, nitrous-oxide, and
carbon-dioxide flows [Sandsten et al., 1996] and fugitive releases of ammonia, ethylene, and meth-
ane [Edner et al., 1999 and Sandsten et al., 2000]. Other reports of gas plume imaging, or analysis
of measured imagery, are made by Carr et al. [1990], Carter et al. [1993], Althouse and Chang
[1995], Lisowski and Cook [1996], Kulp et al. [1997], Hinnrichs [2000], Lucey et al. [2000], Ifarra-
guerri and Chang [2000] and Kuo et al. [2000].

A description of the sensor and summary information on the refinery data collections are provided in
Section 2. Gas absorption spectra are presented in Section 3. The spectral radiance model used in
the study is derived in Section 4. The model is a linear expansion of pixel radiance spectra in terms
of gas absorption spectra and a basis set of background spectra. Accounts of spectral correlation
effects and atmospheric compensation are also treated in Section 4. Detection of plumes using prin-
cipal-component projections and spectral matched filtering is presented in Section 5. Detection and
quantification of plume gases using linear least-squares regression are presented in Section 6. Both
unconstrained and constrained regressions are considered. Regression implementations are dis-
cussed in Appendix 1. Regressions were performed on the spectral radiance model described in
Section 4. Example analyses are presented using background basis sets consisting of spectra drawn
directly from the imagery, cluster spectra constructed from the imagery, and eigenvectors of the
spectral clutter covariance matrix. The inability of current endmember extraction algorithms to pro-

g



vide a suitable basis set is addressed. Statistical test results that assess the significance of gas detec--
tions are presented. These tests are discussed in Appendix 2. Quantitative estimates are presented
for gas flow rates and concentrations. A summary of results and added discussions are provided in

Section 7.

A finding of this study is that unconstrained regression cannot be trusted to provide quantitative
information on plume gases. The recommended method for quantitative analysis is constrained:
regression in which all gas contrast coefficients are required to have the same sign, and the back-
ground basis set is required to consist of physically meaningful spectra (e.g., not eigenvectors) repre-;
sented by non-negative expansion coefficients. Single-pass clustering, without within-cluster mini-
mization, provides a practical method for constructing a basis set of background spectra.

~2
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2. Data Collection

Data were collected on a commercial refinery with the SEBASS hyperspectral imaging spectrometer.
The sensor was mounted in a Twin Otter aircraft and configured for nadir viewing. The instrument
operates simultaneously in the MWIR atmospheric window band from ~2.9 to ~5.2 um and in the
LWIR window band from ~7.5 to ~13.6 um. The spectral resolution is ~0.025 pum in the MWIR and
~0.05 um in the LWIR. Only the LWIR data were used in the current study. The spectrometer is
discussed by Warren et al. [1997]. Its use in aircraft collections is discussed by Hackwell et al.
[1996], Collins et al. [1997], and Young et al. [2002]. Briefly, a collection is carried out by scanning
the projection of the instrument entrance slit along the ground with the aircraft motion (pushbroom
mode). The slit projection is perpendicular to the flight direction. This'motion provides spatial
information in the flight scarn direction. A prism-dispersed image of the slit is focused onto two 128
x 128 focal-plane arrays—one for each window band. One dimension of an array provides the cross-
scan spatial information along the slit direction; the other dimension provides the spectral informa-
tion." For these collections, the last four spectral channels of the LWIR array were not operational.
The spectral span of the data is.7.67 to 13.42 pum in J = 124 spectral channels. The angular resolu-
tion of the instrument is 1.1 mrad per pixel. The aircraft altitude was ~6000 ft (~2000 m) above the
collection site. The ground sample distance in the cross-scan direction is then GSD,, ~2 m. The
focal-plane arrays were operated at 244 frames per second. Sequential frames were coadded so that
the ground sample distance in the scan direction (GSDg) was approximately the same as GSD,,. The
data comprise a three-dimensional datacube that may be envisioned either as a set of J images or as a

collection of spectra arranged into an image.

Radiometric calibration was made against blackbody sources. Calibration data were collected
inflight immediately before and after each collection run across the target site. A standard wave-
length calibration was made against a set of polymer films. In these collections, ammonia is present
in all of the imagery. The sharp spectral features of this gas (see Section 3) provided the opportunity
to adjust the wavelength calibration to even higher accuracy than obtained with the polymer films.
Using unconstrained regressions for ammonia contrast coefficients, the wavelength array was
adjusted until the residuals of the regressions were minimized. The adjustment was a simple transla-

tion and scaling of the form
A(j)= A+BAo(j) j=12....J, . 0

where A4,(j) is the polymer film calibration. The net effect was a modest upward shift of the spectral
channel centers by ~0.034 pm atj = 1 and ~0.014 um at j = 124. The mean regression residual
across the spectrum was decreased by a factor of ~2 to 3, but the decrease near some of the peaks in
the residual spectrum was more than 2 orders of magnitude. The transformed array (1) was used for

all of the results reported here.



The working unit of spectral radiance for the SEBASS sensor is uW/cmzlsr/;.Lm = 0.01 W/mzlsrlﬁm i
and is denoted in this report by the symbol pf. Radiance spectra are displayed as brightness tem-
perature spectra. The Planck radiation function is i

3!

B(?\,,T)=m,

where ¢, = 1.191 x 10" uf—um5 and ¢, = 14388 um-K are the first and second radiation constants.
The brightness temperature spectrum for a radiance spectrum L(A) is obtained from the inverse
Planck function by

Tp(A)= 2 :
Mn(u- a ]
ML)

(For calculations, temperature is in K. Reported values are in °C.) Spectral subtleties are more
readily apparent in brightness temperature spectra than in radiance spectra. In addition to conversion
between radiance and temperature, some analyses require conversion between radiance and tem-

perature differences (e.g., radiance contrasts and radiance error estimates). This conversion for any
variable AX is

S @
oB/oT’
where
aBOL,T )_ Co = /AT 1
= _B(x,:r)(——-” 5 )(l e T ) | (5)5_

Collection parameters are summarized in Table 1. All collections were made in mid to late after-
noon, local time. Collections are identified in the text by Shot number. Frames is the number of
pixel image rows in the scan direction. The number of pixel image columns is always 128. NESRis '

Table 1. SEBASS Refinery Collection Summary

Time NESR T pax Z GSD
Date (PDT) Shot Frames (uf) (°C) (ft) (m)
3 April 17:06 3] 1000 0.5 80 5400 1.8
5 April 15:23 76 500 0.7 140 6000 2.0
5 April 15:29 83 500 + 0.8 140 6000 2.0
5 April 15:35 96 500 0.8 140 6000 2.0
o
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the sensor noise equivalent spectral radiance for a 310K blackbody source averaged over the focal-
plane array. In anticipation of high thermal clutter at the refinery site, provisions were made for
collecting with various dynamic-range settings. After reviewing the data, it was decided to use only
the collections revealing the greatest thermal sensitivity near ambient temperatures. Consequently,
data collected over the hottest regions of the site (generally directly over hot emission stacks) are
saturated. T, _are the saturation temperatures. Care is taken not to use data from these regions in
analysis. Zis ; the altitude of the sensor above the site. GSD is the ground sample distance (pixel
footprint on the ground). No supporting ground-based data were collected at the site. Nothing is
known about processes occurring at the site. Wind speed and direction at the site were estimated
with the Eta Data Assimilation System (EDAS) [NOAA; Rolph, 1998]. These data are available only
at 3-h intervals and are reported without error estimates. Nevertheless, reported wind directions are
within ~30° of observed plume directions. Wind speed data are used in estimating gas flow rates.



3. Gas Spectra

Gas species considered in analysis of the data are listed in Table 2. With the exception of nitrous
oxide, all of these gases were unambiguously detected within the imagery. High-resolution spectral
absorption coefficients k for all of the gases except carbon dioxide and water vapor were obtained
from measurements made at the Pacific Northwest National Laboratory (PNNL) (see Acknowledg-
ments). Data were provided for a spectral resolution of 0.12 cm , a total sample pressure of 1 atm
and temperatures of 5, 25, and 50°C. The 25°C spectra were used here. High-resolution spectra for
carbon dioxide and water vapor were constructed from line-strength, line-width, and partition- "
function parameters available in the HITRAN spectral-line database [Rothman et al., 1998]. Spectra
were generated on a 0.01-cm” grid and employed the Lorentzian line-shape. The reference tem- '
perature was 20°C. The total pressure was 1 atm The column-density unit employed in this study is
parts-per-million-meter (ppmm). The unit of & is 1/ppmm.

With the exception of carbon dioxide, water vapor, and nitrogen dioxide, the spectral absorption
coefficients are independent of temperature in the range relevant to this study (~15 to ~80°C). The
temperature variations for carbon dioxide, water vapor, and nitrogen dioxide are shown in Figure 1.
Only the magnitudes of the coefficients are affected. The shapes of the spectra are relatively insen-
sitive to temperature. The consequence of this insensitivity is that all detection analyses can be car-
ried out with spectra for a fixed temperature. Whatever quantitative gas results are obtained using
the spectra can be scaled to their proper values once the gas temperature is determined.

The high-resolution spectra were resampled onto the shifted wavelength array (1) using a triangular
slit function. The function peaks at the center of a spectral channel and falls to zero at the centers of
the two adjacent channels. Resampled spectra are shown in Figures 2 and 3.

Table 2. Characteristic Gas Absorption and Detection Parameters

u k. ‘X 84 MDC
Species (g/mole) (U/ppmm)  (um)  (um) (ppmm-uf) (ppmm-°C)
Methane CH, 16 1.3x10" 7.86 030  23x10° 1300
Nitrous Oxide N,0 44 3.5x10™" 7.86 0.36 8.8x10° 490
Water Vapor H,0 18 36x107 9.22 096 38x10° 220000
Carbon Dioxide co, 44 17x10° 1294 0.39 6.6%10° 63000
Nitrogen Dioxide  NO, 46 15x10° 1111 1.21 56x10° 400
Ammonia NH, 17 51x10* 10.52 1.27 7.0x10% 47
Sulfur Dioxide S0, 64 8.6x10° 8.85 0.92 9.9x%10° 560
Ethylene C,H, 28 3.0x10* 1054 1.35 6.1x10° 41

Air 29
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Figure 1. Temperature dependence of carbon dioxide, water vapor, and nitrogen
dioxide spectral absorption coefficients.
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Figure 2.  Spectral absorption coefficients for ammonia, methane, sulfur dioxide, and
ethylene. The spectra are offset and scaled.
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Figure 3.  Spectral absorption coefficients for water vapor, carbon dioxide, nitrous
oxide, and nitrogen dioxide. The spectra are offset and scaled.

A tabulation of characteristic absorption parameters for these gases is provided in Table 2. The
parameters are defined by

ke =2 [k ©)
sh=wlk/ec) ™)
x=Ak/k, (®)

where k. is a characteristic absorption strength, 7 is a characteristic bandcenter, and A is a charac-
teristic bandwidth. The averaging is over the extent of the window band W (e.g., 7-14 um). An
advantage of these particular definitions over other possible definitions is that they are relatively
insensitive to W so long as it is sensibly chosen. These parameters are useful in making estimates of
relative absorption effects among gases. Note that the characteristic bandcenter (8) does not neces-
sarily coincide with the position of peak absorption if the spectrum is not unimodal. The bandcenter
parameter is discussed further in the next section. The MDC entries in the table are the minimum gas
contrasts likely to be detectable against the clutter inherent to the current collection site (MDC is
defined in Appendix 1). The relationship between MDC expressed in radiance and temperature units
is given by (4) and (5) with 7= 300K and A = . The remaining column in Table 2 is atomic mass.
This parameter is used later in mass flow rate analyses (Subsection 6.9).



- 4, Radiance Model

The spectral radiance model is derived in this section. Account of atmospheric absorption and emis-
sion effects and spectral correlation between plume emission and atmospheric attenuation spectra are

addressed.

4.1 Derivation

A complete derivation of the model for observed spectral radiance in the thermal hyperspectral
regime is complicated. Here, the simplest version of the model is derived that describes the signifi-
cant aspects of the present application. It follows the derivation of Hayden et al. [1996] and involves
three significant simplifications. The first simplification is the neglect of reflected downwelling
atmospheric and plume radiation by the underlying surface and the neglect of reflected downwelling
atmospheric radiation by the plume. The underlying surface is assumed to be a graybody with low
reflectance. This is a good assumption for all ground surfaces at the current site. There are no
extensive regions of silicate surfaces (natural or pavement), which can sometimes provide measur-
able reflection of downwelling radiation in the quartz reststrahlen band between ~8.0 and ~9.6 um.
Even most of the structures at the site are quite gray. A few structures, presumably those with metal
roofs, reveal their reflective nature by the presence of reflected downwelling atmospheric ozone
radiation in the 9.2 to 10.1 pm region, and water vapor radiation throughout the window band, but
most noticeably near 11.7 and 12.6 um. Care is taken not to make quantitative assessments of data

taken over reflective surfaces.

With this neglect of reflected radiation, the spectral radiance at the sensor aperture when there is no
plume in a pixel field of view (FOV) is

Lo(A)=e5(1)Bs (AJe(d)+ L, (n). ©)

Throughout the development, all spectral quantities represent mean values within a spectral channel.
The first term in (9) is the radiance contribution from the surface. £((A) is the surface emissivity, and
as noted above, is assumed to be close to unity. B(2) is the Planck function (2) evaluated at the sur-
face temperature, T;. 7(A) is the atmospheric transmission for the slant path between the sensor and
the surface. The second term, L (1), is the upwelling atmospheric radiance from the slant path. The
atmospheric transmission and radiance spectra are considered further in Subsection 4.3. With the
additional assumptions that the temperature is constant along a line of sight (LOS) through the plume
and that the plume lies close to the underlying surface, the spectral radiance at the aperture when a

plume fills a pixel FOV is

LlR)=es (185 A Jep e () (A1) + 1, 0) o
+e4[Bp(A)- B4 (W)k ().
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The first term in (10) is the surface radiance attenuated by the plume transmission T,(A). The seco
term is the radiance contribution from the plume. g,(4) is the plume emissivity. B,
function (2) evaluated at the plume temperature T,. With the assumption that the t
stant along a LOS through the plume, the plume emi
- T,(4). The third term is upwelling atmospheric rad
ambient gases into the plume, and is significant in t
ide. This particular form of the term obtains for the assumption that ambijent air is rapidly entrained
and uniformly mixed with stack gases. &, is the plume emissivity arising from the ambient-gas con
tribution to the plume. The factor in square brackets adjusts the radiance contribution from that
given by the ambient air temperature, 7, to that given by the plume temperature, T,. The spectral
products 7,(1)%(A), E,(A)™(A), and £,(A)™A) in (10) are discussed further in Subsection 4.2,

emperature is co
ssivity and transmittance are related by £,(2) =

lance. The last term accounts for entrainment o
his study only for water vapor and carbon diox-

The radiance contrast spectrum is the difference between (9) and (10):

ALQ2)= L)~ Ly(2)= "
ep()[Bp(A)-e5(A)Bs (A)]r (1) + £4()[Bp(A)- B, (A)]r (1)

The second major simplification is the assumption that the plume gases are optically thin. If non-
thin conditions occur, they generally occur directly over hot-stack emission points where the plume
is still lofting vertically and has not yet bent entirely into the wind. Far enough downwind, atmos-
pheric dispersion will render all plumes optically thin. Again, care is taken here not to draw any
quantitative conclusions from regions of a plume that are not close to optically thin conditions. Th
assumption of optical thinness circumvents the need to consider the form of the absorption curve-o
growth of the gases, L.e., whether the variation of &) and £,(A) with optical depth is governed by
Beer's Law or some narrow-band-model law. The thin-gas limit for any absorption mode] yields

| N N
epA)= Tenpkn@)  24(0)= Y epu k(1) ¢
n=] =]

are made in Section 7.

With (11) and (12), the modeled si

gnal at the entrance aperture with a plume in the pixel FOV
becomes

N
L0)= " C M, () + Lo (), (13
n=}]

12
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(12)

(13)

- When needed in the current work

. air temperature, which is usu

where C,(A) is the thermal contrast spectrum for the nth gas.
: : 4% o
C, (1) = crp[Bp(1)—£5Q)Bp(A)+ cnalBp (1)~ B4@A)). ' (14)
The third major simplification of the model is made in this thermal contrast factor. Compared to

both k () and %(A), C,(A) is a slowly varying function of A. Its spectral vari'ation is govemed pri-
mari]ynby the Plank function. It is approximated by its mean spectral value in the following way:

Co(A)= Cr = cap Bp (I )-£5 (%, )Bs (x, )+ can[Bp (2 )- B4 (%, )] (15)

A, isthe wévelength that yields the best approximation to the equality for the nth gas. For this
wgrk, c,, Was set to zero. It was determined for a wide range of kn.(/'L) spectra, anq a few £(4) spectra
(graybodies, silicate surfaces, and carbonate pavements), that A, is adequately given by

Ton =M I » (16)

The bar indicates an average over the full LWIR window band. In the plume tempera;ur_e ra.nge T,=
0 to 50°C and the temperature contrast range AT = T, — Ty =~10 to 50°C, the best-fit weighting

exponent m varies from 1 to 2, although any value in this range provides an adequate approximation.
_m = 1isused. This value of m was used previously to define the

characteristic bandcenter in (8).

A consequence of (15), in the absence of ambient-gas contributions., is that if the plume temperafture
is equal to the surface brightness temperature, the thermal contra}st is zero, aqd the observed radiance
is just the surface radiance L,(4) even though there may l.)e considerable gas in the plume.. T'he
reason for this effect is that the plume gases emit exactly the same amount of radxanon. that
they absorb from the underlying surface along the sensor LOS . This con@ition of null contrast is
common in gas emission from hot stacks observed in the daytime. On exit frqm the stack, and as the
gases just drift over surfaces adjacent to the stack, the} p}ume temperature is higher than the und.erly-
ing surface temperature, and the gases are seen in emission. As the gases cool towatjds the ambient
ally cooler than the underlying surface terpperature during the day, they
reach a point where their temperature equals the underlying surface brxghtnes§ temperature, and the
plume disappears. As the gas temperature falls further t.owa}rds the amble.nF air temperature, thfa
plume reappears in absorption. With ambient-gas contributions, the condition of npll contrast is
achieved at a temperature lower than the surface bri ghtngss .tempe_:ra-ture. Itj the active plume gases
consist solely of entrained ambient gases, the gases remain in emission until the plume temperature

falls to the ambient air temperature, 7 ,.

physical

Substitution of (15) into (13) yields the final model:

L) =S C oA, (A)+ Lo(A) +8(4) . an

n=}
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The additional term &A) in (17) is the residual error spectrum. With the approximation (15), the
radiance model becomes a linear equation.

4.2 Spectral Correlation
The model developed so far is adequate for many gas detection problems. It is deficient if the plume
gases are also significant atmospheric absorbers. This condition occurs in this study for water vapor,

carbon dioxide, methane, and nitrous oxide. The problem enters in (10) with the products W(A)7,(A),
WA, (1), and WA)€,(A) and propagates through to the product 7(A)k,(4) in (13). This latter product
is considered here. The subscript n is suppressed. Both 7(4) and k(A) are mean values in a spectfal
channel. To emphasize this, they will be denoted in this section by "E(?» j) and k (7» j ) The original

symbols ©(A) and k(A) will now denote the monochromatic variation within the spectral channel.
The proper product to use in (13) is the mean value of the product of the monochromatic spectra

() k(). The use of z(p,)k(x ;) is an approximation that is valid only if there is no spectral

correlation between the two monochromatic spectra. However, when emission from the plurne*and
attenuation by the atmosphere are caused by the same gas, the degree of correlation between the two
spectra can be very large. This common-gas situation is the only one of concern. The product of
spectral quantities involving different gases, or of any product of a gas spectrum with a surface
emissivity or Planck spectrum, is adequately approx1mated by the product of mean spectra. This
multiplication property for gas spectra is well established in the literature of radiation transport by
band models [e.g., Goody, 1964]. Band model methods for treating radiation transport under
conditions of high spectral correlation have been developed [Young, 1977].

Account of spectral correlation is handled here by defining an effective spectral absorption
coefficient

- _ kiﬂti?\,i
(lj)~—.;.(;7j)—~ (18)

The Schwartz inequality establishes that ( )< k( ) The atmospheric transmission spectrum can

be factored into its contributions from the gas of concern and all other atmospheric gases by
t(A)=7,(A) 7o, (1) (19)

Substitution of (19) into (18) and allowing the multiplication of mean values for dissimilar gases

yields

A

Finally, with
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T, (W)= ¢ ~Camk(®) @21

we have

| e

e _Calmk (’l)

22

where c_,, is the gas column density over the atmospheric slant path. For small atmospheric column
density, k, (k j) approaches k ()\. j ) [For very large column density, asymptotic expansion of the

numerator and denominator of (22) yields 1?6 (k j) ~k . where k. is the minimum value of k(A1) in

the spectral channel.]

Account of spectral correlation was made for water vapor, carbon dioxide, methane, and nitrous
oxide. Atmospheric column densities for these species and a 6000-ft collection altitude are shown in
Table 3. The water vapor value was computed from the EDAS weather data. A quite comparable
value of 1.4 X 10’ ppmm was obtained as part of the atmospheric compensation procedure discussed
in the following section. Column densities for methane and nitrous oxide were calculated using U.S.
Standard Atmosphere values for the gas mixing ratios [U.S. Standard Atmosphere, 1976, 1976]. The
carbon dioxide mixing ratio was taken as 360 ppm. The amounts of ammonia, sulfur dioxide, nitro-
gen dioxide, and ethylene in the atmosphere are so small that the spectral correlation effects are neg-
ligible. The effective absorption coefficients for water vapor and carbon dioxide are shown in Fig-
ures 4 and 5. The ratio f(A)= k, (A)/k(%) is also shown for each gas. (The bar- and subscript-
notation for spectral channel average is now dropped.) The effect of spectral correlation is quite
large for these gases and observation geometry. A summary of the magnitude of the effect for all

gases is shown in Table 3. k,.is the characteristic value of k (4) derived from (6). The ratio kJk

provides an estimate of the magnitude of the effect. k_ values are from Table 2. For example, with-
out account of spectral correlation, a retrieved water-vapor concentration would be underestimated
by a factor of 16. These estimates are supported by the ratio of MDCs calculated with and without

account of correlation. The temperature dependence of & (A) for water vapor and carbon dioxide is

the same as shown in Figure 1 for k(A).

The notation continues to use k(4) for gas absorption coefficient, but it is understood that k (A) is
implied if spectral correlation is strong.

Table 3. Spectral Correlation Parameters and Results

calm keC -1 MDCB
Gas (ppmm) (ppmm ) kJk. (ppmm-°C) MDC /MDC

Water Vapor 11x10 22x10° 16.0 2300000 10.4
Carbon Dioxide g2 x10° 4.5 x 107 3.9 190000 3.1
Methane 30x10° 5.0x10° 26 4800 3.7
Nitrous Oxide  56x 107 2.9x 10" 1.2 590 1.2

Id

e
/
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Figure 4. Effective spectral absorption coefficient for water vapor.
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Figure 5. Effective spectral absorption coefficient for carbon dioxide.



4.3 Atmospheric Compensation

Some analyses considered here are more conveniently implemented on radiance data that have been
compensated for emission and absorption effects of the atmosphere. The general form for atmos-
pheric compensation with neglect of radiation reflected from the surface is

3

Le(M)=[L)-L,A)R), (23)

~where L (A) and 7(A) are the upwelling atmospheric radiance and transmittance spectra introduced in
the previous section. These spectra were extracted directly from the hyperspectral radiance data
without recourse to ancillary data using the ISAC (Inscene Atmospheric Compensation) algorithm
described by Young et al. [2002]. (As part of this application, an estimate of water vapor column
density is made from the degree of absorption in the 11.7-{tm band. This procedure yields the col-
umn-density estimate quoted in the previous section.) Example compensation spectra derived from
Shot 96 are shown in Figure 6. An example compensation of the blackest pixel in that collection is
illustrated in Figure 7. (Subsequent use of the single word compensation or its variations will always
imply atmospheric compensation.) :

Application of (23) to (17) yields the compensated form of the spectral radiance model.

) _
L(A) =Y Cok () + Leo(A) +8.(4), (24)
n=]
where, with (9)
1.0 800
05 F < 4 600
8 c
c i ] o
£ 0.0 - 400 =
73] -3
c i | Q@
. 5
05 r : - 200
...}
_1 .O : 1 1 ! o i i { 1 1 1 ! 1 O

7 8 9 10 11 12 13 14
Wavelength (um)

Figure 6. Atmospheric compensation spectra obtained with ISAC for Shot 96.
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Figure 7. Example compensation of a graybody pixel spectrum from Shot 96.
LW =[1(2) - L(W)]/2(2) = £,(2)B,(2), (25)

and 8.(%) = §A)/n()).

N M
Le(t)= 3 Cutn )+ BBy 1)+ 56 (1), 29
n=]

m=}

where B, (1) are the compensated spectra .

Bem ()= (B ()= £, 0))<00), a7 |




25)

16)

7)

and B, are expansion coefficients. A similar expansion in the uncompensated model (17) using
uncompensated B (A) spectra yields

N M
L= Ctldlen ()4 D BB (M)+3(0), @28)

n=l1 m=1 .

where B;n are a different set of expansion coefficients. Compensation of (28) with (23) gives

(29)

N M | M L,0)
Le0)= Y Cak 0+ BruBow®)+5c(@)=| 1= > Brn oy
m=1

n=l m=}

The upshot is that expansion in terms of uncompensated background spectra, with subsequent com-
pensation, does not give the same functional form as expansion in terms of compensated background
spectra unless the constraint is imposed that the expansion coefficients B, in (29) sum to unity. The
inconvenience of imposing this constraint, or of calculating the final term in (29), is circumvented by
always using (24) and (26) with compensated data in analyses involving expansion approximations
to the underlying surface radiance spectrum. Two analysis techniques are employed in which the use
of (17) or (24) are equivalent—off-plume background subtraction and spectral matched filtering.
These techniques are considered in Subsection 5.2. In each case, the background term in (28) is
approximated by a single spectrum with ] =1. Consequently, the condition of the constraint is met.
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5. Detection Analyses

This section treats two analysis methods that are of primary use in detecting plume gases-in hyper-
spectral imagery: principal-component projection and spectral matched filtering. Use of principal
components is strictly a detection method and requires no prior knowledge of what gases might be
present. Spectral matched filtering is applied with a set of target gas spectra and provides a coarse
quantification of any detections that might be made.

5.1 Principal Components

Principal-component image analysis will often reveal the locations of moderate to strong plumes.
This detection method is useful in initial surveys of data to decide whether the collection contains
plume-like features and is worthy of a more detailed analysis. It is, therefore, reasonable to apply the
technique to uncompensated data. The analysis here employs principal components constructed on
the clutter spectral covariance matrix C of the datacube. This matrix is defined in Appendix 1. Let
Uande, (i=1,2,..,J) bethe ordered eigenvectors and eigenvalues of the matrix. U, is of length J.
These vectors were computed with the singular-value decomposition (SVD) algorithm described by
Press et al. [1990, p. 52]. Let L, be a column-vector representation of L(A) for image pixel p. The
ith principal component image is constructed by projecting each pixel spectrum onto the ith

eigenvector

1,()=0;-L, - p=12..P. (30)

P is the number of image pixels. Example plume detections using this approach are shown in Figure
8 for the Shot 6 collection. [Principal component and contrast images are displayed with an intensity
contrast stretch set to enhance visual perception. The stretch runs from —no to +n0, where n 1s ~4 to
-8, and o is the root-mean-square (RMS) variation of the image values. Both principal-component
and contrast images have a mean value near zero. Regions close to zero will appear medium gray.
Pixels with values beyond the stretch limits will appear saturated at white or black.] C was con-
structed from the entire 128,000 pixels of the image (and includes the cloud cover in the upper fourth
of the image). Three plumes are readily evident for component index i = 11. Two of these plumes
are also fully evident for i = 15. A fourth plume is apparent for i = 47. As previously mentioned,
these projections were made with uncompensated data. With compensated data, these same plumes
are revealed, but at different values of the component index. One example projection from the com-
pensated datacube is shown in Figure 8e. All four plumes are evident at i = 8. Detection of these
plumes is effected solely by a visual search for plume-like spatial structures in the projections. In
addition to plumes, many other spatial structures (e.g., pipelines and buildings) are evident. A sim-
ple thresholding on some value of the projection is not sufficient to separate out plumes.
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Wind
(EDAS)

Figure 8. Plume detection in Shot 6. (a) Thermal image from a spectral bin near 12 um
showing the full 1000-frame length of the collection. All detected plume activ-
ity occurs within the overlaid rectangle. The remaining images show enlarge-
ments of this region. Numbers are plume identifiers. Principal component pro-
jections: (b) i = 11 (c) i = 15 (d) i = 47 (e) i = 8 of atmospherically compen-
sated datacube. (f) Montage of spectral matched filter detections of ammonia,
sulfur dioxide and ethylene. (g) Plume exclusion mask.
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While providing the capability of locating plume structures, principal-component projections cannot
be used to ascertain whether the plume appears in absorption or emission. The eigenvectors of the
covariance matrix are undetermined in sign. Indeed, different methods for constructing eigenvectors
will yield different signs to the same eigenvector.

Principal components can also be constructed on other matrices of the image data. The clutter cor-
relation matrix, for example, provides a standardization of the data clutter by dividing each element
of the covariance matrix by 0,0, = [C(i,i)C(jJ)]”z. Use of this matrix substantially reduces the inci-
dence of identifiable plumes in the projections. Other principal-component approaches use matrices
designed to standardize the covariance matrix to sensor noise, rather than data clutter. Roger [1996a]
provides citations to some of these noise-adjusted approaches. As for the correlation matrix, use of
these matrices diminishes plume detection. A more promising principal-components approach

would appear to be the projection-pursuit method reported by Ifarraguerri and Chang [2000]. The
goal of this method is to enhance, rather than diminish, data variance. This approach was not applied
in the current study.

5.2 Spectral Matched Filtering

Target detection by spectral matched filters is an application of linear least-squares regression to the
solution of (17) or (24). The implementation used here is derived and discussed in Appendix 1. The
application of spectral matched filtering requires a set of potential target gas spectra. If it is not
known what gases are present, spectral matched filtering can be applied for the entire set of spectra in
a spectral library. Two such libraries are readily-available:—the-commercial library of Hanst and
Hanst [1993] and the Environmental Protection Agency (EPA) library [EPA; Lay and Plummer, 1992;
Plummer and Lay, 1992]. Occasionally, a gas can be identified in an eigenvector spectrum that pro-
duces a strong principal-component plume projection. In the current study, signal strengths of some
of the gases in the plumes identified in Shot 6 are strong enough that their identities are readily evi-
dent in the compensated datacube spectra. (All spectra in this report are shown with atmospheric
compensation applied.) Spectra from Plumes 1, 2, and 3 of Shot 6 are shown in Figure 9.

40
o CoHy + 10
< L 2Hy
e ¥ M
pra }
S
@ 30 r W/\/\/-—/MWM
(o}
5

SO, +7

25 2 NHg
8
£
S 20 F
@

15 1 i 1 L i L i 1 | 5

7 8 9 10 11 12 13 14

Wavelength (um)

Figure 9. Plume spectra from Shot 6. The top spectrum is from Plume 2.
The middle spectrum is from Plume 3. The bottom spectrum is
from Plume 1. The top two spectra are offset.
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Ammonia is evident in Plume 1. Sulfur dioxide is evident in Plume 3. Ethylene is just evident in
Plume 2. The ethylene spectrum is enhanced in Figure 10 as a contrast spectrum. This spectrum
was obtained by subtracting the spectrum of an off-plume pixel that matches the on-plume pixel
spectrum on the spectral guard mask that excludes the ethylene absorption feature from 9.2 to 12.2
pm. Additionally, pixels on the spatial plume exclusion mask shown in Figure 8g were excluded
from consideration. This mask is an overlay of principal component images for i = 11, 15, and 47,
which were thresholded to exclude regions of strong plume-like projection and then converted to
binary format. The mask extends over the whole 1,000 frames of the image. Only the portion con-
taining the plumes is shown. The contrast spectrum is displayed as radiance. The upturns in the
wings of the ethylene contrast spectrum below ~8.3 and above ~12.8 pm suggest the presence of car-
bon dioxide, water vapor, nitrogen dioxide, and nitrous oxide. Although not shown, these spectral
features also appear in the contrast spectra for ammonia and sulfur dioxide. The source of the spec-
tral features at 10.9 and 11.2 pm in the ethylene spectra is unidentified.

- Spectral matched filter output images were constructed for all of the species discussed in Section 3
and listed in Table 2. The uncompensated datacube was used. Target gas spectra were multiplied
with the atmospheric transmission 7(4) spectrum to construct the effective target spectrum. The
results for ammonia, sulfur dioxide, and ethylene in Shot 6 are shown in Figure 8f as an overlaid
montage. The ethylene in Plume 2 appears in emission near the stack and in absorption (inside oval)
far down the plume. Two segments of null contrast are evident. All of these detections are strong.
Maximum signal-to-noise ratio (SNR) magnitudes range from ~20 to ~30.
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Figure 10. Ethylene spectra in Shot 6. The upper spectrum with gray symbols is from a pixel
in Plume 2. The solid line is an off-plume background spectrum. The lower
spectrum with gray symbols is the difference (contrast) between the top two
spectra. The solid curve througlz the contrast spectrum is the ethylene absorption
spectrum multiplied by 3.9 x 10" ppmm-uf. The lowest curve is the difference
(residual) between the contrast spectrum and the fit. The RMS of the residual
spectrum is o= 4.8 uf.




Matched filter results for Shots 76, 83, and 96 of 5 April are shown in Figure 11. An iterative appli-
cation of matched filters was used for these collections. In Shot 6 of 3 April, the plumes are small,
and the collection length is 1,000 frames. On 5 April, the wind direction has changed so that Plume
1 now crosses over the full width of some of the images. Because of this change in direction, and
because the 5 April collection lengths are only 500 frames, the plumes occupy a sizable fraction of
the image. Consequently, the covariance matrix from which the matched filters are constructed is
significantly contaminated with plume signature, and the fidelity of detection is diminished. The
matched filter images built on the covariance matrix for the whole scene are used to construct plume
exclusion masks. A new covariance matrix is constructed excluding pixels where the absolute value
of the matched filter SNR for selected gases exceeds a threshold value 6. New filters and matched
filter images are constructed, and the process repeated. This procedure, if allowed to continue, will
eventually exclude all pixels. Termination is forced by increasing the exclusion threshold at each

iteration to

6, MDC,E” 0 3D
(a) NHs (b) NHs (c) NHg (d) CO2 (e) CaHq

Shot 76 Shot 96 Shot 83

Figure 11. Spectral matched filter detection images for shots 76, 83, and 96. The images have been
stretched slightly in the scan direction and registered so that spatial features line up
horizontally across the figure. The collection flight line progresses to the right in the Shot
order 76, 96, 83. Numbers are plume identifiers. (a) Ammonia detection in Shot 76, (b)
Ammonia detection in Shot 96, (c) Ammonia detection in Shot 83, (d) Carbon dioxide
detection in Shot 83, (e) Ethylene detection in Shot 83, (f) Methane detection in Shot 83.



where n is the gas species index, i is the iteration index, MDC, is the minimum detectable quantity
(see Appendix 1) for the nth gas that obtains with the whole scene, and MDC,(,’) is the minimum

detectable quantity that obtains at the ith iteration. An initial threshold value of 8, = 2 for each
selected gas usually yields a good exclusion mask. Termination usually occurs in ~8 to ~12 itera-
tions. Early termination at three iterations generally produces a mask that excludes 95% or more of
the pixels that would be excluded if the process were allowed to terminate on its own.

Exclusion masks were constructed in this manner for Shots 76, 83, and 96. Methane, carbon dioxide,
ammonia, and ethylene were the selected gases. An initial threshold value of 6, = 2 was set for each
gas. Iteration was allowed to terminate naturally. Covariance matrices were constructed on the
exclusion masks and used to construct the filters for the generation of the output images shown in
Figure 11. The exclusion mask for Shot 96 is shown in Figure 12a. The iteration for this case termi-
nated naturally at i = 8 with 10,155 pixels eliminated. In addition to providing increased matched

©) © @

- Figure 12. Unconstrained regression detection of ammonia in Shot 96. (a) Plume
exclusion mask used for cluster and eigenvector analyses. (b) Contrast
obtained with 15 background pixels selected manually from the image.
The RMS regression residual for the scene is 0= 4.0 pf._(c) Contrast
obtained with 70 cluster spectra generated with the (OP)2 algorithm (o=
1.3 uf). (d) Contrast obtained with 114 eigenvectors of the scene clutter
covariance matrix (o= 2.3 uf).
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filter detection fidelity, plume exclusion masks will be used in subsequent analyses whenever it is
required to differentiate between plume and non-plume (background) pixels.

In addition to Plume 1, which was seen in Shot 6, two much smaller plumes (Plumes 4 and 5) con-
taining ammonia are evident in Figure,11. All of these ammonia plumes are seen in emission near
the stack and in absorption far downwind. The transition is so sharp for Plumes 1 and 4 that the
region of null contrast is almost absent. The region of null contrast is substantial in Plume 5. Car-
bon dioxide is seen at the same three locations as ammonia (Plumes 1, 4, and 5), and at (at least) two
other location (Plumes 6 and 7). Ethylene is seen at the same location at which it was seen in Shot 6
(Plume 2). It is now embedded in Plume 1. Sulfur dioxide is not seen at the location at which it was
seen in Shot 6 (right arrow in Figure 11e), although the ethylene detection is enhanced as the plume
passes over the hot stack located there. All of these detections are strong. Maximum SNR magni-
tudes range from ~10 to ~400. The prevailing value for carbon dioxide over most of Plume 1 is ~ -5.

A weak methane plume (Plume 8) is evident in Figure 11f. The arrow points to the most likely emis-
sion point. The contrast spectrum shown in Figure 13 confirms the presence of methane. This spec-
trum was obtained by subtracting the spectrum of a close-fitting, off-plume pixel spectrum as
described above for ethylene. The spectral guard mask excluded the region below 8.3 pm. This
methane detection emphasizes the value of visual inspection for plume activity. Only about five pix-
els in the plume display SNR > 3. Throughout most of the plume, SNR < 2. Unsupervised thresh-
olding, even at a value as low as SNR = 2, would suppress detection of this plume.

A few very small plumes, consisting of only a single hot-stack pixel and one or two downwind pixels
with identifiable gas activity, are evident in the spectral matched filter imagery. They were not

examined.
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Figure 13. Methane spectra in Shot 83. The legend of Figure 10 applies with
the exceptiosn that the detection is in Plume 8, the scaling constant
is —6.8 x 10 ppmm-pf and the RMS of the residual is 0= 2.9 uf.
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6. Regression Analyses

Analyses inl this section treat gas detection and quantification by traditional linear least-squares
regression methods. The compensated spectral radiance model (24) is used here. It is repeated in
(32) without the encumbrance of the compensation subscript C, but with the understanding that the
data have been compensated for atmospheric effects.

N
L= D" Culen 1)+ Lo (1) + 5(0). 32)

n=l

The two significant issues in using (32) are how to approximate the background radiance term LA
and what regression implementation to employ. The option of measuring L (1) when the plume is
not present is rarely possible and is not considered here. In the current collections, for example, it
was not possible to loiter in wait of a significant change in wind direction. Even if it had been
possible, the underlying surface temperature would surely have changed from its value when the
plume measurements were made. Additionally, a tedious and accurate registration of the two images

would be required.

The background problem is treated here by expanding L,(4) on a basis set of ccmpensatéd spectra
Bm(l)

M
Lo(0)= Y BB (h). (33)

m=1

Then (32) becomes

N M '
L})=Y Cukn M)+ D BBy () +3(2). (34)

n=] m=]

Basis sets consisting of spectra drawn directly from the imagery, cluster spectra constructed from the
imagery, and eigenvectors of the scene covariance matrix are considered. Two regression imple-
mentations are used for the determination of the C, and 8, amplitude coefficients: unconstrained
and constrained linear least-squares regression. The regression methods employed, and a general
discussion of linear least-squares regression methods, is given in Appendix 1.
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6.1 Manual Background Selection

Use of a basis set of pixel spectra selected manually from the datacube is considered briefly
subsection. The method is not readily amenablé to unsupervised automation. Justification -
is that, with experience, it is fast, effective; and ultimately produces detections of the highe:
fidelity. Generally, a basis set constructed manually will contain fewer members than sets ¢
structed with other methods because each member can be chosen specifically to suppress an
sive background feature (e.g., an expanse of carbonate pavement or all buildings with a part
reflective roofing material). A basis set of 15 manually selected background spectra is shov
Figure 14. The spectra represent graybody spectra (the very top and bottom spectra) and otl
ground surface and roofing material spectra that comprise the primary backgrounds of the s
Saturated hot-surface spectra are not included. Detection of ammonia using this set in an un
strained regression is shown in Figure 12b. The image is of the contrast coefficient C, for a1
that obtains for each pixel. Despite the small number of members in the basis set, the visual
of the detection is high. A measure of the quality of the regression over the whole image is

2
2.5

P
o? =
=l

|-

where ¢ is the magnitude of the residual spectrum for the pth pixel, and P is the number ofi
pixels. In Figure 12b, this RMS residual is o= 4.0 uf. Smaller residuals, down to the level ¢
sensor NESR (Table 1), are obtained with larger basis sets.
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Figure 14. Basis set of 15 manually-selected backgrounds from Shot 96,
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6.2 Background Endmember Extraction

Classification of surface material spectra in hyperspectral imagery is a subject of active research.

The object of these studies is to formulate unsupervised algorithms that search for a small set of
endmember spectra in a scene that allows a complete description of all scene spectra by linear super-
position. The goal of these methods is superficially similar to that required here in the gas detection
problem. The difference is that here we are not trying to construct an accurate classification of the
surfaces; we are trying to suppress them. We care little whether or not we have modeled them accu-
rately, or in as fundamental a manner as possible, so long as their influence is removed. Introduc-
tions to the literature of endmember extraction in hyperspectral data are provided by the citations in
Tompkins et al. [1997] and Theiler et al. [2000]. Note, however, that this literature deals predomi-
nantly with endmember extraction from data collected in the reflective spectral regime (A < 3 um)
where the signal source is reflected sunlight. The extracted endmembers are reflectance spectra. In
the thermal regime (4 > 4 pum) where the signal is direct thermal emission from the surface, the
additional dimension of temperature variation over the scene becomes an important consideration. A
single endmember that represents an expanse of carbonate pavement, for example, might not be suf-
ficient. Spectra of the surface at the highest, lowest, and possibly some intermediate, temperatures in
the scene are needed to allow an accurate representation of a spectrum at an arbitrary temperature. It
is not clear that existing endmember extraction algorithms are designed to handle thermal variation.
No analyses using extracted endmembers are carried out here. Further discussion on endmember
extraction is provided in Section 7.

6.3 Background Cluster Construction

Clustering provides an alternative to the use of spectra selected from the imagery, either by manual
selection or by endmember extraction. In clustering, the various spectra in the imagery are grouped
together according to some similarity criterion. The mean spectra of the clusters comprise the back-
ground basis set. Optionally, one of the spectra in a cluster can serve as a representative, or exem-
plar, of the cluster. Two clustering methods employed with hyperspectral data are the non-hierarchi-
cal K-Means [Hartigan and Wong, 1979] and ISODATA [Hall and Khanna, 1977] algorithms. The
grouping criterion is the distance between spectra (e.g., Euclidian distance or the covariance-adjusted
Mahalanobis distance). One goal of these algorithms is to construct a set of M clusters that mini-
mizes the total within-cluster sum-of-squares, X ?  Example analysis using K-Means clusters will be
made. Most of the clustering work presented here, however, is done with the algorithm outlined in
Figure 15. This algorithm is fast and produces clusters with characteristics much like background
spectra drawn manually from the scene. In particular, it is sensitive to temperature variability and
will construct clusters of similar spectral structure but different magnitude. The number of clusters
generated is controlled by a single parameter, the dispersion threshold 6. This threshold sets the ‘
maximum dispersion allowed in any spectral channel for the spectra comprising a cluster. The stan-
dard deviation is used as the dispersion measure. The algorithm sometimes operates a bit faster if
the loop over clusters is done backwards. This option takes advantage of the fact that a pixel spec-
trum is likely to belong to the same cluster as the most recently processed pixel spectrum. No
attempt is made to minimize X 2 Adherence to this minimization criterion might be useful if the
goal were an accurate classification of the surfaces, but as mentioned in the previous subsection, that
is not the goal here. Because the algorithm employs only one parameter and requires only one pass
through the data, it is referred to here as the (OP) algorithm.
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Make an initial cluster consisting of the single pixel whose
spectrum is closest to the mean scene spectrum .

Loop over all other pixels in the scene
Loop over existing clusters
If pixel will fit into cluster without increasing

the maximum dispersion in any spectral channel
beyond the maximum cluster dispersion

threshold value 0, then

Add pixel to cluster, recompute cluster mean
and dispersion, exit cluster loop

Continue loop over clusters

If pixel was not added to an existing cluster, create
a new cluster and add pixel to it

Continue loop over pixels

Figure 15. (OP)2 Clustering Algorithm.

Characteristics of the clustering algorithm applied to Shot 96 are shown in Figures 16 and 17. Clus-
ters were constructed with the plume exclusion mask of Figure 12a so that no pixels representing
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Figure 16. Variation of number of clusters and regression residual with cluster
dispersion parameter 6 for Shot 96.
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Figure 17. Variation of cluster population distribution with cluster dispersion
parameter 6 for Shot 96.

plume-like spectra were included. Figure 16 shows the variation in number of clusters generated as a
function of the dispersion threshold 8. For regression purposes, it is necessary to limit the number of
clusters to M < J — N. (Other uses of clusters allow larger numbers. Examples are data compression,
dimensionality reduction, and closest-cluster background subtraction.) Figure 17 shows the sorted
cluster distributions (number of pixels per cluster) for each value of 6. Many clusters for small 8

consist of a single pixel spectrum. These clusters are retained. Figure 18 shows the 21 mean cluster
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Figure 18. (OP)2 mean cluster spectra for € = 85 puf in Shot 96.

33



spectra that were generated for 6 = 85 pf. One of the spectra contains an instrument artifact near 9.2
um that occurs in some pixels from spatial column 13 of the datacube. Unconstrained regressions
with ammonia as the only target gas were made using each of these seven cluster sets as the back-
ground basis set. The visual fidelity of the detection images is about the same for each set. The
image for 6 = 55 pf (70 clusters) is shown in Figure 12c. The RMS magnitudes of the residuals for
the whole image are shown in Figure 16. At 6= 45 uf (104 clusters), the RMS scene residual
approaches the noise level of the data (Table 1).

A comparison was made of regression results obtained with (OP)2 cluster sets and K-Means cluster
sets. The (OP) clusters were used as the initial cluster centers for the K-Means iteration algorithm,
Clustering was carried out with the routine KMEAN of the IMSL commercial mathematical-routines .
library. This routine implements the K—Means algorithm of Hartigan and Wong [1979]. K-Means
clusters that result from the 6 = 85 uf (OP) set (21 clusters) are shown in Flgure 19. A reorganiza-
tion of 2the cluster spectra of Figure 18 results from the minimization of X °. For the (OP)2 cluster
sets, 2 is of order 10 utl K-Means reduced this by a factor of ~20. Despite the aesthetic
improvement offered by K-Means, unconstrained regressions employing the K-Means clusters as
background basis sets and ammonia as the only target gas yield results that are virtually the same,
both in visual fidelity of the detection images and in the total scene regression residual, as those
obtained with the (OP)’ clusters. This result supports the contention that the minimization of the
total within-cluster sum-of-squares is not important in constructing background basis sets for gas
detection. Additionally, K-Means adds substantially to computation time.
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Figure 19. K-Means clusters obtained with the (OP)’ clusters for 6 = 85 uf as
the initiating clusters.
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6.4 Eigenvectors as Background Basis Functions

Eigenvectors of the scene covariance matrix comprise a complete basis set of functions that spans the
dimensionality of the hyperspectral datacube. Eigenvectors that generate large plume-like projec-
tions (Subsection 5.1) need to be excluded from the basis set. In application here, eigenvectors were
extracted from a covariance matrix constructed on the plume exclusion mask of Figure 12a. This
pixel-exclusion process goes a long way in providing eigenvectors that are free of the influence of
plume-like spectra, but not far enough. Despite the exclusion of these pixels, principal-component
projections still occur with significant plume-like spatial features. Without pixel exclusion, the first
strong plume-like projection occurs at i = 12. With pixel exclusion, the first plume projection is
delayed to i = 21, but still occurs strongly. One further step is taken to eliminate offensive eigen-
vectors. The spectral absorption coefficient, k(4), for each of the target gases in the regression is
expanded in terms of the eigenvectors. In vector notation, ‘

J
1/
k= alkle*U;. (36)
=
The expansion coefficients are
k-U; 37)
a; = e
t ]k’ei“z

The square root of the eigenvalue and the magnitude of the absorption coefficient vector are included
in (36) to keep all g, of the same order of magnitude. Expansion coefficients for the ammonia spec-
tral absorption coefficient are shown in Figure 20. Eigenvectors corresponding to large coefficients
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Figure 20. Eigenvector expansion coefficients for ammonia
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contribute significantly to the spectral structure of the gas absorption coefficient, and if allowed to
participate in the expansion for the background term L (A), will spoil the target detection. The ith
eigenvector is excluded from the background basis if |a;| is greater than a threshold value. The
threshold value 8¢, with 6 =2 and

; _
- 21 2
0a=“fzaj (38)

generally provides a good exclusion. Figure 20 shows that seven eigenvectors have coefficients that
exceed the threshold. The unconstrained regression that results when these seven eigenvectors are
excluded from the background basis set is shown in Figure 12d. It has the same visual fidelity as the
results obtained with manual-background and cluster-background selection.

This eigenvector-deletion procedure is a good candidate for unsupervised batch application. Along
with a set of candidate target gases, only a few parameters need to be specified: a threshold value 6, -
for each gas used in constructing the plume exclusion mask (31) and a threshold setting 6 for delet-
ing eigenvectors. A default value of 2 for each of these thresholds generally produces good results.
As pointed out later, however, unconstrained regression with eigenvectors as background basis spec-

tra is suitable only for detection.

6.5 Spectral Extractions

Results so far have dealt with visual images of plume detection using unconstrained linear least-
squares regression. In this section, pixel contrast spectra that result from regression analyses are
considered. When regression on a pixel spectrum is completed, the modeled background spectrum

L(A) can be calculated from (33):

M
Lo®)=Y BruBum(). | (39)

m=1

The contrast spectrum is
c()=L()-Lo(). (40)

The modeled regression fit to the contrast spectrum is

N
Cr()= ) Cukn ). @)

n=] |
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The residual spectrum is

8(0)=L()-[cr )+ Lo (). (42)

Application to a single pixel from Plume 4 in Shot 96 is considered here. The pixel is about 2 m
downwind of the hot stack. Results for an amalgamation of plume pixels are presented in Subsection
6.7. '

A preliminary off-plume-background analysis was made. The background pixel was selected by
searching the entire image outside the plume exclusion mask of Figure 12a and on a spectral guard
mask that deleted the spectral regions below 8.2, above 12.8, and between 10.2 and 11.0 pm. The
plume, background, and contrast spectra are shown in Figure 21. The contrast spectrum indicates the
presence of ammonia, carbon dioxide, water vapor, and nitrogen dioxide. Additionally, nitrous oxide
was included as a tentative species. (A discussion on the selection of candidate gases for regression
modeling is made in the next subsection.) The contrast coefficients C, obtained with a least-
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Figure 21.  Off-plume background subtraction on a single pixel in Plume 4 of
Shot 96. The upper spectrum with gray symbols is the pixel
spectrum. The solid line is an off-plume background spectrum.
The lower spectrum with gray symbols is the difference (contrast)
between the two upper spectra. The solid line through the contrast
spectrum is a regression fit to the contrast spectrum. The lowest
curve is the residual spectrum of the fit. It is offset for clarity. The
RMS of the residual spectrum is o= 26.3 pf.
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squares fit to the functional form (41) are tabulated in the upper section of Table 4. The significance
of the results is indicated by the detection SNR and the T-Test probability that the detection is not
accidental (Appendix 2). All five gases are detected in emission with significant detection
probability. The residual of the fit is o= 26.3 pf.

Unconstrained regression was carried out on this same pixel. The target set consisted of the same
five gases identified above. The background basis set was the 6= 45 pf cluster set (104 clusters)
constructed in Subsection 6.3. Two clusters displaying the instrument artifact mentioned in Subsec-
tion 6.3 were deleted from the set. The regression results are shown in Figure 22 and the middle
section of Table 4. These results are fundamentally inconsistent with the result obtained in the off-
plume pixel-subtraction analysis—the contrast coefficients for water vapor and nitrous oxide are
negative and the detection probability for nitrous oxide is insignificant. The significance of all spe-
cies except ammonia is less than compelling. The reason for this vast discrepancy is evident in the
background spectrum generated by the unconstrained regression (Figure 22)—it is unrealistic. There
are no off-plume spectra anywhere in the imagery that resemble this fabricated spectrum. The prob-
lem is caused by the extreme flexibility allowed in the unconstrained use of background spectra in
linear combination. Examination of the expansion coefficients f3 -reveals that many of them are
negative. This contradicts the realistic expectation that the basis spectra should be represented with
positive coefficients. This contradiction and the inconsistent sign of the water vapor and nitrous
oxide coefficients are corrected by implementing a constrained regression in which all of the target
coefficients are required to have the same sign, and the background coefficients are required to be
nonnegative. The method for implementing this constrained regression is discussed in Appendix 1.

Table 4. Single-Pixel Contrast Coefficients for Plume 4 in Shot 96

Gas (ppm?n-uf) ~__SNR P,
Closest (o= 26,34 uf)
N,O 2.29+0.57 x 10° 4.0 1.00
H,0 2.14+0.35x 10° 6.1 1.00
co, 2.28+0.27 x10° 8.4 1.00
NO, 2.37+£0.68 x 10° 35 1.00
NH, 1.24 +0.10 x 10° 11.9 1.00
Unconstrained (g =4.41 uf)
N,O -0.09 +2.10 x 10° -0.05 0.01
HO  -136+066x10° 21 0.55
co, 1.60 % 0.43 x 10° 3.8 0.82
NO, 3.57+0.84 x 10° 4.2 0.86
NH, 9.73 +0.59 x 10° 16.6 1.00
Constrained (g = 22.54 uf)
N,O 1.33+0.53 x 10° 25 0.97
H,0 2.71+0.38 x 10° 7.1 1.00
co, 1.93+0.24 x10° 8.2 1.00
NO, 2.19+060x10° , 36 1.00
NH, 1.36+£0.10x 10° 13.1 1.00
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Figure 22. Unconstrained regression on a single pixel in Plume 4 of Shot 96. The upper
~ spectrum with gray symbols is the pixel spectrum. The solid line is the

regression background spectrum (Equation 39). The lower spectrum with gray
symbols is the contrast spectrum (Equation 40). The solid line through the
contrast spectrum is the fit to the contrast spectrum (Equation 41). The lowest
curve is the residual spectrum of the fit (Equation 42). It is offset for clarity. The
RMS of the residual spectrum is = 4.4 pf. The residual spectrum is magnified
by a factor of 5.

The constrained regression results are shown in Figure 23 and the lower section of Table 4. The
tabulated results are consistent with those of the off-plume pixel-subtraction analysis. The contrast
coefficients are statistically unchanged (Appendix 2), and the RMS residual of the fit (o=22.5 uf) is
only slightly smaller. Both residuals are, however, much larger than the value obtained with the
unconstrained regression. Only M = 3 of the 102 cluster spectra survived the regression with posi-

tive coefficients.

A study was made of the shortcomings of unconstrained regression. The main findings are: 1) Ifa
gas in the target suite is not present in the plume, it will nevertheless often be found with a non-
insignificant probability; 2) If a gas is not in the target suite, but is present in the plume, its absence
from the suite will not be evident in the spectral structure of the residual spectrum. An extreme
example illustrates this latter point. Results for both an unconstrained and a constrained regression
with no gases in the target suite are shown in Figures 24 and 25. The unconstrained regression has
contrived to model the underlying surface spectrum as the observed spectrum. The contrast spec-
trum 1s zero. Most revealing is the absence of any spectral clue in the residual spectrum that the
regression has been grossly mis-modeled. The residual spectrum for the constrained regression
shown in Figure 25, on the other hand, clearly reveals the effects of the mis-modeling.
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Figure 23. Constrained regression on a single pixel in Plume 4 of Shot 96.
The legend of Figure 22 applies with the exception that the RMS
.of the residual spectrum is o= 22.5 pf, and the residual spectrum
is not magnified.
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Figure 24. Unconstrained regression on a single pixel in Plume 4 of Shot 96
with no target gases included in the regression. The legend of
Figure 22 applies with the exception that the RMS of the residual
spectrum is o= 10.3 pf.

40

(i) soueipey 1SBAHU0D

(j) souelpey 1SBNUOD




__60F % 4 800
O 1o~
[ N {
@ 50 4] <14 4 6008
-3 - & —
S 40 F 4 400 &
Q.
oy

5 200 ©.
- . >
g 2
& o ©
£ - F
= -200

0 : ! . L . L : ! " ! ' | : -400

7 8 9 10 11 12 13 14
Wavelength (um)

Figure 25. Constrained regression on a single pixel in Plume 4 of Shot 96 with no target
gases included in the regression.” The legend of Figure 22 applies with the
exception that the RMS of the residual spectrum is o= 59.4 pf and the residual
spectrum is not magnified.

The need for non-negative regression constraint has long been recognized in surface classification
applications. It was not initially evident that this constraint would be required when the surface
spectra are used to suppress backgrounds in the gas detection problem. The evidence now is that
they must be constrained. With cluster spectra, direct pixel spectra, or endmember spectra used as
background basis functions, constrained regression can be implemented in a natural manner by
requiring that their regression coefficients be non-negative. With eigenvectors as the basis functions,
there is no obvious way to impose physically meaningful constraints. This inability to impose con-
straints demotes regression on eigenvectors to the status of a detection method with questionable
value in providing quantitative target information. The remaining analyses will continue to show
unconstrained results along with constrained results to further demonstrate the inadequacy of uncon-

strained regression for quantitative gas analysis.

6.6 Significance Tests

In this subsection, statistical tests are applied to assess the quality of the regressions made in the pre-
ceding subsection. These tests rely on the assumption of random normal deviates. The validity of
this assumption was tested by application of the Kolmogorov-Smirnov procedure to the residual
spectra obtained in the regressions. The method of application is presented in Appendix 2. Results
of the application for the unconstrained and constrained regressions are shown in Figures 26 and 27.
The plots compare the cumulative probability distribution for the residual spectra with the cumula-
tive probability distribution for the normal distribution. The test statistic D is the maximum abso-

e
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lute difference between the two cumulative distributions. The significance level P, = 0.98 for the
unconstrained regression confirms compliance with the assumption of normal deviates. The signifi-
cance level P, = 0.37 for the constrained regression does not confirm compliance, but is not so low
as to refute compliance; i.e., a fit this bad can still occur 37% of the time even with random normal
deviates. The assumption of normal deviates is accepted for both regressions.

The construction of a regression model that accurately describes the presence and absence of candi-
date regression terms is a subjective exercise. No single robust technique applies to all cases. The
guidance of Draper and Smith [1966] is used here. To test the inclusion or exclusion of target gases
against a fixed set of background basis functions, we start with the assumption that we know what
gases are likely to be present. We then delete them one at a time in a backward elimination process
and test the significance of the deletion. The significance can be assessed equivalently with either an
F-Test or a T-Test (Appendix 2). The latter is used here. An important consideration in this proce-
dure is account of large correlations among the target spectra. The correlation matrix for the eight
gases considered here is shown in Table 5. Two groups of gases display high intercorrelation.
Methane, nitrous oxide, and water vapor comprise one group. Carbon dioxide and nitrogen dioxide
comprise another. The remaining gases are not strongly correlated with any of the others. The
importance of correlation is that, in the end, it might not be possible to decided unambiguously
which of the correlated species is actually detected. Table 6 shows the backward elimination process
for the constrained regression of the preceding subsection. The first column of P, values is obtained
when all gases are included in the regression. Within the first group of correlated gases, the presence
of water vapor is assured. The significance levels for methane and nitrous oxide are small, but these
species are retained for further consideration. In the second correlated group, the presence of both
carbon dioxide and nitrogen dioxide is assured. Within the uncorrelated group, ethylene has a low
significance and is deleted, ammonia has a high significance and is retained. Sulfur dioxide did not
survive the positive constraint and is eliminated. The second column of P, values shows the results
when the regression is made with the six retained gases. The third and fourth columns of P, values
show the results for deleting either nitrous oxide or methane from the six-gas set. The results display
the ambiguity that can arise with correlated gases. If both gases are retained, then neither is signifi-
cant. If either is removed, the other becomes significant. Here, nitrous oxide is retained in favor of
methane solely on the basis of the 1-part-in-2200 smaller residual that results with its retention.

Table 5. Absorption Spectra Correlation Matrix

CH, NO HO co, No, NH, SO, CjH,
CH, | 1000 0936 0766 -0.092  -0.296 0132  -0.062 -0.138
N,O | 0936 1.000 0779 -0.086  0.314 0121 -0.031 -0.128
HO | 0766 0779  1.000 0.101  0.459 0217 0017  -0277
co, | -0092 -0.086 0.101 1.000  0.699 0120  -0.129  -0.145
No, | -0296 0314 0459 0.699  1.000 0222 0172 -0.254
NH, | -0.182 0121 -0217 -0.120  -0.222 1.000 -0.098  0.205
SO, | -0.062 -0.031 0.017 -0.129  -0.172 -0.098  1:.000 -0.197
CH, | 0138 -0.128 -0.277 -0.145  -0.254 0.205  -0.197  1.000
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Table 6. Test for Significant Gases in Constrained Regression for Plume 4 in Shot 96
Gas SNR_P._SNR P, SNR P, snR P,

N 7 6

M 4 3
o (uf) 22.35 T 2248 22.55 22.54
CH, 05 037 08 054 25 o098 .
N,O 08 056 08 058 —  __ 25  0.98
H,0 70 100 71 100 72 100 71 1.00
co, 83 100 82 100 81 100 82 1.00
NO, 87 100 37 100 37 100 36 1.00
NH, 131 100 131 100 130 100 131 100
SO, 0.0 000 — — — —_ —
CH, 12 073 — — — —_ —

Application of this procedure to the contrast spectrum obtained in the preceding subsection by sub-
tracting a close, off-plume background spectrum yields the same qualitative result as the constrained
regression. Application to the unconstrained regression, although only of academic interest, is
shown in Table 7. Here we obtain the result in a single elimination step that only ammonia and car-

bon dioxide are highly significant.

Table 8 shows the results for testing the addition of background basis functions to the regression. A
series of regressions was made with the (OP)” cluster sets described in Subsection 6.3. The first col-

nitrogen dioxide, ammonia, and nitrous oxide). The number of basis spectra M in the unconstrained
regressions is the number of spectra in the cluster set. The number in the constrained regressions is
the number that survives the positive constraint. The significance of the increased number of spectra
in the unconstrained regression is assessed with the addition F-Test (Appendix 2). The application
of this test assumes that the mean cluster spectra in the larger of two cluster sets comprise a superset
of the smaller cluster set, i.e., the larger set contains all of the cluster spectra of the smaller set. This

Table 7.  Test for Significant Gases in Unconstrained
Regression for Plume 4 in Shot 96

Gas SNR P,

o=0.41 puf

CH, -2.58 0.66
N,O 1.25 0.34
H,0 -0.94 0.25
co, 515 0.95
NO, 1.78 0.48
NH, 16.03 1.00
SO, 3.44 0.81
C,H, -0.81 0.21

’
-
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Table 8. Test for Significant Background Basis Functions
in Regressions for Plume 4 in Shot 96 '

0 (uf) Unconstrained Constrained
M o) P, M ol
120 9 + 2347 3 2552

100 16 18.77 1.00 3 24.58
85 21 15.83 1.00 3 24.33
65 43 10.28 1.00 3 24.37
55 70 7.05 0.99 4 22.26
50 81 6.00 0.75 4 22.26 !
45 104 432 013 5 22.26 ‘

assumption holds quite well for all of the (OP)’ cluster sets constructed here. The F-Test is not
d regression. In Table 8, the RMS regression residuals are shown for both

applicable to constraine
the constrained and unconstrained regressions. The P, values for the unconstrained regression indi-

ber of cluster spectra from 70 to 81 is the last addition that provides any

cate that increasing the num
sensible improvement to the regression. The reduction in residuals for the constrained regression

suggests that the last important change occurs in the transition from 43 to 70 spectra. Apparently,

~70 spectra adequately describe the scene background. This observation is supported by the fact that
lar values larger than the sensor NESR is also ~70.

the number of principal-component singu

6.7 Pixel Amalgamation ,
The spectral results presented in the previous two subsections were for a single pixel. In this sub-
section, spectral results are presented for the amalgamation of a large number of pixel spectra cov-
ering a large spatial extent of a plume. The expectation is that the amalgamation will improve the
extraction statistics for gas contrast coefficients. The amalgamation 18 carried out in the following
manner. Regression (constrained or unconstrained) is performed for each pixel in a selected set of
pixels. The modeled contrast spectrum (40) and residual spectmm,(42) are constructed and averaged

over the selected pixels:

P
CralM)= D" |Crp ) 43)
1 L -
540)=7 D 8- (a4)
. P'—"—l‘ '

The amalgamated data spectrum is taken as

CA(X)chA(?‘>+5A(7‘)~ (45)
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Use of the absolute value in (43) allows pixel results that appear either in emission or in absorption
to be accumulated together. A straightforward averaging of pixel spectra does not allow this. The-
accumulation of the residual spectra diminishes the effects of sensor noise. If the selected pixels
cover a region of sufficiently different underlying spectra, clutter is also suppressed If the underly-
ing surface material is nearly the same under all selected pixels, little clutter suppression results. The
final step is a regression of the data spectrum (45) on the model (41) to obtain the gas contrast coef-
ficients. This regression is a straightforward, N-parameter unconstrained regression since all con-
straints (if any) have been applied in the regression on each pixel.

Another amalgamation approach is to perform a straightforward averaging of the gas regression
coefficients obtained at each pixel -

P
Co=p 2lCml- “)

p=l »

The error in C, can be estimated either as an accumulation of coefficient errors at each pixel
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(48)

Mean values and error estimates obtained from the three approaches are comparable. Of the three
error estimates, the one obtained by the method embodied in (43-45 and 41) is generally the most

conservative, i.e., it produces the largest estimates.

Pixel amalgamation was applied to Plume 1 in Shot 83. Spatial regions relevant to the application
are shown in Figure 28. Clusters were constructed in the large upper rectangle surrounding the
plume, but outside (on white pixels) the exclusion mask. This mask was constructed as outlined in
Subsection 5.2. A cluster parameter of =25 uf resulted in 62 clusters. Two clusters containing the
sensor artifact mentioned in Subsection 6.3 were removed from the set. The selected pixels for the
amalgamation consisted of all pixels, both inside the smaller of the two upper rectangles and inside
the plume mask (on the black pixels). The set contains 3,513 pixels. Unconstrained and constrained
regressions with backward elimination of gases were applied. The starting target suite consisted of
all eight gases. Unconstrained regression results are shown in Figure 29a and the upper left section
of Table 9. Backward elimination removed nitrous oxide (P = 0.50) and ethylene (P;=0.23). The
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Figure 28. Cluster analysis regions for Shot 83. Regions of cluster and pixel-
amalgamation analysis are shown superposed on both the 12-pum
thermal image (left) and the plume exclusion mask (right).

remaining six gases survived the final regression with P, = 1.00. Unlike the single-pixel results of
Table 4, all gases were detected here with positive contrast coefficients in the final regression. Con-
strained regression results are shown in Figure 30a and the upper right section of Table 9. Backward
climination removed only nitrous oxide (P = 0.73). All remaining gases survived with P.= 1.00. In
this regression, different numbers of target gases and background basis spectra survive the con-
straints at each pixel. The amalgamation averages are N =4.75 and M = 6.33. The RMS residual is
0.92 uf and is close to the NESR of the sensor (Table 1). The amalgamation is providing near-
optimum regression. Statistical tests (Appendix 2) reveal that the gas-contrast coefficients for car-
bon dioxide and ammonia are unchanged between the unconstrained and constrained regressions.
With the exception of methane, coefficients obtained with constrained regression are 1.7 to 3.4 times
larger than those obtained with the unconstrained regression. This increase is consistent with the
increased stiffness resulting from the constraint that the background coefficients be positive.
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Figure 29. Pixel amalgamation on Plume 1 of Shot 83 using unconstrained
regression. (a) The spectrum with gray symbols is the data
spectrum (Equation 45). The solid line through the points is the
regression fit (Equation 43). The lowest curve is the residual
spectrum (Equation 44). The RMS of the residual spectrum is o=
0.22 pf. The residual spectrum is magnified by a factor of 5. b)
Pixel amalgamation on an upwind region free of plume activity
using unconstrained regression. The legend is the same as (a) with
the exception that the RMS of the residual spectrum is o = 0.07 pf.
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Table 9. Pixel Amalgamation Contrast Coefficients for Plume 1 in Shot 83

e 1
Gas {ppmm-pif) SNR (ppmm-pf) SNAR
On Plume Unconstrained Constrained
N=6 N=4.75
M="61 M=6.33
o=0.22 uf o =0.92 pf
CH, 180£003x10° 678  155£000x10° 167
H,0 474+084x10" 138 104:012x10° 88
co, 557+025x10° 228  666:085x10° 78
NO, 8.63+0.63x10 13.8 1.46 +0.22 x 10" 6.7
NH, 1264001 x10° 1321 1.31£004x10° 368
50, 1.15+008x10° 151 393+027x10" 148
CH, — — 350+059x10° 60
Off Plume Unconstrained Constrained
N=6 N=171
M =61 M=6.56
o =0.07 pf o =0.80 pf
CH, 1.09+0.02x10° 664 — —
N,O — — 652+1.10x10° 59
H,0 317+£021x10° 149 — —
co, 241£015x10° 140 — —
NO, 000+039x10° 52  312xtiz2x10’ 28
NH, 3.30+0.63x10° 5.2 — —
SO, 1.28+0.05x10" 273 — —
C,H, 6.25+1.03x10° 6.1 1.68+049x10° 34

. Pixel amalgamation was repeated on an upwind region of the image free of plume activity. The
analysis was carried out as above, but on the lower set of rectangles in Figure 28. A cluster disper-
sion parameter of 8= 27 uf resulted in 76 cluster spectra of which two containing the reoccurring
sensor artifact were eliminated. The number of pixels in the amalgamation is 3,3 15. Spectral results
for unconstrained and constrained regressions are shown in Figures 29b and 30b and the lower sec-
tion of Table 9. Despite the extreme unlikelihood that plume gases occur at this site, unconstrained
regression has contrived to detect all gases except nitrous oxide with P,.>0.99. Most disconcerting
are the large coefficients obtained for methane and water vapor. They are greater than half the corre-
sponding values obtained in the on-plume regression. These gases account for the large signal in the
wing below ~8 pm in Figure 29b. Carbon dioxide provides a noticeable, but smaller wing above ~13
pm. With constrained regression, only three plume gases (nitrous oxide, ethylene, and nitrogen
dioxide) are deemed significant. For all three gases, P, > 0.99. The contrast spectrum is shown in
Figure 30b and is not nearly so egregious as that obtained with unconstrained regression. The wings
below ~8 and above ~13 pum are quite small and not noticeably larger than the residual spectrum.
Nevertheless, even though the background constraints provide significantly increased stiffness to the
regression, there is still enough flexibility to provide bogus detection. This flexibility suggests that
gas concentrations may still be somewhat underpredicted in the on-plume constrained regression.

4
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Figure 30. Pixel amalgamation on Plume 1 of Shot 83 using constrained
regression. (a) The legend of Figure 29a applies with the
exception that the RMS of the residual spectrum is o= 0.92 uf and
the residual spectrum is not magnified. (b) Pixel amalgamation on
an upwind region free of plume activity using constrained
regression. The legend of Figure 29b applies with the exception
that the RMS of the residual spectrum is o= 0.80 uf and the
residual spectrum is not magnified.

6.8 Column Density and Plume Temperature Extraction
The target extraction results to this point have been the gas contrast coefficient defined by (15). For
a single gas, and with (25), the contrast can be written as

CzCP[BP(I)‘LO(ZH’*‘C‘A[BP(I)"BA(Z)]- (49)
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The contrast is a function of two unknown quantities: the column density, c,, and the plume radi-
ance, Bp(A ). The ambient values c, and B4 {A) are presumed known. With contrast results from a
single pixel, solution for these two parameters is not possible since there is only one equation. Some
extra information is required to solve the problem. In this section, a spatial-degradation approach is
taken to obtain estimates of these separate quantities. In effect, the information needed is obtained

by sacrificing spatial resolution.

Equation (49) is a linear relationship between the contrast C and the underlying surface radiance [_.0

with slope b = —, and intercept a = ¢, B, +c,(B,— B ). (The dependence on A has been sup-
pressed.) Consider a spatial subregion n X m pixels in extent surrounding a pixel. Assume that the
plume temperature and column density are constant within this subregion. Then we have 7 X
equations to determine two parameters, so long as the set of equations is not ill conditioned. The set
will be ill conditioned if the subregion contains degenerate underlying spectra. The condition of the
extraction, therefore, relies on the presence of underlying surface clutter. A least-squares line fit is

made to the set of n X m pairs of C and L to obtain a and b and corresponding error estimates o,

and o,. The independent variable Eo can be obtained in general from (33) with interpolation to x.
An alternative method is to determine the surface brightness temperature by (3) in a spectral channel
free of gas activity and convert it to radiance at A with (2). This latter method was used here and
justified by the fact that the site consists primarily of graybody spectra. The column density and
plume radiance are then given by cp==band B,=(a+c¢ 1B )/(=b + c,) with error estimates o,.=g0,
and Op, = I, — B,o,l/(c, + c,). The error estimate for B, takes account of the fact that @ and b are

nearly perfectly anti-correlated. Results are retained only if the retrieval SNRs SNR. =c/o, and
SNRp, =Bp /Gp, are larger than a threshold value. The extracted value of B, 1s converted to

temperature using the inverse Planck function relationship (3) with A as the wavelength.

An application of the separation was made on Plumes 1, 4, and 5 in Shot 96. Unconstrained regres-
sion was made with ammonia as the only target gas and with the 70 spectra of the 8 = 55 uf cluster
set (Subsection 6.3) as the background basis set. Unconstrained regression is acceptable here since
ammonia is only mildly underpredicted (<15%). Additionally, ¢ -, = 0 since there is no ambient
ammonia contribution. A 7 X 7 degradation grid was used. Rejection SNRs were set at 5 for both Cp
and B,,. The application was made to each pixel in the image. The linear least-squares fit that obtains
for one of the pixels is shown in Figure 31. The 49 spectra of the subregion containing the pixel are
shown in Figure 32. Although indicative of a common surface material, the spread in temperature of
these spectra provides sufficient clutter to effect a separation of column density and temperature.
The least-squares line through the data of Figure 31 yields ¢, = 70 + 5 ppmm and B » =850 % 80uf.
The implied plume temperature is 7, = 18 = 6°C. The extracted column-density and plume-tem-
perature images are shown in Figure 33. The blockiness of the images results from the 7 x 7-pixel
spatial degradation. Discontinuities occur in the extraction images wherever the plumes pass over
regions of low spatial surface clutter. The extracted parameters were averaged over the downwind
region of the plume where it appears entirely in absorption. The results are ¢, = 57 + 4.8 + 1 ppmm,
B,=860+80+2 ufand T, =18.7+ 5.4+ 0.1°C. The first error number is the standard deviation.
The second error number is the standard deviation of the mean based on 1664 points forc, and 773

points for B, and T,.
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Ammonia column-density and plume-temperature extractions for
Shot 96. (a) 12-um thermal image. (b) Ammonia contrast image.
(c) Extracted ammonia column density. This image is displayed on
a logarithmic intensity scale so that the two smaller plumes can be
seen. (d) Extracted plume temperature.

Figure 33.

The downwind variations of these parameters for Plume 1 are shown in Figure 34. The results were
averaged in 5-pixel (~10-m-wide) bins across the width of the image and plotted against the distance
x down the plume axis from the stack location. Beyond 75 m, the column density displays a steady
decrease towards zero as the plume disperses. The temperature. decreases steadily towards an
asymptotic value consistent with the EDAS estimate of ~14°C for the ground-level air temperature at
the site. No corrections were made for stack height or plume loft [Hanna et al., 1982].

6.9 Plume Gas Properties

Results obtained from the pixel amalgamation analysis of Subsection 6.7 on Shot 83 and the extrac-
tion results of the preceding subsection on Shot 96 were used to estimate gas concentrations and
mass flow rates within Plume 1. Shots 83 and 96 were taken within 6 min of each other. It is
assumed that the plume conditions are the same for each Shot.

Mass Flow Rate. The column-density and plume-temperature data of Figure 34 were fit to a simple
plume model in which the stack gases mix uniformly with entrained ambient air within a circular
cone and rapidly equilibrate to the wind speed (Figure 35). (Other plume models are discussed by
Hanna et al. [1982] and Kuo et al., [2000].) The plume model diameter is d = dg + 2xsin{0/2)
where d, is the diameter of the cone at x = 0, and « is the full cone-expansion angle. Mass density
and temperature within the plume are modeled as
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Figure 34. Downwind variation of ammonia mean column density and mean
plume temperature across the transverse dimension of Plume 1 in
Shot 96. The curves are variations for a cone-dispersion model
(Equations 51 and 52). The dashed line is the EDAS estimate of
surface air temperature (14 °C).

Figure 35. Cone-Dispersion Plume Model.
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p, and T, are the density and temperature atx = 0. p, and T, are ambient atmospheric values. For
ammonia, p, = 0. Molecular number density is n=pN 4 /1, where N, = 6.023 x 10" mole-
cules/mole, and = 17 g/mole is the atomic weight of ammonia from Table 2. z'sl‘he total gas pressure'
is assunsled to be 1 atm. The total molecular number density is n.=2.686 X 10 (Ts7/T) mole-
cules/m . Tgrp = 273.15K. Column density (in ppmm) averaged over the transverse dimension of the

plume is
=108 2 Za.
€ (”T ’4 (52)

A nonlinear fit of the data for ¢ and T, to the functional forms (51) and (52) gave parameter values o
=15° d,=21m, py= 8.9 % 10° kg/ma, T,=49°C and T, =17°C. (dy pyand T, describe conditions
within the plume model at x = 0. They are not conditions at the stack exit plane.) The dispersion
angle and mean plume width (65 # 20 m) are consistent with estimates made directly from the
imagery. The ambient temperature is consistent with the EDAS estimate of 14°C. The model result

for cand T, are shown in Figure 34. The RMS residuals of the fit are 28 ppmm for ¢ and 3.1°C for
T,. The mass flow rate is m= (1c/4)d2p V= (7:/4)d§p00 . where v is the ambient wind speed. With

the EDAS estimate U~ 3 m/s (ahd an arbitrary error estimate of 1 m/s), the ammonia flow rate is
m=0.009 % 0.003 kg/s = 70 + 30 Ib/h.

Gas Concentrations. Table 10 displays concentration results for Plume 1. The second column
repeats the gas contrast radiances, C, obtained in the pixel amalgamation analysis of Subsection 6.7
(the constrained, on-plume entries in Table 9). The contrast values are tabulated as negative to
reflect the fact that the plume is seen almost entirely in absorption. The mean plume temperature,
obtained from the extraction analysis of Subsection 6.8, is T, = 18.7 £ 0.1°C. This temperature is
close enough to the reference temperatures for the water vapor, carbon dioxide, and nitrogen dioxide
spectral absorption coefficients (Figure 1) that no temperature scalings of the contrast radiances were
made. The third column shows the contrast radiances transformed to temperature units with (4), the
7 values of Table 2, and the mean plume temperature. An advantage of this unit is that molar ratios

can be obtained directly as ratios of contrast radiance. Whatever temperature contrast obtains will

cancel. Because A varies with gas, this cancellation does not occur with contrast radiance expressed

in radiance units. The fourth column of Table 10 lists the ambient concentrations, p,, for the
er vapor entry is the mean of the EDAS and ISAC estimates. The contribu-

detected gases. The wat
tion to contrast radiance from ambient gases [from (14)] is C, = (T — T, where T, is ambient air
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Table 10. Gas Concentrations in Plume 1

c . c Pa G Pe Pp+ Py
Gas (ppmm-yf) (ppmm-°C) (ppm) (ppmm-°C) (ppm) (ppm)
CH, -155%009x10° -95x06x10° 15  -1.0%0.1x10’ 12£6 136
HO -1.04£0.12x10° —-6.6+08x10° 10'+500 -9.720.8x10° 11000£5000 21000 + 6000
CO, -6.66+0.85x10° —67+09x10° 360  -7.8+09x10° 900£400 1300z 400
NO, -146%022x10' -1.1202x10° 0001  —11:02x10° 1.3%07 1.3£07
NH, -1.31:0.04x10' -9.4:03x10° 0004 —94103x10° 1105 1105
SO, -3.93+027x10' -25+02x10° 0001  -—25%02x10° 2B#14 - 2814
CH, -3502059x10° -25+04x10° —  -25%04x10°  0.3%0.1 0.3+ 0.1

Total = 12000 £ 6000 23000 6000

temperature. The mean air temperature obtained from EDAS and ISAC estimates is T, = 14.0
+0.2°C. C, was subtracted from the values in the third column to give the contrast radlance contri-
bution, C,, from stack gases alone. Only water vapor and carbon dioxide are affected to any sensible
extent. The stack contribution is tabulated in the fifth column. The sixth column of Table 10 shows
the stack contributions to gas densities, p,, that obtain when the temperature contrast and plume
diameter are divided out. Temperature contrast is the difference between the mean plume tempera-
ture and the mean underlying surface temperature. The surface temperature was obtained from the
region under the plume using radiance data from the 12.15-pm spectral channel. None of the plume
gases is active in this channel. The surface temperature is Tg =325 % 0.1°C. The temperature
contrast is thus AT = T, — T, =-13°C. Because the gas contrast error already carries the pixel-to-
pixel variations in both column density and thermal contrast, the error in AT is not included in the
error propagation for p,. The mean model plume diameter front Subsection 6.8 is D =65 £20m. It
is assumed here that the diameter of the plume is the same in the plane of the imagery as it is fora
vertical LOS through the plume. The last column of Table 10 lists the total concentrations p, + p,.

The total carbon dioxide concentration is 1300 + 400 ppm and is about a factor of 4 larger than the
ambient value. The total water vapor concentration is 21000 £ 6000 ppm and is about twice the
ambient value. Concentrations of the remaining gases are of order 0.1 to 10 ppm and, although much
smaller than the concentrations of carbon dioxide and water vapor, are well above ambient values.

The sum of all stack concentrations is 23000 £ 6000 ppm.
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7. Summary and Discussions

Methods for detecting and quantifying gas effluents in industrial-stack plumes using thermal-infrared
hyperspectral imagery were demonstrated. Principal-component projection provides detection capa-
bility for moderate to strong plumes when there is no prior knowledge of what gases might be pres-
ent. Use of the scene spectral clutter covariance matrix for the construction of these components is
superior to use of the correlation or noise-adjusted matrices in producing identifiable plume struc-
tures. Projection-pursuit methods [farraguerri and Chang, 2000] may provide better detection
capability. Traditional spectral matched filtering provides optimum detection when it is known what
gases are likely to be present. If the target plume area is a sizable fraction of the total image area, an
iterative application of matched filtering can increase the detection fidelity. Thresholding of princi-
pal-component projections or spectral matched filter output images provides a convenient method to
construct spatial masks that differentiate between pixels containing plume-like spectral structure and
those that do not. For both principal-component projection and spectral matched filtering, careful
visual inspection of the output images is required to identify small or weak plumes. Thresholding of
spectral matched filter outputs, even at SNR values as low as 2, will miss plumes that are readily
apparent to the eye. A few very small plumes were apparent in some spectral matched filter output
images. They consisted of no more than a single hot-stack pixel and one or two downwind pixels
containing identifiable gas emissions. These plumes are being addressed in a study of techniques
designed to detect small targets [Schweizer and Moura, 2000; Schweizer and Moura, 2001; Yu et al.,

1997:; Funk et al., 2001].

Unconstrained linear least-squares regression provides some improvement over spectral matched
filtering in obtaining quantitative gas information. However, the unbridled flexibility inherent in the
method mis-models the underlying surface radiance spectrum to such an extent that gas concentra-
tions can be underpredicted by as much as a factors of 3. The largest errors result for gases with
broad spectral features. Effects of mis-modeling cannot be detected in the spectral structure of the
residual spectrum. These deleterious effects obtain with background basis sets composed either of
spectra extracted from the imagery or eigenvector spectra of spectral covariance matrices constructed
from the imagery. Quantitative results can be obtained with constrained regressions in which all gas
contrast radiance coefficients are required to have the same sign, and the background basis set 1s
required to consist of physically meaningful spectra represented by non-negative expansion coeffi-
cients. It is not immediately evident how to impose equivalent constraints in regressions using basis
sets of eigenvectors. All applications of unconstrained regression employing eigenvectors must be
viewed only as detection methods with little quantitative capability. As such, they have little to offer
over the more easily implemented spectral matched filtering methods.

The effect of spectral line correlation was shown to be significant for plume gases that also contrib-
ute significantly to atmospheric attenuation. For the current collection geometry and humidity con-
ditions, the effective emission coefficient for water vapor is reduced by a factor of ~15. The factor
for carbon dioxide and methane is ~3. The remaining gases considered here are not seriously

affected.
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Background basis sets consisting of manually selected pixel spectra and spectra derived from clus-
tering algorithms were considered. A single-pass clustering algorithm (OP)” was formulated that is
amenable to unsupervised implementation, is fast, and generates spectra that account for thermal
variation in the data. Unlike the K-Means or ISODATA algorithms, (OP)2 does not impose total
within-cluster sum-of-squares minimization. This aspect of clustering may be useful in surface-
material classification applications, but is superfluous and costly in generating background basis sets
used for gas detection. Regression results obtaingd with K-Means clusters were found to be virtually
identical to regression results obtained with (OP) clusters.

Endmember extraction methods were not employed in the current study. Application of this method
to thermal data requires three steps. First, the thermal variation needs to be removed from the data,
The resulting pixel spectra then need to be processed by a traditional endmember extraction algo-
rithm. Finally, thermal variation needs to be reestablished on the endmembers to generate suitable
background radiance spectra. The first and third steps are rarely addressed in the endmember-
extraction literature. Stocker and Schaum [1997] comment on two ways the first step might be done:
converting the radiance spectra to emissivity spectra and projecting out data variations in the spectral
direction of the local temperature gradient. Given the success of clustering in providing suitable
background spectra for gas analysis applications, endmember extraction appears overly complicated
_and unlikely to provide any significant advantage.

Application of constrained regression is at least a factor of 30 slower than unconstrained regression.
It is usually impractical to apply constrained regression to an entire image. A practical approach is
to employ unconstrained regression and then to correct the regression result based on results
obtained with both unconstrained and constrained regressions on a smaller, selected set of image
pixels. Alternatives to constrained regression are being considered. Inspection of Figures 21 and 23
and Table 4 suggests that simple off-plume background subtraction can yield results that are nearly
as good as those obtained with constrained regression. A straightforward search through an entire
image (hundreds of thousands of pixels) for the closest off-plume background pixel that matches
every plume pixel (thousands of pixels), however, is impractical. Methods to limit the search need to
be implemented. An alternative approach is to use a single cluster spectrum as the background. In
this closest-cluster approach, the number of clusters is not limited by M < J — N as it is when the
clusters are used as backgrounds in regressions. Preliminary studies suggest that basis sets of order
100 to 1000 clusters would be suitable.

The T-Test was used to assess the significance of gas detection in both unconstrained and con-
strained regressions. The addition F-Test was used to determine that a background basis set of ~70
members is optimum in describing the clutter of the current target site.

A method was demonstrated to extract gas column density and plume temperature from measure-
ments of gas contrast radiance in optically thin plumes. The method employs spatial degradation of
the data to remove the indeterminacy inherent in trying to estimate two parameters from one meas-
urement. The indeterminacy is removed only over regions of sufficient thermal or spectral clutter in
the underlying surface. All aspects of the current study were limited to analyses of optically thin
gases. Non-thin conditions occur in some of the plumes close to the stack exit points. Various linear
and nonlinear methods are being examined for use in non-thin gas analysis. The radiance model for
thin gases was obtained here by expanding the plume emissivity only to first order in gas column
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density [see (12)]. Higher order expansions can be used for conditions not too far beyond thin.
Expansion requires the selection of a suitable gas absorption law. For gases with dense vibration-
rotation line structure (e.g., sulfur dioxide), Beer’s law is appropriate. For gases with sparse line
structure (e.g., ammonia), narrowband-model formulations are needed. In either case, the linear
radiance model (17) can be retained by thinking of the moments k (1), knz(l), k:(l), ... appearing in
the expansion as representing absorption spectra for different, but highly overlapping, gases. In
addition to the same-sign constraint imposed for multiple target gases, regression requires the added
constraint that the gas contrast coefficients satisfy the alternating sign of the expansion coefficients.
Hayden and Noll [1997] discuss this expansion approach within the limitations of unconstrained
regression (the OBS method mentioned in Appendix 1). They also note that the indeterminacy in
separating column density and plume temperature does not occur in non-thin gases.

Column-density and plume-temperature data for Plume 1 in Shot 96 were fit to a cone-dispersion
plume model and used to estimate gas flow rate. A flow rate of 0.009 £ 0.003 kg/s (70 £ 30 Ib/h)
was found for ammonia. Large errors obtain for this and other estimates owing to large errors in
contrast radiance extraction, contrast temperature estimation, wind speed estimation, and plume
diameter estimation. The error in diameter estimation must include the error incurred in assuming
that the LOS depth through the plume is the same as the diameter obtained from the imagery. Mean
gas concentrations for Plume 1 were estimated from an amalgamation of pixel spectra. The
estimated total concentrations for carbon dioxide and water vapor are 1300 =400 and 21000 = 6000
ppm, respectively. The concentrations of all species except carbon dioxide and water vapor range

from 0.1 to 10 ppm.
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Appendix 1—Linear Least-Squares Regression

A fundamental procedure in hyperspectral data analysis is the modeling of a pixel spectrum as a
linear combination of target and background spectra

N : M
Lt)= Y o Ty(@)+ D BBy () +5(1). M

m=1 .

L(2) is a pixel spectrum, A is wavelength, T (4) (n =1, ..., N) is a set of target spectra, B, (A) (m =1,
..., M) is a set of background basis spectra, ¢, and 3, are amplitude coefficients, and &4) is the
residual spectrum. Target spectra might be spectral gas absorption coefficients k(1) or material
reflectance spectra p(1). Background spectra might be pixel spectra drawn directly from the
imagery, spectra constructed by endmember extraction algorithms, spectra derived from clustering
algorithms, eigenvector representations of any of the above, or eigenvector spectra of various spec-
tral covariance matrices constructed from the imagery.

Equation (1) represents a set of linear equations, one for each spectral channel lj (=1,..J). When
J > N + M, the amplitude coefficients can be determined by a variety of regression procedures. Two
regression approaches are considered here. In the first approach, no constraints are placed on the
amplitude coefficients. In the second approach, various constraints are placed on the target and
background amplitudes. Unconstrained regression is also known as multivariate linear least-squares
regression and multiple least-squares regression. Either form of regression, particularly in the
geological community, is also known as spectral unmixing or demixing.

Recasting in matrix-vector notation:
v=[ef ) 20.) @
X=oy oy By Bar)” . 3)

730y )Ty (1) Bilay )+ Bag O
A= : @

Tl(ij)"'TNO"J) 31(7&1)"'3:1‘4 ™)

d=[5(1,)-5(,)]". s)



Y is a column-vector representation of L(4). X is column-vector representations of the amplitude
coefficients @, and 8. A is a matrix representation of the target and background spectra. dis a
column-vector representation of the residual spectrum &4). With these correspondences, (1)
becomes

Y=AX+d. _ S 6

In addition to Y, assume the covariance matrix C, describing error estimates of, and correlations
between, the elements of Y is known. :

Unconstrained Regression. The unconstrained regression solution to (6) is obtained by minimizing
the magnitude of the error-weighted residual vector d with respect to variations in X. The error-

weighted magnitude R is defined by

R?=dTc{d=(Y-AX)TCc{ (Y - AX). ©)
Minimization of R by dR/dX = 0 yields the normal equation:
(ATcia)x=ATcylY, ®)
from which t}?e formal solution,
X:(ATc;)A)"IA CyY, )

is obtained. The errors of, and correlations between, the elements of the solution vector X are
described by the covariance matrix

Cy =(ATCQ‘A)"I. (10)

If the covariance matrix C, is not known, the regression is carried out with the identity matrxx C,=1
and Cy is approximated by

~-1
Cy=c*(ATA), (11
where o is the magnitude of the residual vector defined by

R/ . (12)
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An option for ¢is the unbiased estimate of the noise variance
2
R%/v, (13)

where
v=J-(M+N) (14)
is the number of degrees of freedom for the regression. o is used here to report the error of the fit.

In the current application, C, represents sensor noise and can be obtained from radiance calibration
data. Roge{ [1996b] observes that an approximation to the inverse of the sensor noise covariance
matrix C, 1s obtamed by retaining only the diagonal elements of the inverse of the scene clutter
covariance matrix C_ . Despite the availability of C,, error estimates are obtained in the current
work from (11) and (12) because this approach gives slightly more conservative (i.e., slightly larger)
error estimates.

In addition to solution of the unconstrained regression problem by use of the normal equation (NEQ),
at least four other methods of solution are employed. The columns of A comprise a set of vectors.
Gram-Schmidt orthogonalization (GSO) can be applied to this set to generate a set of orthogonal
filter vectors F_ (n =1, ..., N + M) that yield the X coefficients by X, =F, - ¥ . The application
requires N + M orthogonalizations with each column of A iteratively placed in last position. The
modified Gram-Schmidt procedure described by Lawson and Hanson [1974, p. 129] is recommended
for improved numerical accuracy. Singular-value decomposition (SVD) can also be employed
[Press et al., 1990, p. 52, 515]. Orthogonal subspace projection (OSP) [Harsanyi and Chang, 1994]
and orthogonal background suppression (OBS) [Hayden et al., 1996] provide two other filter-vector
approaches to the solution. These four implementations are described for Cy = I. For general C\,,
the implementations need to be made against the whitened form of (6)

T
(C~1/2) Y_[(C;(l/Z) A}X. (15)
The matrix square root is defined by [Pratt, 1978, p. 660]
\T
cy C—llz(c—llz) (16)

and computed by



where K and E are the eigenvectors and eigenvalues of C{rl . (K and E can be calculated efficiently

with SVD methods. When applied to a covariance matrix, the left- and right-eigenvectors are
identical, and singular values are actually eigenvalues.) It was determined that all of these
implementations, with the exception of OSP, are equivalent when applied to SEBASS data. The
SVD implementation is robust against an ill-conditioned A, but no ill condition has ever arisen in
SEBASS data. The OSP implementation employs an inordinate amount of computation [Sertle,
1996]. Possibly because of round-off errors generated by this large amount of computation,
unacceptably large error estimates for X are often obtained with OSP.

Unconstrained regressions in the current work were carried out with a filter-vector implementation of
SVD. Following Press et al. [1990, p. 52], working with the whitened equation (15) and rearranging
the result to effect a filter-vector implementation yields

X,=F,-Y, (18)

where F is the filter vector

N+M V.
F, =Cy'? 2 (_;'L}), (19)

The elements of C, are

N+M
ViV
Cy (n,m)= 2 il 20)

. S
i=l !

12\
U and V are the left- and right-eigenvectors arrays of the matrix (CY'/Z) A . s, are the singular

values.

Spectral Matched Filters. Spectral matched filtering for signal detection is common in the electrical
engineering signal processing literature. Its derivation there [e.g., Pratt, 1978, p. 560] is often from a
point of view that obscures its connection to linear least-squares regression. From the regression
point of view, spectral matched filtering is an unconstrained regression in which the background
summation in (1) is approximated by a single term, i.e., the mean scene background with fixed

amplitude B, = 1, and in which C, is broadened in scope and taken as the full scene clutter
covariance matrix C. Let Y, be a column vector representation of the spectrum at the pth pixel. Cis

the square J x J matrix




P
1 <|T vl 1 T Eaval)
C-—I—;Z[Y,, -]y, —Y]=_P.ZY,, Y, -Y¥T, @n
p=l -
where Y is the mean scene spectrurn

1 P
Y=-Fsz, (22)

p:

o

and YY ' is the outer product of the mean spectrum with itself. The summations in (21) and (22)
are over all, or some selected set, of pixels in the image. P is the number of pixels. J is the number
of spectral channels. With the coarse approximation that the background under a pixel is the mean
scene spectrum, spectral matched filtering is rarely suitable for quantitative assessment of signal
strength. In gas detection, for example, it is not unusual to obtain a large positive (negative)
detection signal on a pixel when the pixel spectrum clearly shows the gas in absorption (emission).
Nevertheless, spectral matched filtering is a proven powerful and robust detection technique that can
be applied with a minimal amount of preparation.

With the mean scene spectrum used as the background and C as the error-weighting function, the
solution vector and error covariance matrix for X are

x=(aTca) ATC (v -T) | (23)
and
cx=(aTcal, (24)

where now A contains only target spectra. Rearrangement of (23) allows the solution to be written
as ‘

X=FT(y-Y), 25)
where
F=(C"A)C, (26)

is a matrix whose columns are the spectral matched filters. It is traditional to report spectral matched
filtering results as the signal-to-noise ratio (SNR) for detection of the nth target. This ratio is

Vi



SNR:Xn/GXn , (27)

where
Sx, =,/Cx(n,n). C@® ‘

Oy isan estimate of the minimum detectable quantity (MDC), the minimum signal strength req11ired
for a detection SNR of unity. Additionally, detection on a set of targets is most often implemént_
one-target-at-a-time. That is, A contains only a single column. This is an acceptable appr‘éééh.gnly
if the target spectra do not overlap significantly. All of the work here on multiple-gas detection iS
carried out with a full A matrix. el

Constrained Regression. For some problems, it is necessary to place constraints on the ampliimcfe
coefficients &, and B,, to impose physically meaningful conditions. Two constraints are reié?iant to
the current work. First, except under unusual conditions, we expect to see all gases simultarigous!y
either in emission or in absorption; that is, all amplitude coefficients ¢, should have the sarme Sigh-
Second, when the background is expanded on a set of radiance spectra drawn from the imagéry, ond
set of clusters constructed from the imagery, or on a set of endmembers extracted from the imagery’

we expect the amplitude coefficients 3, to be nonnegative.

At least two situations exist where the same-sign constraint on gas contrast radiance does not apply
and in which it is possible to see some gases in absorption and others in emission. Neither occur$ in
the current study. Consider gases flowing over an underlying silicate surface. If the dominant spec
tral feature for one gas lies directly over the depressed emissivity feature between ~8.0 and ~9.6 pm
and the dominant spectral feature of another gas does not, then there will be a narrow range of ter™
perature contrast between the plume and the surface that renders the first gas in emission and the
second in absorption. The second situation arises if two gases are emitted from a hot stack and one
of them is also an ambient gas that is rapidly entrained with the stack gases. The contrast radianc®
for the nonambient gas is C, = Dp,, (T, — Ty), Where D is the LOS distance through the plume, Fp1 15
the gas concentration in the plume from the stack contribution, T}, is the plume temperature, and T 15
the brightness temperature of the underlying surface. The contrast radiance for the ambient gas is g
=D [pp, (Tp = Tg) + Py (T, = T], Where pp, and p,, are the stack and ambient entrainment contrib¥”
tions to the plume concentration, and 7, is the ambient air temperature. If T3 > T, C, will be nega-
tive. The first term of C, will also be negative, but the second term will always be positive or 2€10-
If the stack contribution, p,,, is small, the second term can dominate and produce a positive contrast

Constrained regressions were carried out here with the NNLS algorithm described by Lawson and
Hanson [1974, p. 158]. (A similar algorithm is available in the commercial IMSL mathematical
library with [Hanson, 1986] as its citation.) The NNLS algorithm solves the linear least-squares
regression problem with the inequality constraint that all coefficients, ¢ and j_ alike, be
nonnegative. The same-sign constraint on the target coefficients is handled by solving the con-
strained problem twice. The first solution is a direct application of NNLS. The second solution 18
obtained by changing the sign of all target column vectors in A. The result with the smaller regres”
sion residual is taken as the solution. NNLS constrained regression with error estimation, and wit
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the double application required to impose the same-sign constraint, is nearly 40 times slower than
unconstrained regression. Additionally, the covariance matrix Cy cannot be precomputed. It is not
known beforehand which members of the background set will survive the regression. Fitting residu-
als are also necessarily larger than those obtained in unconstrained regression.

Other solutions to the regression problem with nonnegative amplitude coefficients are obtained in an
jterative application of unconstrained regression. First, the unconstrained solution is obtained.
Column vectors of A that correspond to negative solution elements X, are deleted. Ramsey and
Christensen [1998] delete all of them at once. Heinz et al. [1999] delete only the most offensive one
(after a suitable weighting). In either case, unconstrained regression is then reapplied. The process
is repeated until no negative X_ remains. Although this method generally selects a final basis set that
is different from the NNLS set, the residual of the fit is usually nearly as good. An objection to this
method is that it is even slower than the NNLS algorithm. '
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Appendix 2—Statistical Tests of Regression

Test for Normal Distribution. Several statistical tests are used in the current work to assess the
quality of regression. All of these tests are based on the assumption of normal random deviates.
Conformity to this assumption is tested with the Kolmogorov-Smirnov procedure [Press et al., 1990,
p. 472] of comparing the cumulative probability distribution of a regression residual spectrum &A1)
with the cumulative probability distribution for the normal distribution. The cumulative distribution

of the residual spectrum is

Pc(j)=jlJ j=12....J ¢y

at the abscissa positions

z(j)=38s(j)/o J=12,.,0. » @)

S ( j ) is the array of residual spectrum elements 6(/1j) sorted by ascending value. ois the RMS
value of the spectrum. The cumulative normal distribution is

- Pe(j)=Plz(j)] j=L2...7, 3)

where

VA
P(Z):\/-%C_— j e 124y @

The Kolmogorov-Smirnov statistic D is the maximum absolute difference between distributions (1)
and (3). For each j, the value of P from (3) needs to be compared to the value from (1) at bothj and
j— 1. Forj =1, the second comparison is with zero. The maximum absolute difference is tested for
significance by

Pys =0Qks (\/7 Dgs ) &)

where
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Oxs()=2) (-1)ie7 (e
=] o

P s ranges from zero to unity as the agreement with a normal distribution improves. Application of
this test is made in Subsection 6.6.

T-Test for Significance of X. A standard (Student’s) 7T-Test is used to assess the significance of a
regression coefficients X with respect to its error estimate Oy. The test statistic is

z7=5 —\—’—::SNR\/I, ‘ 7
Oy J J

where v is the degrees of freedom of the regression V=J —~ N -~ M. The radical factor in (7) adjusts
the standard error estimate to be an unbiased estimate (see Equation 13 of Appendix 1). The
probability that a value greater than or equal to X could have been obtained by statistical fluctuations

for the case that its true value is zero is 2[1 - T(Zf v)], where T(Zl V) is the cumulative 7-distribution

v [( 1)/2] , ~(v+1)/2 1 1
. Tliv+ - 13 _ A%
(Z,V)— Jrvi (v/Z)J [l % J dr=1 2 Iv: 3 [2 2 ) ®)

I,(a,b) is the incomplete beta function [Press et al., 1990, p. 168]. The probability that X is
significant is therefore

Pr =1-2[1-T(z|v)]=21(z]v)-1. )

For all applications in this work, v is large enough that T(ZJV) is adequately approximated by the
normal distribution (4).
I-Test for Significance of Change in X. A T-Test can be made to test whether a coefficient has

changed between two regressions. Let X, 0y andX,, ¢ x, be the coefficients and standard errors
obtained in the two regressions. The test statistic is :

' X1 X,
7=
«\/(J/Vl )Gil +(J/V2)0§(2

(10)

The probability that X, and X, are different is givén by (9) with v= v + w,.
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Goodness of Fit F-Test. A measure of the goodness of fit of a regression is given by an F-Test
[Rousseeuw and Leroy, 1987] with the statistic

_ R¥n+M) an
R*= .
(-r*)Jy-N-M)
R is the multiple regression coefficient. Its square (the coefficient of determination) is
1 J
2 2 2
R?=1-0 -J—ZY,- : (12)
J=1 '
where Y is the data spectrum. The measure of the goodness of fitis
Pg =1~ Pp(Fp| N+M,J = N-M), (13)
where P (F,v,V,) is the cumulative F-distribution
Vo Vi
PF(FiVI’VZ)zl vy (—5“,3‘), (14)
Vo+viF

and I, (a,b) is the incomplete beta function.

In the current study, this test is not particularly revealing. The total data spectrum consists of a weak
trace-gas signal superimposed on a strong thermal background signal. For any reasonable estimate
of the thermal signal, regardless of the target gas selection, the test assesses the goodness of fit as
excellent. Here, the test was heuristically modified by replacing the total signal Y with the gas
contrast spectrum (equation 40 of the main text). With this modification, the test assesses the
goodness of fit provided by the selection of gases. For all regression carried out here, the final
selection of gases gave goodness-of-fit probability P, = 1.00.

Addition F-Test. The significance of changing the number of target or background terms in a
regression can be assessed with an F-Test using a statistic derived from the change in the regression
residual [Bevington, 1969]. The following development is for including additional terms.
Application for deleting terms obtains by changing the subscripts 1 and 2. The F-statistic 1s

G2 -o3)vi-vy) (15)

F, = .
G%/Vz

X
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O, is the regression residual that results with N, targets and M, backgrounds. ©, is the regression
residual for N, targets and M, backgrounds. In unconstrained regression, 0, < 0,. The degrees of
freedom for the two regressions are v, = J — N,-M,and v,=J—-N, - M,. The test requires

N,+M,>N, +M, (16)

so that v; — v, > 0. This test is most commonly used to assess the addition of a single new term.
Then, N, =N, +1 and v, - V, = 1. The measure of significance of the addition of terms is

P =1”'PF(szV1"V2’Vz)’ (17)

x

where P, (F|v,,v,) is given by (14).

All of these tests except the addition F-Test are directly applicable to both constrained and
unconstrained regressions. The addition F-Test is not applicable to constrained regressions. In
constrained regressions, N is not necessarily the number of gases in the target suite, and M is not
necessarily the number of background spectra in the basis set. N is the number of gases that survive
the same-sign constraint with nonzero coefficients, and M is the number of backgrounds that survive
with positive coefficients. Amplitude coefficients of zero do not contribute to a reduction in the
degrees of freedom of the regression. This result is readily established by noting that an
unconstrained regression using only the surviving targets and backgrounds will give the same result
as the constrained regression. The upshot is that the condition (16) is not necessarily satisfied. For
example, the addition of a single gas to the target suite might change the number of backgrounds
used in the regression so that the difference V, =V, is zero or negative. This condition destroys the
validity of the statistic (15). Even if the number of backgrounds does not change, the set of
backgrounds selected might change. This change also destroys the validity of the test. Additionally,
in constrained regression, there is no guarantee that O, = 0,. Application of the addition F-Test is
made in Subsection 6.6 to assess the improvement in unconstrained regression as the number of
background cluster spectra is increased.

76



